Statistics M.S.

Data analyst statistics stock image

Program overview

Our Master of Science degree offers you the advanced perspectives and skills necessary for careers as statisticians and data analysts. Our alumni are succeeding in an array of industries, including technology, finance, defense, healthcare, pharmaceuticals, government, insurance, agriculture, and many more). Our graduates also have all the tools, if they desire, to continue their statistics education and obtain a Ph.D. In addition to our outstanding faculty, the department provides access to state-of-the-art computing and library resources.

Internship program

Our graduate degree includes a vaunted internship program for interested students. This cooperative effort trains students through a combination of coursework and hands-on application in a professional setting. These select internships introduce you to the application of applied statistics as a complement to the theoretical foundations learned in the classroom. Delaware’s many chemical, pharmaceutical and finance companies provide a unique opportunity for statistics interns through the problem-solving nature of their work and the availability of experienced statisticians to mentor our students.

Admission requirements

Begin assembling your required application materials as electronic documents before completing the online graduate application. Do not mail any documents. Applicants must submit all materials directly to the University Office of Graduate and Professional Education using the online admission process before admission can be considered.

Review complete requirements 


Degree requirements

The total credits required for the degree are 33. If the student lacks background knowledge for one or more courses, prerequisite courses may need to be taken that do not count toward the degree.

Review complete degree requirements

Frequently asked questions

Answer: Yes, there is limited funding available for Fall enrollment. In general, a full Teaching Assistantship includes a full  tuition waiver and stipend. In February,  the graduate admissions committee  will discuss the qualification of all applicants that apply before the funding deadline (February 1) and make recommendations about funding and admission. Any applicants who want to be considered for the department funding should  submit their  application before February 1. 

Answer: Many of our students, usually beginning in their second year, are able to intern as statisticians at major corporations or other local businesses that have headquarters or major operations near the University of Delaware. Participating companies often include: Chase, Barclays, SallieMae and others. These companies start the interview/selection process in January or early February, selecting students to intern the following year.

All first year students are eligible to apply and submit their resumes after finishing one semester of courses. Students will be picked by the companies based on the students’ resume and  interview performance. Students often get multiple interview opportunities. The selected students will usually sign a year long internship contract beginning in the summer after the first year. Sponsored students get full tuition waiver for their second year and they  also get competitive stipends and important real world work experience. 

Each year, the participating companies vary as does the number of interns hired. Since 2014, the average number of internship positions offered is around 18 (written at November, 2020).

Answer: It is possible to start the MS Statistics program in the Spring Semester, provided the student is properly prepared. Unfortunately, departmental funding is often limited due to the timing of our budget process.

Our graduate course offerings and curriculum are designed mainly for students starting the program in the Fall. Therefore, Spring enrollment is usually appropriate only for students who have already taken some graduate-level statistics coursework.

Finally, only students who have successfully completed at least one semester are qualified for the internship program.  Therefore students who enroll in the spring often have to wait for their third semester to have interview opportunities, while the students enrolled in the fall will have the opportunity at the end of their first semester. 

Course highlights

Graduate students learn how to analyze, interpret and assess the validity of logistic regression and generalized linear models, and various applied contexts such as medicine, marketing, risk management, and online learning. Professors introduce modern topics such as high-dimensional logistic regression with Lasso and logistic regression in nonparametric or semi-parametric settings (generalized additive model). In addition to binary or multi-categorical data, Poisson regression and Negative Binomial regression for count data analysis will be studied. The course will primarily use procedures in the SAS system to do data analysis. The course will also introduce R software packages for high-dimensional logistic regression and generalized additive models, two modern machine learning techniques.

This applied multivariate analysis and statistical machine learning course introduces a variety of statistical methods for multivariate analysis and machine learning, involving statistical computing mostly with R and Python. The course topics include: 

  • Random vectors and random matrices, 

  • Multivariate normal distribution, 

  • MANOVA (Multivariate analysis of variance), 

  • Principal component analysis (PCA), 

  • Canonical correlation analysis (CCA), 

  • Linear and Quadratic discriminant analysis (LDA and QDA), 

  • Resampling methods including Cross-Validation (CV) and Bootstrap, 

  • Regression and classification trees (CART), 

  • Random forests, 

  • Support Vector Machines (SVM), 

  • Boosting methods, 

  • Clustering analysis, 

  • Online recommendation system, 

  • Deep neural network, 

  • Partial least squares, and

  • Sufficient dimension reduction.

This applied time series analysis course covers important topics in time series analysis, including the Box and Jenkins techniques of fitting time series data, ARMA models, ARIMA models, seasonal models, ARCH models, GARCH models, transfer function models, vector autoregression models, forecasting, frequency domain methods, recurrent neural networks, long short-term memory networks, gaussian processes and (hidden) markov models (time permitting). Professors focus more on methodology and data analysis than theory, involving an introduction to appropriate statistical packages in R and SAS software.

This course presents students with the basics of managing and summarizing data using the SAS System. Professors emphasize preparing data for analysis and creating attractive, readable reports for data summaries. Additionally, students will build the foundations and strategies to support future development of their SAS programming skills.

Student testimonials

Latest Research News
  • The University of Delaware Center for Environmental and Wastewater Epidemiology Research (CEWER) team members visit a campus wastewater sampling location.

    Forecasting coronavirus outbreaks

    January 15, 2021 | Written by Dante LaPenta
    Our current public health pandemic requires scientists to track and prevent the spread of coronavirus, University of Delaware researchers are looking for the presence of the virus in wastewater.
  • The power of statistics

    January 15, 2021 | Written by Dante LaPenta
    M.S. in Statistics program propels Yunjiao Cai from data novice to career in quantitative modeling
  • Enlighten Me: Methane and salt marshes

    January 11, 2021 | Written by Sophia Schmidt of Delaware Public Media
    Delaware Public Media’s Sophia Schmidt talks UD researcher Rodrigo Vargas about how science missed this detail, and what it might mean for mitigating climate change.

Featured research