Yimu Zhao, a doctoral student in chemical engineering and materials science, and Richard Lunt, assistant professor of chemical engineering and materials science and a UD alumnus, run a test in Lunt’s lab. Lunt and his team have developed a new material that can be placed over windows and create solar energy.

Alum is innovator

UD alum leads Michigan State research team in development of solar concentrator

TEXT SIZE

8:50 a.m., Aug. 27, 2014--A team of researchers at Michigan State University, which is being led by a University of Delaware alumnus, has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through the window.

It is called a transparent luminescent solar concentrator and can be used on buildings, cell phones and any other device that has a clear surface.

Research Stories

Research scholars

The McNair Scholars Program at UD recently hosted its 12th annual research competition and graduate fair, with students awarded prizes for outstanding presentations in science and social science.

Biomedical grant opportunities

Two of UD's NIH Center for Biomedical Research Excellence (COBRE) programs have issued calls for grant applications from UD researchers. Proposals are due by Nov. 14.

And, according to Richard R. Lunt of MSU’s College of Engineering, who graduated with honors from UD in 2004 with a bachelor’s degree in chemical engineering, the key word is “transparent.”

Research in the production of energy from solar cells placed around luminescent plastic-like materials is not new. These past efforts, however, have yielded poor results – the energy production was inefficient and the materials were highly colored.

“No one wants to sit behind colored glass,” said Lunt, an assistant professor of chemical engineering and materials science. “It makes for a very colorful environment, like working in a disco. We take an approach where we actually make the luminescent active layer itself transparent.”

The solar harvesting system uses small organic molecules developed by Lunt and his team to absorb specific nonvisible wavelengths of sunlight.

“We can tune these materials to pick up just the ultraviolet and the near infrared wavelengths that then ‘glow’ at another wavelength in the infrared,” he said.

The “glowing” infrared light is guided to the edge of the plastic where it is converted to electricity by thin strips of photovoltaic solar cells.

“Because the materials do not absorb or emit light in the visible spectrum, they look exceptionally transparent to the human eye,” Lunt said.

One of the benefits of this new development is its flexibility. While the technology is at an early stage, it has the potential to be scaled to commercial or industrial applications with an affordable cost.

“It opens a lot of area to deploy solar energy in a non-intrusive way,” Lunt said. 

“It can be used on tall buildings with lots of windows or any kind of mobile device that demands high aesthetic quality like a phone or e-reader. Ultimately we want to make solar harvesting surfaces that you do not even know are there.”

Lunt said more work is needed in order to improve its energy-producing efficiency. Currently it is able to produce a solar conversion efficiency close to 1 percent, but noted they aim to reach efficiencies beyond 5 percent when fully optimized. The best colored LSC has an efficiency of around 7 percent.

The research was featured on the cover of a recent issue of the journal Advanced Optical Materials.

Other members of the research team include Yimu Zhao, an MSU doctoral student in chemical engineering and materials science; Benjamin Levine, assistant professor of chemistry; and Garrett Meek, doctoral student in chemistry.

Article adapted from a Michigan State University press release

Photo courtesy of G.L. Kohuth, Michigan State University

icon-fb icon-tw icon-yt icon-fs
ADVERTISEMENT

News Media Contact

University of Delaware
Office of Communications & Marketing
302-831-NEWS
ud-ocm@udel.edu

UDaily is produced by the
Office of Communications & Marketing

The Academy Building
105 East Main Street
University of Delaware
Newark, DE 19716 | USA
Phone: (302) 831-2792
email: ud-ocm@udel.edu
www.udel.edu/ocm
University of Delaware • Newark, DE 19716
ud-ocm@udel.edu • (302) 831-2792 • ©2012
University of Delaware • Newark, DE 19716 • USA • Phone: (302) 831-2792 • © 2013
Comments|Contact Us|Legal Notices