
MAJOR FINDER
Filter by College
Filter by Subject
Biomedical Engineering

Engineering Meets Biology and Medicine
Biomedical engineering applies quantitative engineering analysis and design to biological and medical problems. It is a field dedicated to revealing basic knowledge of disease mechanisms to improve human health, and to developing new technologies and therapies to improve the quality of life.
The aim of our undergraduate program is to provide students with the training necessary to bridge the gaps between medicine, engineering and biomedical research. We provide a broad foundation in chemical, mechanical, materials science and electrical engineering to prepare students for careers in biomedical research and design with a quantitative engineering emphasis. Our undergraduate program is also designed to provide students with sufficient coursework for advanced training at graduate, medical, or in other health professions. The outlook for biomedical engineers is incredibly promising. The Bureau of Labor Statistics projects that employment for biomedical engineers will grow by 7% between 2016 and 2026.
Our faculty make our department truly special. Several of our professors have been recognized by professional societies as among the best researchers and educators in the country. Undergraduate students have opportunities to do research in nanomedicine, biomechanics, neuroengineering, tissue engineering and more, enriching their coursework.
Research focus areas include:
- Musculoskeletal & Neural Engineering includes the study of the normal growth and aging, function, injury, degeneration, repair, regeneration, rehabilitation, and augmentation of musculoskeletal and neural tissues and systems
- Cancer Diagnosis and Therapy applies experimental and computational approaches to explore biomechanical function across multiple scales: the molecule, cell, tissue, organ, and whole body.
- Disease Modeling includes determining underlying mechanisms of human disease using computational models of molecular, cellular, and higher-level systems.
- Tissue and Regenerative Engineering is used to study, model and modify biomolecules (including nucleic acids and proteins) and cells, as well as to determine the regulatory networks that control genetic, biochemical, cellular, and physiological functions.
AREAS OF STUDY
- Multiscale Biomechanics
- Bioinstrumentation
- Bioimaging
- Applied Biomaterials and Tissue Engineering
- Computational Biomedical Engineering
- Biosystems Engineering
CAREER OPTIONS
- Biomedical Engineer
- Product Development Engineer
- Design Engineer
- System Test Engineer
- Medical Device Sales
- Research and Development Engineer
- Product Specialist
- Project Manager
- Product Specialist
- Quality Engineer
- Consultant
- Business Technology Analyst
- Research Scientist
- Entrepreneur
GRADUATE PROGRAMS
- Masters of Science/Engineering
- MBA
- PhD
- Medical School
- Pharmacy School
- Dental School
- Physical Therapy
- Physicians Assistants
- Law School (patent law)
What’s special about this program?
BME at UD delivers an innovative and exceptional education program enabling students to apply quantitative engineering design and analysis to biomedicine. Beginning in their first year, students are exposed to the engineering design process, hands-on lab skills, and potential career options available for BME graduates. Throughout the curriculum, students also practice teamwork and develop writing and presentation skills, making them desirable candidates for a variety of career paths, in addition to their technical excellence.
The biomedical engineering undergraduate program at UD represents an interdisciplinary effort to understand and address problems at the interface between engineering and medicine. As a result, many of our faculty have joint appointments in other departments that include Biology, Chemistry and Biochemistry, Psychology, Kinesiology and Applied Physiology, Chemical and Biomolecular Engineering, Electrical & Computer Engineering, Materials Science & Engineering, and Mechanical Engineering.
Our program equips students with a strong foundation in mathematics and the life sciences, as well as engineering analysis and design. It enables students to identify, formulate and solve engineering problems based on fundamental biomedical concepts; to design and conduct laboratory experiments; and to critically analyze and interpret data. The core curriculum includes courses in bioinstrumentation, systems physiology, biomechanics, biotransport, cell and tissue engineering, biomedical modeling and simulation, and engineering design.
Get Involved
Assistive Medical Technologies
Alpha Omega Epsilon
Biomedical Engineering Society
Deep Roots Outreach Program
Engineers Without Borders
National Society of Black Engineers
Orthotics and Prosthetics Club
Sigma Phi Delta
Society for the Advancement of Materials and Processing Engineering
Society of Asian Scientists and Engineers
Society of Hispanic Professional Engineers
Society of Women Engineers
Tau Beta Pi
Sample curriculum
BISC207
|
Introductory Biology I |
EGGG101 | Introduction to Engineering (FYE)
|
BMEG100 | Fundamentals in Biomedical Engineering
|
CHEM103/133 |
General Chemistry I Lecture/Lab
|
CHEM104/134 | General Chemistry II Lecture/Lab
|
CISC106
|
General Computer Science for Engineers |
ENGL110
|
Seminar in Composition |
MATH241 | Analytic Geometry and Calculus A
|
MATH242
|
Analytic Geometry and Calculus B
|
Breadth Requirement Elective
|
BMEG301 | Quantitative Cellular Physiology
|
BMEG341 | Biomedical Experiment Design & Analysis
|
CHEM321 |
Organic Chemistry I
|
CHEM325 | Organic Chemistry Lab I
|
BMEG230 | Circuits, Signals and Systems for Biomedical Applications
|
MATH243 | Analytic Geometry and Calculus C
|
MATH305 | Applied Math for Biomed, Chem and Biomol Eg
|
BMEG260 | Intro to Medical Device Design
|
PHYS203 |
Fundamentals of Physics with Biomedical Applications I
|
PHYS204 | Fundamentals of Physics with Biomedical Applications II
|
Breadth Requirement Elective |
BMEG310/309 | Bioengineering Mechanics I Lecture/Lab
|
BMEG311 | Bioengineering Mechanics II
|
BMEG330 | Biomedical Instrumentation
|
BMEG340 | Biomedical Modeling and Simulation
|
BMEG302 | Quantitative Systems Physiology
|
BMEG360 | BME Junior Design
|
BMEG420 | Biological Transport Phenomena
|
MSEG201 |
Materials Science for Engineers
|
Technical Electives | |
BMEG460 | Biomedical Engineering Design (DLE & Capstone)
|
PHIL444 |
Medical Ethics
|
Technical Electives
|
|
Breadth Requirement Electives |