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Abstract
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“Crypto ‘yield farmers’ chase high returns, but risk losing it all.”
Alexander Osipovich, Wall Street Journal

“We just don’t have enough investor protection in crypto [...], it’s more like the Wild West.”
Chair Gary Gensler, Securities and Exchange Commission

1 Introduction

Decentralized finance (DeFi) is a rapidly growing segment of the emerging cryptocurrency ecosystem
(Harvey, Ramachandran, and Santoro, 2021; Makarov and Schoar, 2022; John, Kogan, and Saleh,
2023). Operating through applications built on blockchains and executed through smart contracts,
DeFi intends to counteract the influence of traditional centralized financial intermediaries.

Figure 1 illustrates that total value locked (TVL) in DeFi, a measure of aggregate capital invested
in decentralized financial applications, grew exponentially to almost $200 billion in less than 2
years. Despite the sharp drop associated with a general devaluation of digital currencies in the
summer of 2022, Figure 1 shows that the number of active applications with TVL above $1 million
has remained high, close to 700 DeFi platforms.

The rapid growth of DeFi has raised regulatory concerns. One concern originates from DeFi plat-
forms competing for liquidity provision through offering extraordinarily high yields while exposing
investors to significant downside risks (e.g., Oliver, 2021; Osipovich, 2021; Kruppa, 2022). Moreover,
DeFi platforms bear resemblance to complex structured retail products and are easily accessible to
retail investors despite their product complexity. The Securities and Exchange Commission refers to
certain investments as ‘unregulated and complex strategies’, with ‘hidden risks to unsophisticated
investors’ (e.g., Gensler, 2021).

In this paper, we study yield farming, a decentralized financial service that is well-suited for ex-
amining investor behavior in the presence of product complexity. First, yield farms dynamically
compete for liquidity provision by offering high yields to investors. These yields are salient and
aggressively marketed as headline rates without disclosure of transaction costs, past performance,
or potential downside risks. Second, yield farming is complex in both execution and payoffs, with
hidden risks that are not well understood, according to survey evidence. Finally, we observe the
entire history of transactions from blockchain data and can dynamically study investor behavior,
including investment size, mistakes, and their response to changes in information disclosure and
perceived product complexity.

Our overall evidence is supportive of the key features of salience theory (e.g., Bordalo, Gennaioli,
and Shleifer, 2012, 2013, 2016, 2022). Yield farms promise passive income at impressive headline
rates and investors chase farms with high yields. High yield farms also appear to have shrouded
risk attributes (Gabaix and Laibson, 2006), since farms with the highest promised yields record
the worst risk-adjusted performance ex-post. We find that this underperformance is amplified for
small investment stakes and investor mistakes.

We first provide a conceptual framework for understanding the risk-return trade-offs of yield farm-
ing. Yield farming is a mechanism for passively earning income by supplying digital liquidity. While
farming looks simple and accessible, with salient high yields, it involves a long chain of interlinked
transactions subject to complexity in both execution and payoffs.
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To become yield farmers, investors first need to act as digital liquidity providers. That requires the
provision of pairs of cryptocurrency tokens in equal dollar amounts to a liquidity pool. Investors
can choose among a menu of liquidity pools, each one associated with a pair of cryptocurrency
tokens. The liquidity provision is certified through a liquidity token that represents the fractional
ownership of the aggregate liquidity in the pool.

Investors can increase their passive earnings by staking the liquidity token to a yield farm. Each
liquidity pool is linked to a unique farm that promises a salient interest rate often exceeding one
hundred percent. That yield, which is paid using the governance token of the yield farming platform,
is a complex function of farm and aggregate market characteristics. Paradoxically, the governance
token owners maintain centralized voting power to adjust each farm’s yield multiplier, which is one
salient component of the yield function that can be influenced to dynamically compete for liquidity.

Yield farming performance can be decomposed into four components. First, the initial liquidity
provision is rewarded through trading fees collected from third party traders buying and selling
cryptocurrency tokens in a liquidity pool. Second, investors are exposed to the buy-and-hold price
risk of the pledged tokens. Third, liquidity miners face significant downside risk through imper-
manent losses, which are defined through a loss function that non-linearly depends on the return
correlation of the cryptocurrency pair. Fourth, yield farmers earn passive income in proportion to
the aggregate liquidity locked in a yield farm.

Three types of transaction costs significantly alter yield farming performance. Each transaction
requires the payment of a flat gas fee, implying that small investments are penalized by large
overhead costs. Second, large investments relative to the existing liquidity result in significant
price impact, especially at redemption. These observations suggest the existence of a trade-off
that involves an optimal investment size. Finally, since it is strictly dominating to fully pledge the
liquidity tokens into yield farms, staking ratios below one reduce investment performance and are
a sign of investor mistakes.

In a second step, we provide new stylized facts on yield farms, investor behavior, and investment
performance. Our analysis is based on a novel hand-collected data set of 262 yield farms from
PancakeSwap, a yield farm platform hosted on the Binance Smart Chain (BSC), between March 1,
2021 and July 31, 2022. We focus on PancakeSwap because it is the largest yield farm ecosystem,
with 435,130 active users on October 24, 2021, compared to 47,730 active users recorded on Uniswap.
In addition, BSC features high trade execution speeds, lower congestion risks and lower trading
fees than other comparable blockchains like Ethereum, making it more easily accessible to retail
investors. Figure 2 indeed illustrates that gas fees paid for blockchain transactions are an order of
magnitude larger for Ethereum.

There is significant heterogeneity in offered yields among the 262 farms in our sample. The average
(median) offered yield is 80.53% (47.43%) with a standard deviation of 85.54%. These yields are
salient and advertised as headline rates in enticing ways that feature cartoons, rockets, or emojis.
In contrast, information on past performance and impermanent losses is hidden and challenging
to find. Investing into yield farms is complex both in payoff and complexity. There are three
underlying assets, non-linearities, and a full round-trip cost can take up to 14 transactions.

Offered farm yields are driven by five components related to the issuance of the platform’s gov-
ernance token CAKE, its price, which is common across all farms, each farm’s liquidity, a farm
multiplier, and an aggregate farm multiplier. Governance token owners may vote to increase or
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decrease farm multipliers as an instrument to incentivize liquidity provision. We find that the com-
ponent of yield changes associated with multiplier changes is positively related to past trading fees
and negatively to past realized yields. In addition, we observe that farms are delisted in response
to low liquidity and weak trading fee revenue.

The examination of transaction records on the blockchain suggests that many yield farmers are
financially unsophisticated. First, we observe that many investors do not migrate their funds
when PancakeSwap switched to a newer and more secure platform in April 2021, even though the
new platform would mechanically provide superior return potential. We see similar patterns when
PancakeSwap migrated its staking functionality to a new staking contract in April 2022. Second,
in spite of an optimal yield farm staking ratio of one, we find that the median staking ratio is below
one most of the time.

The farmer data further suggest that the average yield farmer invests about $7,732 in 2.64 farms.
Strikingly, we observe that smaller investment stakes are correlated with smaller staking ratios,
suggesting that retail investors are more likely to leave money on the table. Survey evidence of
1,347 yield farmers also suggests that many investors lack financial sophistication, since 79% of
them claim to understand the associated risks and rewards of yield farming, while only 33% state
that they understand impermanent loss.

We next assess the return performance of yield farming strategies. Without transaction costs, yield
farming appears to be profitable on average, with Sharpe ratios that are similar (but higher) to
those of investments into the S&P500 index or Ethereum. Sorting farms into quintiles based on
the magnitude of the offered yield reveals that high yield farms systematically generate the lowest
returns because they incur the greatest impermanent loss, which is the hidden downside risk that is
poorly understood. We further show that farmers who invest in higher yielding farms underperform
by an additional 23bps for every 100% increase in offered yields (≈ one standard deviation). Our
overall evidence suggests that farms with the highest headline rates exhibit the worst risk-adjusted
performance.

High yield farms are also those where investor mistakes have the most severe consequences since
more money is left on the table in the absence of yield farming using the LP tokens. Accounting
for transaction costs such as gas fees, trading fees and price impact further reduces the return
performance across all yield quintiles.

Third, we provide evidence that investors exhibit yield chasing behavior that can result in negative
risk-adjusted returns. Specifically, we identify all cases where Pancake token owners vote on chang-
ing the yield multiplier of one farm without significant changes to the multipliers of competing
farms. In a difference-in-differences setting, we show that the differential increase (decrease) in
aggregate farm flows in response to multiplier increases (decreases) is about 18%-19% (10%-13%),
depending on the measurement of flows. A systematic analysis on the relation between flows and
farm yields suggests that high headline yields predict positive net inflows, while flows are insensitive
to impermanent losses.

At the farmer level, we document a positive propensity to buy riskier assets. We find that the
average farmer provides about 2.55 percentage points more liquidity to a farm if it offers a 100%
larger yield. Because high yield farms exhibit the worst risk-adjusted returns, our evidence is
consistent with reaching for yield behavior. We also find that experience, as measured by the
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number of investment farms and the farming duration, reduces the reaching for yield propensity
by 20% to 39%.

As a last step, we capitalize on a unique setting in PancakeSwap to study the impact of information
disclosure and perceived complexity reduction on reaching for yield behavior. Yieldwatch, a third-
party information platform, summarizes statistics on investor performance, such as historical capital
gains and impermanent losses of individual farmers, and discloses it conditional on the acquisition of
Yieldwatch tokens. Using the comprehensive trading history of individual investors, including their
acquisitions of Yieldwatch tokens, we show that the enhanced information disclosure and reduction
in complexity alleviates the intensity of yield-chasing behavior by about 58%, thereby improving
the overall investor performance. This effect is also present in a quasi-natural experiment which
exploits the random token allocation to successful and unsuccessful bidders around an unpredictable
bidding threshold in the Yieldwatch initial token offering.

We confirm these findings in a different setting using airdrops organized by APY.Vision, which
provides similar functions to Yieldwatch, but randomizes the acquisition of tokens needed to access
the information platform. This analysis is implemented on a different yield farming platform,
SushiSwap, built on the Ethereum blockchain, and, therefore, supports external validity of our
findings. Overall, this evidence has important implications for information disclosure and investor
protection in markets for high-yielding financial securities.

2 Literature

Our work relates to theories on financial innovation and security design. One view is that financial
securities can be tailored to complete the market and, therefore, improve risk sharing (Allen and
Gale, 1994; Duffie and Huang, 1995). Another view is that, when investors have salient prefer-
ences (Bordalo, Gennaioli, and Shleifer, 2012, 2013, 2022), financial intermediaries may compete
by attracting consumers based on salient price attributes. An equilibrium outcome of salience bias
may be that investors ‘reach for yield’ (Bordalo, Gennaioli, and Shleifer, 2016). If financial service
providers also shroud risks (Gabaix and Laibson, 2006), then investors may suffer welfare losses
(Inderst and Ottaviani, 2009, 2022).

We capitalize on blockchain records to provide supporting evidence of salience bias in investor
preferences. Using the investor-level transactions data across a cross-section of yield farms that
compete for investor flows based on salient farm yields, we show that investors are attracted to
farms with high salient yields, although they turn out to be riskier ex-post. Thus, we document
reaching for yield in decentralized financial markets, even in the absence of financial intermediaries
and related agency conflicts. Reaching for yield has been documented in the corporate bond (Becker
and Ivashina, 2015; Chen and Choi, 2023), mutual fund (Choi and Kronlund, 2018), money market
fund (Kacperczyk and Di Maggio, 2017; Gomes, Peng, Smirnova, and Zhu, 2022), asset-backed
securities (Efing, 2020), housing (Korevaar, 2023), and structured product markets (Célérier and
Vallée, 2017; Vokata, 2023).

Yield farming is a complex and opaque investment strategy. Thus, we closely relate to the literature
on complex structured finance. For example, Henderson and Pearson (2011) suggest that structured
retail products (SRPs) deliver subpar performance for retail investors in spite of high promised
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returns. Supply-based theories explain the popularity of SRPs among retail investors by arguing
that intermediaries exploit investors’ lack of financial sophistication (e.g. Célérier and Vallée, 2017;
Egan, 2019; Ghent, Torous, and Valkanov, 2019; Henderson, Pearson, and Wang, 2020). Shin (2021)
advocates a demand-based explanation whereby investors extrapolate and aggressively chase past
performance. For work on complex securities and structured products, see also Carlin (2009);
Carlin and Manso (2011); Carlin, Kogan, and Lowery (2013); Griffin, Lowery, and Saretto (2014);
Sato (2014); Amromin, Huang, Sialm, and Zhong (2018); Célérier, Liao, and Vallée (2022); Calvet,
Célérier, Sodini, and Vallée (2023); Vokata (2021, 2023); Gao, Hu, Kelly, Peng, and Zhu (2023).

In a significant departure from prior work, we study complex financial products offered through
smart contracts operating on a blockchain without centralized financial intermediaries who may
drive security design to influence sales. The advantage of our study is that we observe the chain
of all transactions at the farm and farmer level. This is in stark contrast to the existing literature
on complex securities, which bases its evidence on prices or transactions in primary markets. That
feature of our data also enables us to understand investor mistakes (Campbell, 2006; Agarwal,
Ben-David, and Vincent, 2017), how investors learn, and how information disclosure and lower
perceived complexity change their behavior.

More broadly, our work is related to the emerging literature on decentralized finance.(e.g., Cong,
Tang, Wang, and Zhao, 2022; Cong, Harvey, Rabetti, and Wu, 2022; Cong, He, and Tang, 2022)
To our knowledge, this is the first empirical study of the risk and return characteristics of yield
farming strategies using a hand-collected data set from PancakeSwap. Several studies investigate
the properties of automated market makers (AMM) with the constant product model adopted
by major decentralized exchanges (DEXs, e.g. Angeris, Kao, Chiang, Noyes, and Chitra, 2021;
Aoyagi, 2021; Capponi and Jia, 2021; Han, Huang, and Zhong, 2021; Foley, O’Neill, and Putnins,
2022; Hasbrouck, Saleh, and Rivera, 2022), or focus on strategic trading and liquidity provision
(Lehar and Parlour, 2024; Park, 2023; Fang, 2023; Li, Naik, Papanicolaou, and Schönleber, 2024).
Appendix Table A.1 illustrates how we differ from these studies. Our main distinction is to exploit
wallet-level data and quasi-natural experiments in the yield farm ecosystem to understand channels
of yield chasing behavior.

3 Conceptual framework

Yield farming allows investors to passively earn income for their liquidity provision to DeFi plat-
forms. Intuitively, it is similar to securities lending, with the distinctive feature that smart con-
tracts, which operate on permissionless blockchains, automatically execute transactions without
involvement of intermediaries. See Appendix A for institutional details.

In practice, yield farming is complex, both in execution and in payoffs. Figure 3 provides a heuristic
illustration of the yield farming mechanism in PancakeSwap, the second largest spot decentralized
exchange (DEX) offering cryptocurrency exchange services. Figure 3 illustrates that yield farming
involves two sequential and independent investment decisions.

First, an investor can passively earn income by providing liquidity to one or several among a large
cross-section of liquidity pools. Each pool is defined by a pair of cryptocurrency tokens (USDT-ETH
in our example). As liquidity providers, investors ‘stake’ (i.e., deposit) the pair of cryptocurrency
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tokens in equal dollar amounts to a liquidity pool. The liquidity provision is certified through the
award of a liquidity token, also known as LP token.

Investors are compensated for their liquidity provision through trading fees, which are collected
from third party traders who buy and sell USDT–ETH. The trading fees are paid in the pool’s
currency tokens, i.e., USDT vs. ETH, and amount to 0.25% of a pool’s trading volume. Of that
amount, 0.17% is paid out to liquidity providers, and 0.08% is paid as a reward to the PancakeSwap
main staking contract.

Second, investors can passively earn yield by staking the LP token to a yield farm that is exclusively
linked to one liquidity pool (e.g., USDT–ETH). Farm yields are paid in a currency called CAKE,
PancakeSwap’s native governance token. In this Decentralized Autonomous Organization, CAKE
token holders can influence the governance of the PancakeSwap ecosystem by casting votes on the
future development of the platform or the reallocation of yields across farms. CAKE ownership
also provides rights to participate in services such as non-fungible token (NFT) giveaways or other
PancakeSwap lotteries.

CAKE tokens are continuously issued by PancakeSwap’s main staking contract with creation of
each BSC block. The amount of CAKE tokens allocated to yield farms may vary across farms and
over time, as determined by the votes of the aggregate CAKE ownership. PancakeSwap also uses a
fraction of the revenue it receives from third party trading fees to continuously buy back and burn
(i.e., destroy) CAKE to minimize the currency’s dilution.

Based on the complicated chain of transactions described in Figure 3, the total gross return to yield
farming between day t and t+ h, Rt,t+h, comes from two sources associated with liquidity mining,

Rℓ
t,t+h, and the staking of LP tokens to a yield farm, Rf

t,t+h, such that:

Rt,t+h = Rℓ
t,t+h +Rf

t,t+h. (1)

3.1 Liquidity provision

A liquidity provider must stake a pair (A,B) of cryptocurrency tokens (e.g., USDT and ETH) in
equal dollar amounts. This implies that the number (at, bt) of tokens to be pledged is determined
by market prices (PA

t , PB
t ) through the relation at · PA

t = bt · PB
t .

A pools’ aggregate liquidity Lt is characterized by the value of the aggregate number of staked
tokens αA

t =
∑

at and αB
t =

∑
bt, such that:

Lt = αA
t · PA

t + αB
t · PB

t . (2)

Returns to liquidity provision are derived from two sources: growth in the value of the liquidity
pool and fee revenue earned from third party trading activity in the pool, that is:

Rℓ
t,t+h = Lt+h/Lt + Trading Fee Returnt,t+h

=
αA
t+h · PA

t+h + αB
t+h · PB

t+h

αA
t · PA

t + αB
t · PB

t

+ Trading Fee Returnt,t+h.
(3)
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Growth in the value of liquidity, Lt+h/Lt, is driven by fluctuations in market prices (PA
t , PB

t ) and
by fluctuations in the pool’s token composition (αA

t , α
B
t ). Both are pinned down by the constant-

product automated market maker (AMM) technology hardwired into liquidity pools. See, e.g.,
Lehar and Parlour (2024), Capponi and Jia (2021), Park (2023), for details.

The composition of a pool’s liquidity changes because third party traders buy or sell tokens A
and B, say USDT and ETH. The constant-product AMM technology defines the terms of trade
by imposing that, at each point in time, the tokens’ product must equal a constant k, i.e., k =
αA
t α

B
t = αA

t+hα
B
t+h. In other words, the terms of trade are defined through an isoquant curve whose

value is determined by aggregate liquidity provision.1 The constant-product AMM technology also
drives price fluctuations, since it imposes, for all t, that the products of price and quantity have to
equalize across assets, i.e., αA

t P
A
t = αB

t P
B
t .

Thus, liquidity providers are exposed to risks associated with joint changes in token prices and token
composition. First, in exchange for their liquidity provision, investors receive LP tokens to certify
their partial ownership in the pool. While the fractional ownership stays constant, the number of
each token that can be claimed at redemption may change with the change in pool composition due
to third-party trading. Second, the change in token composition leads to mechanical price changes
driven by the constant-product AMM.

In Appendix B, we explicitly show that the growth in liquidity value can be rewritten as a sum of
two distinct components that are uniquely functions of prices:

Lt+h/Lt =

(
1

2
RA

t,t+h +
1

2
RB

t,t+h

)
︸ ︷︷ ︸

capital gain

− 1

2

(√
RA

t,t+h −
√

RB
t,t+h

)2
︸ ︷︷ ︸

impermanent loss

, (4)

where RA
t,t+h = PA

t+h/P
A
t and RB

t,t+h = PB
t+h/P

B
t denote the gross returns of tokens A and B,

corresponding to USDT and ETH in our example.

The first term, which we call “capital gain,” is the equally-weighted gross return from tokens A and
B. The second term describes investors’ risk exposure, referred to as impermanent loss. Intuitively,
the impermanent loss corresponds to the difference between the return from liquidity provision
Lt+h/Lt and the return from a buy-and-hold strategy (without pledging the cryptocurrency tokens
to a liquidity pool). Impermanent losses depend non-linearly on the relative divergence in token
returns. Importantly, they are strictly negative and expose investors to significant downside risk
analogous to a short volatility exposure (Aigner and Dhaliwal, 2021). See Figure A.5 and Appendix
B.1 for additional discussion.

The total return from liquidity provision may nonetheless exceed that of a simple buy-and-hold
strategy due to the additional income generated from trading fees. PancakeSwap v1 (v2) charges
a trading cost equivalent to 20 (25) basis points (bps) of trading volume. Part of that (17bps) is
passed on to liquidity providers as a fraction c of total trading volume Vt,t+h observed over two
consecutive time periods t and t + h and proportional to the initial fractional dollar investment
It/Lt in the liquidity pool. Since the return from trading fees depends on the initial investment,
the total fee return is characterized as

Trading Fee Returnt,t+h = c · ((It/Lt)Vt,t+h) /It = c · Vt,t+h/Lt. (5)
1New liquidity provision or redemption can change k, and, therefore, the curvature of the isoquant curve.
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3.2 Yield farming

LP tokens may be staked to the main staking contract (yield farms), which offers yield yt as
additional passive income. Yields are paid in CAKE, PancakeSwap’s governance token.

The annualized yield is implicitly defined through a non-linear function that depends on (a) the
number of CAKE tokens created through new block validation on the blockchain; (b) the total
number of CAKE tokens redistributed for staking Mt; (c) a farm-specific multiplier mt which
defines the number of CAKE tokens allocated as reward for farming; (d) the total liquidity staked
to the farm, Lstaked

t ; and (e) the price of CAKE, PCAKE
t .

Forty CAKE tokens are created with each blockchain validation, which lasts about 3 seconds. This
implies that around 28,800 blocks are created per day. Given 365 days in a year, the annualized
yield from farming is, therefore, given by:

yt = C ×
(
mt

Mt

)
×
(
PCAKE
t

Lstaked
t

)
, (6)

where C = 365× 28, 800× 40. Since CAKE tokens may be allocated to activities other than yield
farming, the aggregate multiplier does not have to equal the sum of all yield farm multipliers, i.e.,
M ̸=

∑
k m

k, where k corresponds to the number of farms. The realized farm yield between t and
t+ h, from the perspective of a USD investor, is thus defined as:

Rf
t,t+h = PCAKE

t+h

h∑
n=1

(
yt+n−1

PCAKE
t+n−1

)(
1

365

)
. (7)

3.3 Aggregation: Frictionless benchmark

The aggregate h-period return to yield farming is thus composed of four components associated
with capital gains, impermanent losses, trading fees, and realized farm yields:

Rt,t+h =

(
1

2
RA

t,t+h +
1

2
RB

t,t+h

)
︸ ︷︷ ︸

capital gain

− 1

2

(√
RA

t,t+h −
√
RB

t,t+h

)2
︸ ︷︷ ︸

impermanent loss

+ c · Vt,t+h/Lt︸ ︷︷ ︸
trading fee revenue

+ PCAKE
t+h

h∑
n=1

(
yt+n−1

PCAKE
t+n−1

)(
1

365

)
︸ ︷︷ ︸

realized farm yield

. (8)

3.4 Impact of trading frictions

Table A.2, which breaks down the chain of transactions for a hypothetical yield farming strategy,
shows that harvesting yields from PancakeSwap involves a chain of 12 transactions (excluding step
1 and 14 in Table A.2). A full round-trip transaction involves three types of costs associated with
gas fees, trading fees, and price impact (see Appendix 5.5 for details). These costs may significantly
lower the returns from yield farming.
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Gas fees correspond to transaction costs associated with the use of BSC’s computational resources
for trade execution. Among the set of 12 transactions, yield farmers pay gas fees for 10 of them.
The average round-trip gas fee is estimated to be $3.45 in our sample period.

Since gas fees are flat overhead costs, they are more costly for small stake investments and frequent
rebalancing. Thus, they are especially detrimental to smaller retail investors, who have a tendency
to rebalance too frequently (Odean, 1999). Since gas fees grow linearly with each additional yield
farm, there is also less benefit from diversification across farms. As a result, gas fees encourage
larger and more concentrated investments, which may not be optimal for financially unsophisticated
investors.

For example, a $1,000 investment would lose ≈35 bps in gas fees for a round-trip transaction, and
35 bps per week for weekly rebalancing. A diversification strategy across 10 farms would incur a
per period cost of 10×3.45 = $34.5, which, for a $1,000 investment, is more than the typical hedge
fund performance fee, not considering hurdle fees or water marks.

Besides gas fees, investors are charged a trading fee of 0.25% (proportional to trading volume)
per transaction. Since one round-trip transaction includes the buying and selling of tokens at
intermediate steps, yield farmers lose at least an additional 0.50% of their initial investment. The
selling of CAKE tokens at redemption also requires a proportional trading fee of 0.25%. See
Appendix 5.5 for more details.

The third transaction cost arises through price impact. We characterize a price impact function
λ(f), where f denotes the ratio of the investment amount It to the value of the liquidity Lt, i.e.,
f = It/Lt. Panels (a) to (c) of Figure A.6 illustrate how price impact is increasing in the size of
an investment relative to a pool’s liquidity. Considering both trading fees and price impact, the
growth in liquidity value reduces to:

Lt+h/Lt = (1− 0.0050)λ(f)

[(
1

2
RA

t,t+h +
1

2
RB

t,t+h

)
− 1

2

(√
RA

t,t+h −
√

RB
t,t+h

)2]
. (9)

We emphasize another indirect channel that negatively affects yield farming performance. Equation
(6) highlights a negative relation between a yield farm’s aggregate liquidity and the offered farm
yield. We provide empirical support for that relation in Figure A.1. Since liquidity provision
increases the size of a farm, it mechanically decreases the offered farm yield. Hence, too much
liquidity provision can be a self-defeating strategy.

3.5 Investor mistakes and aggregation with frictions

Farm yields are strictly non-negative and yield farms are built on the same blockchain as liquidity
pools. Thus, in the absence of lock-up periods, the staking of LP tokens is always a dominating
strategy and the optimal staking ratio k∗ should equal one. Because all transactions are observed
on the blockchain, we can identify when investors do not stake their LP tokens into yield farms.
We consider staking ratios below one to be a mistake.

9



Including all trading frictions, we quantify the returns to yield farming as follows:

Rfriction
t,t+h = (1− 0.0050)λ(f)


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)
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trading fee revenue
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[
PCAKE
t+h

h∑
n=1

(
yt+n−1

PCAKE
t+n−1

)(
1

365

)]
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realized farm yield

−
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. (10)

3.6 Yield farm flows

In our analysis, we examine two measures of yield farm flows. First, we measure farm flows using
LP token growth, i.e., Flowt,t+h = (#LP tokenst+h/#LP tokenst) − 1. Because this measure is
insensitive to price fluctuations, it is conceptually similar to the use of net fund flows adjusted for
price growth used in the mutual fund literature (e.g., Sirri and Tufano, 1998; Coval and Stafford,
2007). Second, we measure farm flows using the dollar growth in pool liquidity, i.e., Flowt,t+h =
(Lt+h/Lt)− 1.

4 Building yield farm and yield farmer data

We assemble a novel data set on liquidity pools and yield farms listed on PancakeSwap by tracing
information on the Binance Smart Chain. Our data include the full history of prices, transactions,
token shares, liquidity provision, and yield farm multipliers.

4.1 Farms and yields

We consider all contract addresses of liquidity pools with a corresponding yield farm stored in
PancakeSwap’s main staking contract from their inception on September 23, 2020 to July 31, 2022.
With these addresses, we reconstruct, from the blockchain, the daily time series of farm yield
multipliers. We consider only active farms with a non-zero yield multiplier.

Farm yields are a function of aggregate farm liquidity. We, therefore, source each pool’s token
balances αi

t and prices P i
t to compute aggregate pool liquidity given by Lt = PA

t αA
t + PB

t αB
t (See

Equation 2). Next, we collect each pool’s supply of LP tokens and their staking ratios to compute
aggregate farm liquidity defined as Lstaked

t = Lt · (# staked LP tokens/Total # of LP tokens).

We impute offered farm yields using Equation (6). We verify their accuracy by collecting offered
farm yields from PancakeSwap’s homepage2 at midnight Greenwich Meridian Time (GMT) on
October 11, 2021. We manually verify that the multipliers collected from the main staking contract
are identical to those advertised on PancakeSwap’s web interface.

2See https://PancakeSwap.finance/farms.
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Figure A.2 reports the relation between our imputed farm yields and those publicly listed by Pan-
cakeSwap. Nearly all observations are closely aligned with the 45-degree line. A linear projection
of the imputed on the listed farm yields obtains a slope coefficient of 1.002 with an R2 of 1.00. This
strongly supports the validity of our data building procedure.

4.2 Prices, trades, and transaction costs

In a liquidity pool (e.g., ETH–BNB), one token of the cryptocurrency pair is considered a token of
interest (e.g., ETH). Its price is typically expressed in terms of a numeraire token (e.g., BNB). We
source daily end-of-day GMT prices, P i

t , of the tokens of interest.

To find the prices of the numeraire token (BNB), we first use the native historical quote function on
PancakeSwap. This pins down the historical exchange rate between BNB and Binance-Peg Tether
(USDT), a stablecoin pegged to the US dollar. We then convert USDT to U.S. dollars using the
USDT price from CoinMarketCap. This allows us to compute the U.S. dollar h-period trading
volume Vt,t+h as the daily sum of all trades.

We source gas fees from Bitquery, a proprietary data vendor specialized in blockchain data services
covering BSC and other blockchains. Gas fees differ across functions executed by smart contracts.
To accurately account for transaction costs in computing the performance of yield farming strate-
gies, we first identify the transactions that incur gas fees (see Table A.2) and compute their average
daily gas fee in U.S. dollars. Next, we compute the round-trip cost of gas fees by summing the
average fee across all relevant transactions.

4.3 Yield farmers

We collect transaction data for all LP tokens from the transaction logs of BscScan3, a freely-
accessible analytics platform on BSC, and reconstruct each wallet’s historical token holdings.
Transactions that involve a user’s deposit of cryptocurrency to a liquidity pool in exchange for
LP tokens are represented as LP token transfer from the null address (0x000. . . 000) to the user’s
wallet address. Transactions in which a user stakes/unstakes their LP tokens in a yield farm are
captured as a token transfer to/from the active main staking contract. Redemptions of LP tokens
at a liquidity pool in exchange for the underlying tokens are represented as a LP token transfers to
the address of the LP token.

We restrict our analysis to active accounts. We eliminate wallet addresses that are not associated
with PancakeSwap smart contracts and accounts with more than 100,000 trades, since those wallets
may camouflage yield aggregators or automated passive strategies. Relatedly, we remove positions
lower than $1 at the beginning of the holding period because they are below the average exit cost
(see Figure 2), possibly distorting the analysis. In addition, we omit wallet addresses that have
transacted LP tokens with third party smart contracts outside PancakeSwap, since the study of
staking across multi-platform investment strategies is beyond the scope of our study. For accounts
with positive end-of-sample LP token balance, we assume that farmers liquidate their open positions
on July 31, 2022.

3See https://bscscan.com/.
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We merge each transaction with information on token prices and offered farm yield using the
nearest end-of-day prices by block height difference. For each wallet, we also compute the number
of invested farms (No. Farms) and liquidity pools (No. Pools). We define Efficiency at the wallet
level as the duration of staking relative to the duration of liquidity provision (Time Staked/Time in
Liquidity Pool), averaged across liquidity pools. Third, we define Staked Balance and LP Balance
as the time-weighted average balance for staking and liquidity provision. For these calculations, we
use the nearest end-of-day price from the beginning of each holding period and weight balances by
the length of the holding period.

We define Offered Farm Yield at the yield farmer level as the time-weighted average offered yield
at the beginning of each holding period. Finally, we calculate a farmer’s Average Daily Return
as the time-weighted geometric average of their holding period returns. We compute all return
components as described in Section 3, making the simplifying assumption that offered yields are
harvested daily without reinvestment.

Yield farmers may split their investments across multiple wallets. Hence, measures such as No.
Farms, Staked Balance, and LP Balance could be underestimated. However, yield farmers are
unlikely to systematically manage multiple wallets since there are no monetary benefits and trans-
action costs significantly increase. This bias, which is not central to our analysis, could be examined
in future research using wallet clustering algorithms.

4.4 The final sample

Our final sample contains 262 unique yield farms that were active between the inception of Pan-
cakeSwap on September 23, 2020 and July 31, 2022. At the investor level, we analyze 439,639
(446,227) unique wallets which hold 6,183,222 (5,975,858) positions for the return (flow) analysis.
Appendix C provides a detailed account of our data cleaning and construction procedure.

Panel (a) of Figure 4 illustrates the number of active farms (right axis). The cross-section varies
over time since new farms may be listed or delisted. The total number of active farms increases
quickly from inception of PancakeSwap to a peak of 160 farms in July 2021.

The left axis in Panel (a) of Figure 4 plots Total Value Locked (TVL) in active farms, i.e., the ag-
gregate amount of LP tokens staked to yield farms. Yield farming at PancakeSwap has experienced
extraordinary growth, with TVL surpassing $7 billion in May 2021. Analogously to the boom-bust
cycles experienced by Bitcoin and other cryptocurrencies, TVL dropped sharply following its peak
and experienced renewed momentum.

Importantly, TVL remained subdued until early 2021. As we show in Panel (b) of Figure 4, the con-
sequential increase in liquidity provision coincides with PancakeSwap becoming more prominently
researched in Google (left axis). Simultaneously, the number of active farmers jumps sharply (right
axis). For that reason, we restrict our main analysis to start on March 1, 2021 to increase the
stability of our estimations and avoid noisy inferences.
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5 Evidence

We first provide new stylized facts on yield farms and farmers. We then describe the trading
behavior of yield farmers and examine the risk and return characteristics of yield farming.

5.1 Stylized facts about yield farms

Yield farms exhibit three important properties for our analysis of reaching for yield. First, they
promise extraordinary high yields with cross-sectional heterogeneity in earnings potential. Second,
promised yields are salient and conspicuously displayed as headline rates, while information on risks
and historical performance is hidden and difficult to find. Third, yield farms appear as simple and
engaging platforms but involve a high degree of complexity.

We report in Table 1 a snapshot of yield farms on July 31, 2022. Each farm features a unique pair
of cryptocurrency tokens. Panel A shows the ten largest farms in terms of TVL. The largest farm
draws from $178.28 million TVL in the USDT–BUSD pool. In Panel B, we show that the leading
farm in terms of earnings potential offers an annualized yield of 357.92% for TVL of $1.72 million in
the BTCST–WBNB liquidity pool. Yield farms feature considerable cross-sectional heterogeneity
in terms of liquidity and earnings potential. For example, the rankings in Table 1 show that TVL
ranges from $0.12 million to $178.28 million (Panel A), while yields range from 0.30% to 357.92%
(Panel B).

In Figure 5, we plot the time-variation of the median farm yield together with its cross-sectional
distribution. To be precise, we plot the total offered yield which is saliently disclosed to investors on
PancakeSwap’s webpage and referred to as the annualized percentage return (APR). This includes
both the offered yield (Equation (6)) and the trading fee yield estimated using the previous day’s
trading volume. The median farm yield is often higher than 50% and the average is 76.34%. In
addition, there is significant variation in dispersion of farm yields, as underscored by the fluctuations
of the interquartile range of the yield farm distribution. Such rich variation in yields across farms
and time together with transparency on blockchain transactions provides an opportunity for better
understanding the motivations behind liquidity provision to yield farms and the performance of
yield farming.

Yields are salient to investors and marketed as headline rates that look attractive, especially in a
low interest rate environment. In Appendix Figure A.3, we provide an example of PancakeSwap’s
user interface. The main information in the foreground relates to the total offered yield (i.e., the
APR), the yield multiplier and the pool’s liquidity.

In contrast, it is difficult to find information about the computation of annualized returns or
the meaning of yield multipliers. Moreover, it is difficult to find information about the return
decomposition. There are hidden downside risks associated with impermanent losses, and hidden
costs due to the price impact of large trades, also known as slippage.

The user interface of PancakeSwap is engaging because it displays cartoons, rockets and emojis.
This gamification of an investment platform makes yield farming look like a simple application. It
is, however, a complex investment strategy, both in terms of payoffs and execution. The payoffs
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to yield farming depend on three underlyings: the two cryptocurrencies in the liquidity pool and
PancakeSwap’s governance token CAKE, which is paid as a reward for yield farming. Furthermore,
the payoffs feature significant non-linearities, epitomized by the impermanent loss function. Finally,
a round trip in yield farming is complex to execute, since it involves a chain of up to 14 transactions
(see Appendix Table A.2).

5.2 Determinants of farm yields

In Equation (6), we characterize the offered farm yield as a function of five components. Among
these, one is mechanically related to the continuous CAKE token issuance (c), one depends on
the aggregate CAKE price (PCAKE

t ), and one depends on farm-specific liquidity (Lstaked
i,t ). These

factors are outside the influence of CAKE owners. The farm-specific multiplier mi,t defines the
allocation of CAKE tokens to a farm. The multiplier Mt defines the aggregate distribution of
CAKE tokens. We validate that all components are strongly correlated with the level of offered
farm yields and that they have the correct sign.

CAKE owners can vote on changing the farm-specific multiplier mi,t to increase or decrease the
CAKE token allocation. Since increasing the farm multiplier increases the offered farm yield, CAKE
owners can influence the reallocation of rewards across farms and attract liquidity to a liquidity
pool of choice. Thus, the ability to change the yield multiplier mi,t equips CAKE owners with
centralized decision power on the amount of passive earnings potential, which, in our opinion, goes
against the spirit of decentralized financial services.

We want to examine the determinants of yield changes that are associated with decisions to change
the yield multiplier, controlling for all common variation (e.g., M , L, PCAKE). In Table 2, we,
therefore, isolate the impact of yield changes that come from the active decision of farm governors
(i.e., the owners of CAKE tokens). We examine the relation between the change in yield that

is driven by platform governance (∆ymi,t+1 = yi,t × ∆mi,t+1

mi,t
) and various components of the yield

farming return performance over the previous seven days, i.e., capital gains, impermanent loss,
trading fees, realized yields, and farm liquidity.

Columns (1) and (2) of Table 2 suggest that yields are increased when past trading fees are high,
and decreased when past realized yields are high. This result holds both with and without day
fixed effects that absorb common movements across farm yields due to, for example, the price of
CAKE.

In columns (3) and (4) of Table 2, we find that farms are more likely to be delisted when their
liquidity or trading fee revenues are low. Overall, this evidence is consistent with the idea that the
offered farm yield is an instrument to make the strong farms stronger and the weak farms weaker.
Thus, offering yields is a mechanism to enhance the long-term viability of the yield farm platform
by channeling liquidity to a subset of farms.

5.3 Evidence on lack of investor sophistication

Several infrastructure developments of PancakeSwap enable us to examine trading behavior. First,
PancakeSwap upgraded the technological and security features of its smart contract design on April
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24, 2021, migrating from ‘PancakeSwap v1’ to a new version ‘PancakeSwap v2’. Since then, liquidity
pools and yield farms associated with a particular pair of cryptocurrency tokens have coexisted on
both old and new platforms. Liquidity providers were encouraged to switch their liquidity provision
from v1 to v2, but had to implement the switch themselves. The switch is strictly dominating,
because migrating liquidity to the new version delivers higher staking rewards than in v1, alongside
lower transaction costs.

In Panel (a) of Figure 6, we show the amount of outstanding assets in the old version of the
platform. This figure shows that the migration of funds is sluggish, which could be a sign of
investor inattention or inertia. Importantly, even after 100 days, a significant amount of liquidity
remains in the liquidity pools associated with the old version.

A second update occurred on April 20, 2022, when PancakeSwap migrated its staking functionality
to a new contract. Users were encouraged in advance, through Twitter and other PancakeSwap
platforms, to migrate their assets.4 Migrating is again preferred because assets in the old staking
contract would stop earning yields. Panel (b) of Figure 6 shows a similar pattern in that many
users remain staked in the obsolete staking contract even 100 days after the migration, missing out
on potential yield income in that period. This phenomenon is similarly a sign of investor inertia,
inattention, or of their lack of sophistication.

More evidence on investor behavior comes from staking ratios, defined as the ratio of LP tokens
staked in yield farms to the aggregate amount of LP tokens minted to certify liquidity provision.
Remember that yield farmers sequentially provide liquidity to pools and then to farms. Implement-
ing both transactions is strictly dominating liquidity provision alone, since earning CAKE through
farming is always superior to leaving money on the table. Thus, we would expect the staking ratio
to be equal to one at all times.

Figure 7 shows that the median staking ratio is below one most of the time. The 10th (25th)
percentile of the distribution drops as low as 20.56% (40.51%). This further suggests that some
investors are financially unsophisticated. We caveat this interpretation because of the possibility
that investors stake their LP tokens in third-party yield farm aggregators.

Table A.4 in the Appendix shows that staking ratios increase with experience. We regress the
staking ratios on indicator variables that are one for the 3rd (4th, 5th, >5) farm investment and
zero otherwise. The constant, which captures the baseline for the first two farms, indicates that the
average staking ratio is 62.39%, based on the linear probability model in column (1). The staking
ratio significantly increases with every subsequent farm investment, suggesting that investors learn
over time.

In Panel A of Table 3, we provide farmer-level statistics. The average yield farmer invests in 2.64
farms, has a holding period of 30.92 days, and has $7,732 invested. However, the average staking
ratio is only 0.8422. This suggests that many farmers miss out on farming opportunities, possibly
due to the complex nature of the trading strategy.

In Panel B of Table 3, we separate the farmers into quintiles based on their average Investment
Size. There is significant cross-sectional dispersion in size among PancakeSwap users. For instance,
the average investment in the lowest quintile is only $10.96, whereas that of the highest quintile is
$37,738. Thus, many yield farmers have small investment stakes.

4See, for example, https://twitter.com/PancakeSwap/status/1385463720835379201.
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We observe that Investment Size is positively correlated with the staking ratio, ranging from 0.6211
to 0.9629 between the lowest and highest quintiles. This suggests that smaller yield farmers are more
likely to leave money on the table. But even in the highest quintile do we see significant evidence of
investor mistakes, given an average staking ratio that is far from one. Since the average farm yield
ranges between 94.28% and 121.69% across quintiles, investors face non-trivial opportunity costs.
Investors also have short holding times, with a holding period ranging between 9.8 and 61.31 days
across quintiles.

Investment performance is non-linear across quintiles with the highest daily return of 20bps in
quintile 4. This echoes our discussion in Section 3.4 that both large and small investments could
generate sub-optimal performance, due to transaction costs and price impact.

Evidence from DappRadar5 indicates that PancakeSwap registered 435,130 active users on Oc-
tober 24, 2021, in contrast to 47,730 active users recorded for Uniswap. The trading volume in
PancakeSwap was about $1.2 billion on that day, which implies that the average yield farmer in
PancakeSwap traded $2,757. This suggests that many investors in PancakeSwap are small retail
investors, consistent with our evidence in Table 3.

Survey evidence further supports the view that yield farmers may not be financially sophisticated.
CoinGecko, a data provider, questioned 1,347 cryptocurrency investors about yield farming in
August 2020 (CoinGecko, 2020). According to the survey, 79% of yield farmers claim to understand
the risks and rewards of yield farming to a reasonable extent. However, about 40% of them report
that they could not read smart contracts to verify potential yield vulnerabilities or scams. In
addition, 33% of yield farmers are unfamiliar with the meaning of impermanent loss, implying that
they take risks which they don’t understand.

5.4 Yield farming performance without frictions

In Table 4, we assess the value-weighted performance of yield farming strategies using aggregate
pool liquidity as the weighting factor. We compute returns in excess of the 3-month U.S. Treasury
bill rate from the perspective of a U.S. investor and ignore transaction costs. Panel A (B) reports
results at the daily (weekly) trading frequency with 518 (74) observations.

We find that, prior to transaction costs, yield farming is profitable during our sample period.
The value-weighted index strategy delivers a daily return of 0.15%. This is about twice as large
as the returns to a strategy that focuses only on liquidity mining (0.07%) or on a buy-and-hold
strategy in the same pairs of cryptocurrency tokens associated with the liquidity pools (0.07%).
All three strategies deliver negatively skewed performances, with a non-trivial amount of excess
kurtosis, negative serial correlation, and exhibit a daily volatility of about 3.6%. Results for a
weekly trading frequency are qualitatively similar.

In Figure 8, we report the performance for each the four components (capital gains, impermanent
losses, trading fees, farm yields) after sorting yield farms into quintiles based on the magnitude
of their average in-sample offered yield. Panel (a) shows that the average realized yield, which
strongly correlates with the offered yield, increases monotonically across quintiles from about 2bps

5See DappRadar: https://dappradar.com/rankings.
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in Q1 to about 40bps in Q5. Panel (b) of Figure 8 shows that trading fee revenue is smaller than
other components and more similar across quintiles.

In Panel (c), we illustrate capital gains. While capital losses are largest for farms offering high
yields, these are insignificantly estimated. In contrast, impermanent losses, which are significantly
estimated, as shown by the 95% confidence bounds, are always negative and monotonically decreas-
ing with the headline yields, as shown in Panel (d). Taken together, this evidence at the farm level
suggests that high yield farms’ tokens generate the lowest returns and the largest impermanent
losses.

The evidence that farms with the highest headline yields perform worst ex-post raises concerns
about retail investor protection for three reasons. First, yield farms compete for liquidity by of-
fering high yields. Second, high yields are salient to investors who appear to be unsophisticated.
Second, impermanent losses are shrouded, yet they significantly contribute to yield farming under-
performance. Bordalo, Gennaioli, and Shleifer (2016) show that, in such an environment, reaching
for yield behavior may be an equilibrium outcome.

To better assess the risk-return trade-offs, we standardize the return performance by the standard
deviations and report in Table 4 Sharpe ratios for all investment strategies. These measures suggest
risk-return trade-offs of yield farming that are comparable but higher to that of the S&P 500 (which
has a daily Sharpe ratio of 0.03 in our sample period), with values ranging from 0.0209 for buy-and-
hold strategies to 0.0405 for yield farming.6 Thus, without accounting for frictions, yield farming
appears to be profitable and to deliver superior performance to the S&P 500, according to Sharpe
ratios.

We also report alphas estimated using the three-factor cryptocurrency return model of Liu, Tsyvin-
ski, and Wu (2022), in addition to BNB, the native token of the BSC smart chain. Their framework
suggests that a three-factor model with cryptocurrency market, size, and momentum factors prices
the cross-section of cryptocurrency returns. Thus, we assess the risk-adjusted yield farming perfor-
mance relative to this three-factor+BNB cryptocurrency benchmark. We find that the daily yield
farming alpha is, on average, 0.02%. Because of the short and volatile sample period, this alpha is
estimated with a t-statistic of only 0.6822. The alphas of buy-and-hold investments and liquidity
mining are negative, emphasizing that the positive yield farming performance is driven by farm
yield and trading fee revenue.

5.5 Yield farming performance with frictions and investor mistakes

We next consider the impact of investor mistakes by comparing the performance of yield farming
to that of liquidity mining. Panel (a) of Figure 9 shows that investors who do not fully stake their
LP tokens into yield farms perform worse within each quintile. This effect is especially pronounced
for the farms with the highest headline rates. Table 3 documents that smaller investors are more
likely to make mistakes (i.e., staking ratios below one). Thus, they are more likely to leave money
on the table and underperform. Detailed statistics are reported in Panel A of Appendix Table A.7.

We further assess the impact of trading frictions on yield farming performance, including gas fees,
trading fees, and price impact. For that purpose, we assume a holding period of 10 days, or that

6There are fewer observations for the S&P500 because DeFi markets are continuously open for trading.
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1/10th of the investors rebalance their portfolio each day. This lies within the mean and median
holding periods across yield farmers (see Table 3). We choose an initial investment of $1000, which
is bounded by the mean and median investment amount in our sample. Finally, we approximate
the staking ratio of the average investor using the average daily observed farm-level staking ratio.

Panel (b) of Figure 9 compares the yield farming performance with trading frictions and investor
mistakes to that of the frictionless benchmark. Transaction costs unilaterally lower the risk-adjusted
return performance across all yield quintiles. For example, the risk-adjusted return decreases by
7bps from 0.07% (−0.01%) to 0.00% (−0.08%) for Q1 (Q5). That downward adjustment is further
amplified by investor mistakes such that, for Q5, the daily alpha decreases from −0.01% to −0.21%
(see Table A.7, Panel A). Figure A.8 and Panel B in Table A.7 provide qualitatively similar results
at the weekly trading frequency, but the downward adjustments are larger in magnitude.

Figure A.9 illustrates robustness of our conclusions by showing similar results under alternative
parameter assumptions for the trading frictions. In Panel (a), we first vary the rebalancing duration
from 7 to 14 days. We report annualized alphas for a fair comparison across scenarios. Risk-adjusted
returns decrease monotonically within each quintile. This is expected, since the multiplicity of
transactions needed for a round-trip trade can accumulate to non-trivial amounts for gas and
trading fees, especially with frequent rebalancing.

In Panel (b) of Figure A.9, we vary the investment size from $500 to $5000. Small size investments
are impacted by gas fees, since these are based on flat dollar amounts. This incentivizes larger
investment amounts to reduce the dollar cost per investment. However, larger amounts may not be
an option for unsophisticated retail investors. Indeed, a large proportion of investors invest less than
$1,000 (see Table 3). On the other hand, large investments relative to the size of the liquidity pool
may suffer from price impact due to slippage. In addition, larger investments can endogenously lead
to lower farm yields, thereby putting further downward pressure on the investment performance.
Hence, we observe hump-shaped performance results within each quintile.

These observations bear implications for diversification and optimal portfolio allocation. A portfolio
with fewer yield farms would save more on fixed transaction costs, but would be more exposed to
illiquidity (slippage) when opening/closing positions, due to higher idiosyncratic risk. In contrast,
holding a more diversified portfolio of farms would cost more but would lower potential losses from
illiquidity (slippage) when opening/closing positions. We leave such analysis for further research.

In Table 5 we examine the role of trading frictions and investor mistakes at the farmer level. We
regress the time-weighted average daily holding period return for each farmer on the average value-
weighted displayed farm yield and a set of explanatory variables related to transaction costs and
mistakes. In columns (1) to (3), farmer-level returns without frictions are the dependent variable
and there is, at best, weak significance by any of the explanatory variables.

In contrast, in columns (4) to (6) of Table 5, which do account for frictions, all variables are
strongly significant in explaining daily holding period returns. Investment size is non-linearly
related to performance, as underscored by the positive and negative coefficients on investment size
and its square. More frequent rebalancing is associated with higher gas and trading fees and lower
performance, while higher staking ratios in yield farms lead to better performance since less money
is left on the table. The average difference in daily return performance for a staking ratio of zero
and one equals 1.93% to 2.04%. These results are robust to the inclusion of investment start and
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end month fixed effects, which effectively allows for a comparison between investors over similar
trading horizons.

Importantly, the coefficient on the average total offered yield is negative and statistically significant
at the 5% level. This suggests that farmers who invest in higher-yielding farms underperform by an
additional 24bps for every 100% increase in total offered yields. That evidence is consistent with
our findings at the farm level (Figure 9) in that the farms with the highest headline rates exhibit the
worst risk-adjusted performance. This important observation leads us to further assess the relation
between flow and performance, since there is important evidence from other asset markets that
suggest investors reach for yield (e.g., Becker and Ivashina, 2015; Choi and Kronlund, 2018; Chen
and Choi, 2023; Bordalo, Gennaioli, and Shleifer, 2016; Vokata, 2023; Gomes, Peng, Smirnova, and
Zhu, 2022) and pursue investment strategies with large headline rates (e.g., Henderson and Pearson,
2011; Célérier and Vallée, 2017; Egan, 2019; Henderson, Pearson, and Wang, 2020; Shin, 2021).

6 Reaching for yield in decentralized financial markets

The PancakeSwap ecosystem hosts a large cross-section of yield farms that compete for liquidity by
offering seemingly attractive investment opportunities while shrouding risks. The detailed account
of all wallet transactions registered on the public blockchain provides a unique opportunity to
examine whether and how such an environment encourages reaching for yield behavior (Bordalo,
Gennaioli, and Shleifer, 2016).

We first examine whether yield farmers adjust their positions in response to changes in farm yields.
To that end, we examine the impact of yield changes on liquidity pool flows. We consider both
dollar growth and LP token growth, a measure that is similar to net fund flows to mutual funds
(e.g., Sirri and Tufano, 1998; Coval and Stafford, 2007).

Equation (6) shows that yields are driven by many factors which are either farm-specific or common
to all farms. We would like to isolate the variation associated with the farm multipliers mi,t, since
changes in multipliers stand out in PancakeSwap (see Figure A.3) and are changed by votes of the
platform owners. We also want to avoid capturing fund flows that are driven by multiplier changes
to other farms, and therefore restrict our analysis to changes in farm multipliers where the change
in the aggregate multiplier M is small.

We identify 511 cases where ∆mi,t ̸= 0 and |∆Mt/Mt| ≤ 0.15, among which 50 (461) cases are
associated with an increase (decrease) in mi,t. We then compare the change of flows into the treated
farms with ∆mi,t ̸= 0 to those into the non-treated farms with ∆mi,t = 0. Specifically, we plot the
difference-in-differences coefficients βk from a regression:

yi,t+h = α+

k=7∑
k=−7,k ̸=−1

βkIk × Treatmenti + Event× FarmFE +DayFE + εi,t+h,

where yi,t+h is defined as either log(
outstanding LP tokensi,t+h

outstanding LP tokensi,t−1
) or log(

$ of pooli,t+h

$ of pooli,t−1
). Panels (a) and

(c) ((b) and (d)) in Figure 10 document significant pool inflows (outflows) on the day that farm
multipliers increase (decrease). Token growth (dollar growth) for ∆mi,t > 0 is about 17.94%
(19.11%) on day 0, on average, which is economically meaningful.
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Platform owners may increase farm multipliers in anticipation of future inflows. To mitigate that
concern, we also examine the sensitivity of aggregate fund flows to yield changes that are associated
with multiplier changes by peer farms, as reflected in the aggregate multiplier Mt. These shocks
need to be large enough to have meaningful impact on Mt and, therefore, yi,t. Thus, we identify
4 events where ∆mi,t = 0 with |∆Mt/Mt| > 0.15. These 4 events are associated with increases in
Mt. Since changes in Mt affect all farms simultaneously, we conduct a simple event study without
control group. Appendix Figure A.10 confirms the finding that aggregate fund flows are sensitive
to changes in yields.

In Table 6, we provide more direct evidence on reaching for yield behavior by testing whether
future flows are related to high yield farms. Specifically, we regress farm flows on total offered farm
yield, lagged farm performance (Return) and the individual components related to capital gains,
impermanent losses, trading fees and realized farm fields:

Flowj
t,t+7 = α+ β1Total Offered Y ieldjt−7,t + β2Capital Gainj

t−7,t + β3Impermanent Lossjt−7,t

+ β4Trading Feejt−7,t + β5Realized Y ieldjt−7,t + γ⊤Xj
t + FEs+ εjt ,

(11)
where j denotes the farm-level index. We include farm and week fixed-effects. The control vector
Xt includes lagged flows, log size of the liquidity pools, and farm age.

In column (1) of Table 6, we find a positive and statistically significant relation between
Total Offered Y ield and Flow. This result is unchanged when we add lagged return perfor-
mance in column (2). Besides the statistical significance at the 1% level, the coefficient is also
economically significant. A farm with a 100% higher Total Offered Y ield is associated with a
6.35% greater increase in fund inflows.

In column (3), we add the four components of lagged return performance and drop
Total Offered Y ield due to its high collinearity with Realized Y ield. We find a positive and
strongly significant relation between farm flows and lagged trading fees and realized yields. Impor-
tantly, these measures are directly observable to investors in the PancakeSwap user interface. This
strongly suggests that flows chase past fees and high yields.

The coefficient on Impermanent Loss is insignificant, which is consistent with the evidence that
information on impermanent losses is challenging to find and difficult to understand, according to
survey evidence. Overall, our results suggest that yield farmers chase farms offering higher, more
salient yields, but do not seem to internalize past impermanent losses.

6.1 The role of learning in reaching for yield behavior

We next examine reaching for yield at the farmer level. Column (1) in Table 7 reports our baseline
result for the relation between flows by investor i to farm j, Flowi,j

t,t+7, and farm j’s offered yield,

Total Offered Y ieldjt−7,t. The positive and statistically significant coefficient of 0.0255 indicates a
positive propensity of reaching for yield. The average farmer provides about 2.55 percentage points
more liquidity to a farm if it offers a 100% larger yield.

A significant literature has highlighted the underperformance of yield-seeking strategies (e.g., Hen-
derson and Pearson, 2011; Becker and Ivashina, 2015; Bordalo, Gennaioli, and Shleifer, 2016;
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Célérier and Vallée, 2017; Choi and Kronlund, 2018). Similarly, we find that investor funds are more
likely to be channeled to higher-yielding farms, which systematically underperform due to greater
capital and impermanent losses. The underperformance is especially pronounced for investors who
leave money on the table due to their mistake of not staking the LP tokens to earn farm rewards.
We are, therefore, interested in understanding whether experience and learning can contribute to
mitigating reaching for yield behavior.

In columns (2) to (7) of Table 7, we ask whether proxies for learning and experience can reduce
the reaching for yield propensity, defined as the regression coefficient between total offered farm
yields and future fund flows. Our three proxies for learning and experience are the amount of the
investment (Size), the number of days elapsed since the first yield farm investment (Experience),
and the number of farms to which an investor has provided liquidity (# Farms). For all three
measures, we create indicator variables equal to one if the variable is above the 75th percentile of
the variable’s distribution, and zero otherwise.

Columns (2) and (3) provide weak support for investment size playing a role in mitigating reaching
for yield behavior. However, columns (4) to (7) show a significant reduction in the reaching for
yield propensity based on the interaction terms between the total offered yield and the experience
proxies. The most conservative estimations in columns (5) and (7) include farm times week effects,
allowing us to control for time-varying farm characteristics and compare high with low-experience
farmers within the same farms at different points in time. The magnitude of the coefficients in
these estimations suggests that experience can mitigate the reaching for yield propensity by 20%
(0.0050/0.0254) to 39% (0.0117/0.0303).

6.2 The role of information disclosure in reaching for yield: Yieldwatch

High yield-seeking behavior has been observed in many other financial markets (Henderson and
Pearson, 2011; Becker and Ivashina, 2015; Bordalo, Gennaioli, and Shleifer, 2016; Célérier and
Vallée, 2017; Choi and Kronlund, 2018; Vokata, 2023). Much of that research emphasizes the
role of complexity and risk shrouding in explaining reaching for yield behavior (e.g., Gabaix and
Laibson, 2006; Célérier and Vallée, 2017). A main advantage of the blockchain data is that it
allows us to directly test, using natural experiments, whether information disclosure and reduction
in complexity can alleviate reaching for yield behavior.

In particular, we rely on the novel setting of Yieldwatch.net, a third-party information platform that
selectively discloses information on past performance and return components in exchange for buying
Yieldwatch tokens. Launched on March 3, 2021, Yieldwatch Pro, Yieldwatch.net’s main service,
provides customized information on yield farming. Appendix Figure A.4 provides a screenshot of
Yieldwatch Pro’s user interface.

Unlike PancakeSwap’s main user interface, which provides limited information on farm-level char-
acteristics like yield, size, and multiplier (see Appendix Figure A.3.), Yieldwatch Pro provides a
more user-friendly interface with richer information. In addition to information on farm charac-
teristics, YieldWatch Pro breaks down farmers’ historical capital gains (also called HODL value),
impermanent losses, trading fee revenue, and realized yields for a particular yield farming position.
Notably, this information is only available to yield farmers who own Yieldwatch.net’s native utility
token, called the WATCH token.
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We leverage two unique features of YieldWatch Pro to construct shocks to individual investors’
information display. First, through the complete transfer history of WATCH tokens available from
Binance Smart Chain, we identify WATCH token holders and their balances on each day. Second,
an initial farm offering (IFO) of WATCH tokens on March 4, 2021 was designed in such a way that
only those investors bidding more than $570 were allocated WATCH tokens. Since that threshold
was unpredictable, we can compare yield-chasing behavior among investors just above (treated)
and below (control) that cutoff level, using the quasi-random token allocation as a randomized
shock to investors’ information.7

Column (1) of Table 8 provides the baseline result for the reaching for yield propensity based
on the regression of individual investors’ farm Flows on the one-week lagged farm-specific Total
Offered Yield. To alleviate concerns associated with endogenous token acquisition, we compare
the reaching for yield propensity of the WATCH token holders to that of matched control wallets
that have a similar farm composition over the previous 180 days (number and types of farms) and
TVL deviating no more than 30% in absolute value from that of the treatment group. We further
require a minimum of two weeks of continuous data prior to the Yieldwatch token acquisition. The
coefficient of 0.0497 is comparable to our baseline coefficient at the farm level reported in column
(1) of Table 6. That is, a farm with a 100 points higher Total Offered Yield is associated with a
4.97% greater net increase in flows.

In column (2) of Table 8, we test whether more granular performance information and disclosure
of hidden risks through WATCH token acquisition reduces reaching for yield behavior. The key
coefficient of interest is the triple interaction between Total Offered Yield and two indicator variables
that are equal to one if a farmer has ever owned Yieldwatch tokens or provided liquidity to the
WATCH-BNB pool (YieldWatch), and after the Yieldwatch token acquisition (Post), respectively,
and zero otherwise. The negative and statistically significant coefficient of −0.0290 suggests that,
following the token acquisition, WATCH token holders with access to Yieldwatch.Pro exhibit a
reduction in their reaching for yield propensity of about 58% (0.0290/0.0497) relative to investors
without the WATCH tokens.

Our results are robust to controlling for farm times week fixed effects, allowing us to compare the
reaching for yield propensity among WATCH token holders and non-holders while accounting for
unobserved time-varying characteristics at the farm level. We also add interactions of treatment-
control pair with week, farmer, and farm fixed effects to alleviate concerns of endogenous selection
into farms and treatment-control pairs. Moreover, in columns (3) to (5), we impute the treatment
effect using the three, five, and ten most closely matched control wallets (equally weighted).8 Across
specifications, the magnitude of the coefficient of interest barely changes and remains significant at
the 1% level.

In Appendix Figure A.13 we plot the dynamics of the triple interaction coefficient between three
quarters before and three quarters after the token acquisition. Before the acquisition, the estimated
coefficients are statistically indistinguishable from zero, suggesting that there is a parallel trend in
the reaching for yield propensity between wallets who do and do not hold WATCH tokens. Following
the token acquisition, however, we observe that token holders significantly reduce their propensity

7To the extent that some investors are unsophisticated, the display of more information also changes investors’
information sets. Enhanced information disclosure also reduces the perceived product complexity.

8Not all treated farmers have up to ten control wallets satisfying our matching criteria. We, therefore, implement
equally-weighted regression to mitigate the impact of differential sizes in control groups. Our results are robust to
non-weighted regressions.
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to chase yields. Estimates become noisier for more distant periods following the access to more
granular risk and performance information.

In columns (6) to (10) of Table 8, we further mitigate concerns that the token acquisition may
be correlated with investor skill using a quasi-natural experiment. Specifically, we exploit the
Yieldwatch initial farm offering (IFO) on March 4, 2021 that resulted in a random allocation of
8 Yieldwatch tokens to investors who offered below or above $569.4 USD. In Appendix C.4, we
provide details about the institutional design of the IFO and supportive evidence that the allocation
of WATCH tokens around the threshold was as good as random. Importantly, we find no evidence
of strategic bidding over the time of the auction and no differential bidding behavior by successful
and unsuccessful bidders. Hence we can consider bidders just below and above the threshold as
similar and examine their change in reaching for yield propensity after the token acquisition.

In columns (6) to (8), we examine differences in the reaching for yield propensity between successful
and unsuccessful bidders for the Yieldwatch tokens in a narrow window of +/− $200 around the
bidding threshold. That narrow band contains 148 treated (i.e., successful) and 86 control wallets.
The coefficient on the triple interaction term is again negative and statistically significant at the
1% level, providing further evidence that better risk disclosure decreases the salience of prices in a
relative sense, and reduces the propensity to reach-for-yield. In these regressions, we add farmer
and farm fixed effects to absorb unobserved time-invariant heterogeneity. But our results do remain
robust in the conservative specification reported in column (8) of Table 8, where we account for
latent time-varying characteristics at the farm level using the inclusion of farm times week fixed
effects.

In column (9), we extend the bandwidth to plus and minus $250 around the allocation threshold and
find that the coefficient remains significant and of similar magnitude. As we expand the bandwidth
further to plus and minus $300, the coefficient is no longer significant.

Taken together, our evidence consistently shows that yield-chasing behavior becomes less pro-
nounced once investors access more complete information on their yield farming portfolios, specif-
ically more detailed information on the determinants of returns that tend to be hidden and are
associated with downside risks (e.g., impermanent loss). This result is consistent with the hypoth-
esis that investors chase yield because they are salient thinkers (Bordalo, Gennaioli, and Shleifer,
2016). We show that investor’s reliance on salient features of financial products in their decision-
making can be reduced by the increased availability of information on other less-salient features
through third-party information services.

6.3 Randomizing the information acquisition through airdrops

One concern with our analysis is that more sophisticated investors are more likely to know about
Yieldwatch.Pro and are more likely to acquire Yieldwatch tokens. In that case, our results could
be explained by unobserved differences in financial sophistication rather than salience shocks intro-
duced by changes in displayed information about risks and historical investment performance that
arguably reduce perceived product complexity.

Farmer fixed effects should absorb time-invariant differences in sophistication across investors.
Moreover, the quasi-random Yieldwatch token allocation to ex-ante similar bidders in the Yield-
watch IFO should mitigate concerns of endogeneous adoption. We further address this concern by
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exploiting a natural experiment based on airdrops organized by APY.Vision. Airdrops are events
in which APY.Vision provides a select group of users with APY.Vision NFT tokens granting access
to premium tracking services. APY.Vision operates across multiple platforms and selects users
randomly. PancakeSwap is not covered by APY.Vision, which operates on Ethereum, a different
blockchain, and we manually collect all the airdrop announcements through X (formerly Twitter).
We, therefore, focus our data collection efforts on wallets present in SushiSwap. See Appendix C.5
for details.

Access to the APY.Vision information service is enabled through the ownership of NFT tokens.
APY.Vision randomly allocates these NFT tokens to liquidity providers in eligible liquidity pools.
During our sample period, we identify 20 airdrops, in which 38 among all eligible wallets were
randomly chosen to receive NFTs. We compare the reaching for yield propensity between the 38
investors with access to APY.Vision and 14,266 unsuccessful wallets in Sushiswap that were eligible
to receive the NFT tokens. Since many treated wallets do not have yield farming history before
the airdrops, we compare their cross-sectional differences in yield chasing propensity.

Table 9 reports results that are qualitatively similar to those obtained for the Yieldwatch experi-
ment. First, the baseline magnitude of the coefficient in column (1), 0.0285 is reasonably similar
to that reported in Table 7, even though the data come from a different decentralized market op-
erating on a different blockchain. This is reassuring and supports external validity of our findings.
Second, the interaction term between total offered yield and APY.Vision NFT token holder dummy
variable is negative and statistically significant.

In column (3), we show that this result is robust to the more stringent specification with farm
times week fixed effects. For columns (4) to (6), we select control groups based on the eligibility
requirements and investment duration, since our results in Table 7 suggest that experience impacts
reaching for yield. This analysis compares the behavior of unsuccessful farmers to those who
happened to be lucky and received NFTs. We observe consistent results in the baseline specification
in column (4), and in a more conservative specification in (5) using farm times week fixed effects.
To further mitigate concerns of unbalanced control groups, we show consistent results using a
weighted regression specification in column (6). Overall, these findings similarly suggest that a
shock to investors’ information access that reduces perceived complexity can significantly reduce
investors’ salience bias.

7 Conclusion

We provide the first characterization of yield farming, a decentralized financial service available to
retail investors in the cryptocurrency ecosystem. Using a novel hand-collected dataset of all trade
records in 262 yield farms listed on PancakeSwap, the largest automated market-maker operating on
the Binance Smart Chain, we assess yield farming’s return performance and document its associated
risks.

Yield farms offer high yields that are saliently advertised as headline rates, while downside risks are
hidden and not easily understood. Yield farming appears to be profitable, but risk-adjusted returns
are significantly reduced after accounting for transaction fees, price impact, and investor mistakes.
Investor flows are attracted to high yield farms but are insensitive to impermanent losses, a type of
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hidden downside risk. But, high yield farms systematically underperform due to large impermanent
losses. Thus, we document reaching for yield behavior that results in negative risk-adjusted returns.

By means of two quasi-natural experiments designed by third-party information platforms, we study
how information shocks that increase risk disclosure and arguably reduce complexity can affect
yield-chasing behavior. We find consistent evidence that farmers’ propensity to reach for yield
becomes less pronounced once they are provided more detailed information on the performance of
their portfolios. We also document evidence that investor learning and experience contributes to
reducing their yield-chasing behavior over time.

Our results have important policy implications. First, our evidence emphasizes the need for better
information disclosure, since it can mitigate investors’ salience bias. Notably, the type of informa-
tion matters, since our findings highlight the role of risk disclosure as opposed to price disclosure.
In contrast, Frydman and Wang (2020) show that enhanced information about prices can increase
the bias related to the disposition effect. Nonetheless, our results suggest that, even without regula-
tory mandates on information provision, market-based alternatives, such as third-party information
platforms, can help assuage yield-chasing behavior and improve investment performance. Second,
our evidence on investor mistakes and learning emphasizes the importance of financial education,
especially for retail investors. Third, mandatory reductions in product complexity and proactive
notifications can help overcome investors’ inattention or inertia and, therefore, improve their per-
formance.
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Figure 1: Growing Popularity of Decentralized Finance

In this figure, we plot the total value locked (TVL, left axis), a measure of market capitalization,
and the number of active platforms (right axis) in the market for decentralized finance. The solid
blue line plots total value locked (TVL) in billions of dollars. The dashed red line illustrates the
number of DeFi platforms whose TVL is over $1 million. We source historical TVL data from
DeFiLlama API (https://api.llama.fi/v2/historicalChainTvl). To construct the number of active
DeFi platforms, we first download each platform’s TVL from DeFiLlama API on historical TVL
for platforms (https://api.llama.fi/protocol/rainbow). Among the platforms, we drop “CEX” and
“Liquidity Staking” following DeFiLlama’s approach to construct a conservative measure of TVL.
Each day, we count the number of remaining platforms whose TVLs are above $1 million. The
figure starts on January 1, 2020 and ends on July 31, 2022. Source: https://defillama.com/.

29

https://defillama.com/


Figure 2: Average Gas Fee to Enter and Exit a Yield Farming Position

In this figure, we compute the average gas fee paid by users on PancakeSwap (Panel (a)) and
SushiSwap (Panel (b)) to enter (exit) a yield farming position on each day since the inception of
the respective platform. For one round of yield farming, the total gas fee paid is the entry fee on the
portfolio formation day, plus the exit fee on the last day of the holding period. For PancakeSwap,
the average cost to enter (exit) over all days is $1.49 ($1.96). For SushiSwap, the average cost to
enter (exit) over all days is $117.75 ($178.10).
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Figure 3: Heuristic Description of Yield Farming in PancakeSwap

This figure provides a heuristic description of yield farming in the decentralized exchange (DEX)
PancakeSwap v2, which is built on the Binance Smart Chain (BSC). In PancakeSwap, investors face
a menu of liquidity pools, each one being defined for a pair of cryptocurrencies. Our illustration
showcases the USDT–ETH pool as an example. Investors can provide liquidity by “staking” a
pair (x, y) of cryptocurrency tokens (in this example, USDT and ETH) in equal dollar amounts
(x · PUSDT = y · PETH) into the liquidity pool, thereby making these tokens available for USDT–
ETH trading by third-party traders. These must pay a trading fee for buying and selling USDT
vs. ETH equal to 0.25% of trading volume. Of the 0.25% trading fee, 0.17% is paid to liquidity
providers as compensation for their liquidity provision. The other 0.08% is passed on to the Treasury
of PancakeSwap’s main staking contract and partially used for burning (i.e., buy back and destroy)
CAKE tokens, the native governance token of PancakeSwap. The main staking contract issues
CAKE tokens on a continuous basis with each block creation in BSC. The trading fees are paid
in the currency of the liquidity pool, i.e., USDT vs. ETH. As a liquidity provider, an investor
faces buy-and-hold price risk from the price evolution of USDT and ETH as well as downside risk
arising from the impermanent loss function, defined by the constant product trading rule of the
automated market maker (AMM). The liquidity provision is certified by a liquidity token (i.e., the
LP token), which can be staked into a USDT–ETH main staking contract (yield farm) specific to the
USDT-ETH currency pair. The passive income in the yield farm is earned in CAKE. The number
of CAKE tokens distributed across yield farms depends on a farm multiplier that we describe in
Section 2. This farm multiplier may change over time following a collective vote by all owners of
CAKE tokens.
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Figure 4: Yield Farm Activity

In Panel (a) of this figure, we plot the number of active farms and Total Value Locked (TVL)
in $million at a weekly frequency during our sample period. On the right axis, we provide the
time series of active farms. We define active farms as those whose yield multipliers are larger
than 0, implying that investors who stake LP tokens in these farms receive non-negative yields.
On the left axis, we plot TVL of active farms, or the amount of LP tokens deposited for yield
farming. The vertical axis is in millions of USD. In Panel (b) of this figure, we illustrate the
Google search intensity for the word, “PancakeSwap,” and the number of active farmers in Pan-
cakeSwap. We download the Google search intensity for the word, “PancakeSwap,” and calculate
the monthly average search intensity. Then, we normalize it by the maximum monthly aver-
age search intensity so that the index is 100 at its maximum. The dotted blue line (left axis)
plots the normalized monthly average of the search intensity. Google search data are available at
https://trends.google.com/trends/explore?q=PancakeSwap. The dashed red line (right axis) plots
the number of active farmers, where an active farmer is defined to be an investor whose balance
in yield farms is positive. The red dotted vertical line corresponds to March 1, 2021. The figures
start on September 23, 2020 and end on July 31, 2022.

(a)

(b)
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Figure 5: Total Offered Farm Yields Displayed to Investors

In this figure, we plot the annualized total offered farm yields displayed to yield farmers. Total
offered yield, referred to as the annual percentage return (APR), is the sum of the offered farm
yield (Equation (6)) and the trading fee yield estimated using the previous day’s trading volume
Vt−1,t.

yTotal
t = yFarm

t︸ ︷︷ ︸
offered farm yield

+365 · c · Vt−1,t/Lt︸ ︷︷ ︸
trading fee yield

, (12)

where c denotes the constant trading fee and Lt the pool liquidity. We provide the historical
annualized total offered farm yields (in %) between March 1, 2021, and July 31, 2022. The solid
blue line indicates the median annualized total offered farm yield. Dark and light shaded areas
represent the interquartile range, as well as the 10th and 90th percentiles of the yield distribution,
respectively.
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Figure 6: Migration of PancakeSwap Platforms

In this figure, we show the amount of outstanding liquidity in obsolete liquidity pools after two
technical updates in the PancakeSwap platform. In Panel (a), we plot the total value locked in
liquidity pools and their associated yield farms in PancakeSwap v1 with their equivalent counterpart
yield farms available in PancakeSwap v2. On April 24, 2021, farms corresponding to liquidity pools
in PancakeSwap v1 stopped providing farm yields. PancakeSwap encouraged farmers to move their
liquidity to the corresponding counterpart farms available in PancakeSwap v2 so that the existing
yield farmers could continue to earn farm yields. The solid blue line in Panel (a) indicates the total
value locked of unmigrated assets that remained in the liquidity pools associated with PancakeSwap
v1. In Panel (b), we examine the outstanding liquidity staked in the old PancakeSwap staking
contract, following the contract’s upgrade from v1 to v2 on April 20, 2022. Upon this migration,
LP tokens staked in the old staking contract ceased to be eligible for earning yields. PancakeSwap
advertised through Twitter and other channels that users should unstake from the v1 contract and
re-stake in the new v2 contract.
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Figure 7: Staking Ratio of LP Tokens

In this figure, we plot the ratio of LP tokens staked in active yield farms listed in PancakeSwap,
relative to the total number of LP tokens distributed as rewards for liquidity provision in the
liquidity pools. Thus, the LP staking ratio is defined as the number of LP tokens of a liquidity
pool staked in its corresponding farm, divided by the total number of outstanding LP tokens for
the liquidity pool. The solid blue line indicates the median staking ratio. Dark and light shaded
areas represent the interquartile range, as well as the 10th and 90th percentiles of the yield farm
distribution, respectively.
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Figure 8: Yield Farming Return Decomposition

In this figure, we plot each component of daily value-weighted returns across yield farms, by quintiles
based on the magnitude of their in-sample offered yield. Every day, we compute the daily capital
gain, impermanent loss, trading fee, and realized yield for all listed farms. Then, we take the
average of each component across farms in each quintile using the size of each farm as weights.
In Panels (a) to (d), the blue bars illustrate the average daily realized yield, trading fee, capital
gain, and impermanent loss. The red error bars plot their associated 95% confidence intervals. The
mean of each component is displayed above their respective bars.
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Figure 9: Risk-Adjusted Returns from Yield Farming

In this figure, we plot average risk-adjusted returns (i.e., alphas) and their associated 90% & 95%
confidence intervals for different trading strategies. In Panel (a), we compare the performance of
yield farming to that of liquidity mining without considering trading frictions. On each day, we
sort farms into quintiles based on their in-sample total offered farm yields (APRs) displayed to
investors. In each quintile, we form value-weighted portfolios by using the size of the liquidity
pools as weights. A yield farming strategy is a strategy in which investors not only earn trading
fee revenue but also farm yields, whereas investors that restrict themselves to liquidity mining can
only earn trading fee revenue. We estimate alphas from a three factor model based on the work of
Liu, Tsyvinski, and Wu (2022) and also account for the performance of BNB. The circle (square)
and the associated bar display weekly alphas and their 95% confidence intervals for yield farming
(liquidity mining) without considering frictions. In Panel (b), we follow a similar procedure but
provide alphas for yield farming strategies without trading frictions, yield farming strategies with
frictions including gas fees, trading fees, and price impact, and yield farming strategies considering
not only the frictions but also investor mistakes.
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Figure 10: The Impact of Farm Multiplier Changes on Farm Flows

In this figure, we illustrate, using an event study, how changes in the CAKE allocation multipliers,
∆mi,t, affect cumulative flows to the farm. In Panels (a) and (b), we measure cumulative flows
net of any price growth from one day before the event date (t− 1) to date t+ h by measuring the
change of # LP tokens. In Panels (c) and (d), we measure the growth rate of the dollar value of
the pool. We are interested in changes in cumulative flows and dollar value of the pools that are
driven by active decisions of PancakeSwap platform owners while there is no significant change to
the aggregate multiplier, that is ∆mi,t ̸= 0 with |∆Mt

Mt
| ≤ 0.15. We identify 511 such cases, among

which 50 cases are associated with an increase in mi,t, and 461 cases are associated with a decrease
in mi,t. We then compare the change in the outcome variables of the treated farms relative to those
of the non-treated farms (all farms that did not experience a multiplier change). Specifically, we plot
the difference-in-differences coefficients βk (and their 95% confidence intervals) from a regression
yi,t+h = α+

∑k=7
k=−7,k ̸=−1 βkIk×Treatmenti+Event×FarmFE+DayFE+ εi,t+h, where yi,t+h is

defined as either log(
outstanding LP tokensi,t+h

outstanding LP tokensi,t−1
) or log(

$ of pooli,t+h

$ of pooli,t−1
). We cluster the standard errors

at the farm and date levels. Panels (a) and (c) are event studies for ∆mi,t > 0 while Panels (b)
and (d) are event studies for ∆mi,t < 0.

(a) ∆mi,t > 0 (b) ∆mi,t < 0

(c) ∆mi,t > 0 (d) ∆mi,t < 0



Table 1: Snapshot of Yield Farms in PancakeSwap

In this table, we report information about the 10 largest farms in PancakeSwap in terms of total
value locked (TVL, Panel A) or total offered farm yield (Panel B) on July 31, 2022. For each
farm, defined by a unique cryptocurrency pair, we provide information on the start date of a farm,
the annualized total offered farm yield (APR, in %), and total value locked (TVL, in $ million).
Panel A lists the 10 largest famrs in terms of TVL. Panel B lists the 10 largest farms in terms of
total offered farm yield (APR). The total offered farm yield is the sum of the offered yield and the
trading fee yield estimated using the previous day’s trading volume.

Panel A: By TVL
Farm Cryptocurrency TVL Total Offered Yield
Rank Pair ($ million) (%)

1 USDT-BUSD $178.28M 2.62%
2 WBNB-BUSD $168.35M 14.25%
3 Cake-WBNB $168.18M 24.30%
4 USDT-WBNB $158.34M 15.10%
5 USDC-BUSD $109.69M 1.18 %
6 USDT-USDC $53.99M 2.17%
7 ETH-WBNB $53.46M 7.17%
8 BTCB-WBNB $45.24M 7.38%
9 BTCB-BUSD $43.59M 9.79%
10 TUSD-BUSD $36.67M 0.30%
. . . . . . . . . . . .
86 GMI-WBNB $0.12M 81.81%

Panel B: By Total Offered Yield
Farm Cryptocurrency TVL Total Offered Yield
Rank Pairs ($ million) (%)

1 BTCST-WBNB $1.72M 357.92%
2 OLE-BUSD $1.20M 138.87%
3 TRIVIA-WBNB $0.89M 127.02%
4 HIGH-BUSD $1.18M 99.87%
5 XWG-USDC $0.69M 90.00%
6 RPG-BUSD $1.11M 87.33%
7 IDIA-BUSD $0.17M 83.23%
8 GMI-WBNB $0.12M 81.81%
9 FINA-BUSD $0.40M 76.70%
10 BCOIN-WBNB $0.24M 71.89%
. . . . . . . . . . . .
86 TUSD-BUSD $36.67M 0.30%
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Table 2: Determinants of Farm Yields driven by Platform Governance

In this table, we study the determinants of farm yield changes associated with active platform
governance (∆ymi,t+1), i.e., the component of farm yield changes associated with changes in the
farm yield multiplier m. This is computed as the product between the current yield level and the
percentage change of the yield multiplier, i.e., ∆ymi,t+1 = yi,t × ∆mi,t+1

mi,t
. In columns (1) and (2),

the dependent variable is the change in yield that is driven by platform governance. In columns
(3) and (4), the dependent variable is Delistingt+1, an indicator variable equal to one if a farm is
delisted on the subsequent day and zero otherwise. Independent variables include Capital Gain,
Impermanent Loss, Trading Fee, Realized Yield over the last 7 days, and Log(Liquidity), which is
the logarithm of the dollar value of aggregate liquidity in a pool. Standard errors are clustered
at the farm level. ∗,∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

(1) (2) (3) (4)
∆ymi,t+1 Delistingt+1

Capital Gaint−7,t 0.0067 0.0024 0.0050∗ -0.0033
(0.0060) (0.0109) (0.0027) (0.0046)

Impermanent Losst−7,t 0.0877 0.0753 -0.0031 -0.0163
(0.0607) (0.0649) (0.0114) (0.0147)

Trading Feet−7,t 0.3282∗∗∗ 0.2475∗∗ -0.2013∗∗∗ -0.1552∗∗

(0.1064) (0.1043) (0.0665) (0.0714)

Realized Yieldt−7,t -0.5943∗∗∗ -0.7692∗∗∗ 0.0546 0.0247
(0.0870) (0.1190) (0.0340) (0.0402)

log(Liquidityt) -0.0009∗∗ -0.0012∗ -0.0019∗∗∗ -0.0026∗∗∗

(0.0004) (0.0006) (0.0003) (0.0003)

log(Farm Aget) -0.0024∗∗∗ -0.0042∗∗∗ 0.0003 0.0018∗∗∗

(0.0007) (0.0007) (0.0004) (0.0004)

Day FE No Yes No Yes
N 48,770 48,770 49,048 49,048
adj. R2 0.003 0.046 0.003 0.088
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Table 3: Yield Farming Behavior

In this table, we report statistics that describe the behavior of yield farmers. The presented
statistics are all farmer-level variables. In Panel A, we present aggregate summary statistics. No.
Farms is the number of farms in which a yield farmer invests. Investment Size is the dollar value
of LP tokens. Holding Period (Days) is the number of days for which a farmer keeps a yield
farming position on average. Offered Yield is the time-weighted average of the total offered yield
at the beginning of the holding period. The total offered farm yield is the sum of the offered yield
and the trading fee yield estimated using the previous day’s trading volume. Daily Return is the
time-weighted average of the annualized holding period returns for each user. Staking Ratio is the
average of the staking ratios of farms in which a farmer invested where the staking ratio of a farm
is the average daily staking ratio during a farmer’s holding period. In Panel B, we separate yield
farmers into quintiles by Investment Size. We restrict our analysis to farmers whose investment
duration is greater than or equal to one day.

Panel A: Yield Farmers
Variable Average Inv. Size SD p25 p50 p75 OBS

Weighted Avg.

No. Farms 2.6363 4.7687 3.9766 1.0000 1.0000 3.0000 439,639
Investment Size ($) 7,732.14 231,923.65 40.00 179.66 869.44 439,639
Holding Period (Days) 30.9191 7.7183 64.3387 0.7086 3.4648 24.7954 439,639
Offered Yield 1.1002 0.5976 1.0534 0.4013 0.6995 1.4569 439,639
Daily Return 0.0011 0.0011 0.0569 -0.0035 -0.0005 0.0049 439,639
Staking Ratio 0.8422 0.9745 0.3385 0.9790 0.9992 0.9999 439,639

Panel B: Yield Farmers by Investment Size
No. Farms Investment Holding Offered Daily Staking OBS

Size($) Period(Days) Yield Return Ratio

Quintile 1
Average 1.7430 10.96 61.3089 0.9428 0.0000 0.6211 87,928
SD (1.6136) (7.9) (92.4108) (1.0317) (0.0267) (0.4580)

Quintile 2
Average 1.8986 59.08 39.3546 1.0461 0.0006 0.8144 87,928
SD (2.0561) (21.47) (70.5432) (1.0567) (0.0481) (0.3581)

Quintile 3
Average 2.3041 187.72 26.5402 1.1382 0.0011 0.8821 87,927
SD (2.896) (62.03) (56.2208) (1.0574) (0.0286) (0.292)

Quintile 4
Average 2.9168 665.36 17.5689 1.2169 0.0020 0.9306 87,928
SD (3.8799) (259.88) (41.4067) (1.0746) (0.1083) (0.2234)

Quintile 5
Average 4.3190 37,737.51 9.8229 1.1571 0.0018 0.9629 87,928
SD (6.6658) (517,512.29) (25.8638) (1.024) (0.0246) (0.1613)
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Table 4: Yield Farming Performance

This table reports the summary statistics for daily percentage excess returns from yield farming investment strategies. We take the
perspective of a U.S. investor and report all information from the perspective of an initial USD investment. Excess returns are computed
relative to the three-month U.S. Treasury bill secondary market rate sourced from the Federal Reserve Bank of St.Louis. All returns
are value-weighted using the pools’ aggregate liquidity as weighting factors. The column (OBS) reports the number of observations.
We report the mean return (Mean), the standard deviation, 25th percentile, median, 75th percentile, skewness, and kurtosis of the
yield farming strategies, as well as the serial correlation, the Sharpe ratio, the alpha from a three factor model based on the work of
Liu, Tsyvinski, and Wu (2022) augmented with the return of BNB, the native token of BSC, and the t-statistic for alpha from the
three-factor+BNB regressions. The sample period is March 1, 2021 to July 31, 2022.

Panel A: Daily
Strategy Mean SD p25 Median p75 Skew Kurt AC1 SR α t-stat of α OBS

Yield Farming Related Strategy
Yield Farming 0.0015 0.0360 -0.0144 0.0023 0.0167 -0.3445 13.5692 -0.1638 0.0405 0.0003 1.0427 518
Buy and Hold (Capital Gains) 0.0007 0.0358 -0.0150 0.0018 0.0162 -0.2925 13.1318 -0.1681 0.0209 -0.0004 -1.1519 518
Liquidity Mining 0.0007 0.0358 -0.0148 0.0019 0.0162 -0.3959 13.5994 -0.1675 0.0197 -0.0004 -1.2605 518

Benchmark Strategy
Crypto Market Return -0.0002 0.0439 -0.0218 0.0049 0.0239 -0.7872 8.6170 -0.1026 -0.0052 0.0000 0.0000 518
BTC -0.0005 0.0383 -0.0219 -0.0005 0.0200 -0.0654 4.7533 -0.0474 -0.0140 -0.0012 -1.2846 518
ETH 0.0016 0.0509 -0.0283 0.0023 0.0303 -0.0305 5.9682 -0.0522 0.0321 0.0007 0.7572 518
BNB 0.0021 0.0539 -0.0246 0.0013 0.0303 -0.0093 8.9147 -0.1232 0.0380 0.0000 0.0000 518
S&P 500 Index 0.0003 0.0116 -0.0059 NaN 0.0075 -0.3856 4.0643 -0.0157 0.0300 0.0004 0.7642 358

Panel B: Weekly
Strategy Mean SD p25 Median p75 Skew Kurt AC1 SR α t-stat of α OBS

Yield Farming Related Strategy
Yield Farming 0.0105 0.0911 -0.0343 0.0076 0.0500 -0.4847 7.4880 0.1288 0.1147 0.0033 1.5869 74
Buy and Hold (Capital Gains) 0.0056 0.0904 -0.0380 0.0029 0.0470 -0.5332 7.6623 0.1158 0.0616 -0.0017 -0.8035 74
Liquidity Mining 0.0053 0.0898 -0.0372 0.0038 0.0473 -0.6369 7.8369 0.1099 0.0586 -0.0019 -0.8713 74

Benchmark Strategy
Crypto Market Return -0.0001 0.1110 -0.0764 0.0003 0.0800 -0.6809 4.6258 0.0948 -0.0005 0.0000 0.0000 74
BTC -0.0047 0.0906 -0.0682 -0.0045 0.0479 -0.3788 2.9578 0.1803 -0.0516 -0.0034 -0.5156 74
ETH 0.0109 0.1298 -0.0771 -0.0032 0.0985 -0.1422 3.5841 0.1624 0.0840 0.0114 1.4707 74
BNB 0.0144 0.1402 -0.0636 0.0145 0.0829 -0.0877 6.3156 0.0606 0.1029 0.0000 0.0000 74
S&P 500 Index 0.0016 0.0239 -0.0131 0.0038 0.0155 0.1871 3.9293 -0.0739 0.0686 0.0019 0.8090 74

42



Table 5: Determinants of Yield Farmers’ Return Performance

In this table, we study the determinants of the risk-adjusted return performance at the farmer
level. The dependent variable, Avg, Daily Ret. (w/o Frictions), is the time-weighted average
daily holding period return for each farmer without considering trading frictions such as trading
fees, gas fees, and price impact. Avg. Daily Ret. (Frictions) is the time-weighted average daily
holding period return for each farmer considering the trading frictions. Avg. Total Offered Yield
is the time-weighted average of the total offered farm yield displayed to investors (APRs) at the
beginning of each holding period. The total offered farm yield is the sum of the offered yield and
the trading fee yield estimated using the previous day’s trading volume. log(Avg. # of monthly
Rebalancings) is the average number of rebalancings in a month. # of Farms is the number of
unique farms to which an investor provides liquidity. Avg. Size of Investment is the time-weighted
average of the USD value at the beginning of an investor’s holding period. Avg. Staking Ratio
is the time-weighted average of the staking ratio of a farmer. We restrict our analysis to farmers
whose investment duration is greater than or equal to one day. We include fixed effects for the entry
month of the yield farming strategy (Start Month), the exit month of a yield farming investment
(End Month), or the interaction of both. Avg. Size of Investment, Avg. Daily Ret. (w/o Frictions)
and Avg. Daily Ret. (Frictions) are winsorized at the 0.25% and 99.75% levels. Standard errors
are clustered at the first month when a farmer participated in yield farming. ∗,∗∗, and ∗∗∗ indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6)
Avg. Daily Ret. (w/o Frictions) Avg. Daily Ret. (Frictions)

Avg. Total Offered Yield -0.0013∗∗ -0.0015∗∗ -0.0016∗∗∗ -0.0032∗∗∗ -0.0023∗∗ -0.0024∗∗

(0.0005) (0.0005) (0.0005) (0.0009) (0.0009) (0.0008)

# of Farms -0.0000 -0.0000 0.0011∗∗∗ 0.0008∗∗∗

(0.0001) (0.0001) (0.0003) (0.0002)

Avg. Size of Investment ($M) -0.0231∗ -0.0220∗ 0.3022∗∗∗ 0.3016∗∗∗

(0.0115) (0.0113) (0.0322) (0.0309)

Avg. Size of Investment2 0.0621∗ 0.0573∗ -0.8669∗∗∗ -0.8695∗∗∗

(0.0308) (0.0306) (0.0868) (0.0837)

log(Avg. # of monthly Rebalancings) 0.0002 0.0004 -0.0061∗∗∗ -0.0051∗∗∗

(0.0002) (0.0003) (0.0007) (0.0006)

Avg. Staking Ratio 0.0025∗∗ 0.0023∗ 0.0204∗∗∗ 0.0193∗∗∗

(0.0010) (0.0011) (0.0014) (0.0016)
Start Month Yes Yes No Yes Yes No
End Month Yes Yes No Yes Yes No
Start x End Month No No Yes No No Yes
N 439,639 439,639 439,639 439,639 439,639 439,639
adj. R2 0.083 0.085 0.107 0.053 0.118 0.139
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Table 6: Aggregate Farm Yields and Investor Flows

In this table, we report evidence on the relation between aggregate investor flows and total offered
farm yields (APRs). We regress future farm Flow, measured over the next 7 days (a week), on Total
Offered Farm Yield, past Return on yield farming, Capital Gain, Impermanent Loss, Trading Fee
Revenue, and Realized Yield over the last 7 days, including control variables consisting of Past flow,
Log(Size of Liquidity Pool), Farm age. The total offered farm yield is the sum of the offered yield
and the trading fee yield estimated using the previous day’s trading volume. The sample period
is March 1, 2021 to July 31, 2022. Flow and Past flow are winsorized at the 0.25% and 99.75%
levels. Standard errors are clustered at the farm level. ∗,∗∗, and ∗∗∗ indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3)
Flowt,t+7

Total Offered Yieldt 0.0635∗∗∗ 0.0638∗∗∗

(0.0119) (0.0119)

Returnt−7,t -0.0132
(0.0211)

Capital Gaint−7,t -0.0169
(0.0242)

Impermanent Losst−7,t 0.1019
(0.1370)

Trading Feet−7,t 4.0200∗∗∗

(1.4435)

Realized Yieldt−7,t 2.4508∗∗∗

(0.4983)
Controls Yes Yes Yes
Farm FE Yes Yes Yes
Week FE Yes Yes Yes
N 6,538 6,538 6,538
adj. R2 0.148 0.148 0.142
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Table 7: The Role of Learning and Experience in Reaching for Yield

In this table, we examine reaching for yield through the relation between Flow at the farmer
level, measured over the next 7 days (a week) and Total Offered Yield, i.e., the total offered farm
yield (APR). The total offered farm yield is the sum of the offered yield and the trading fee yield
estimated using the previous day’s trading volume. We further examine the role of learning in
explaining the relation between flows by farmers and Offered Yield using the size of yield farming
portfolio, investor experience defined as the number of days invested in yield farming, and the
number of invested farms. High Size is an indicator variable equal to one if an investor’s dollar
value of the yield farming portfolio is greater than the 75th percentile of the size distribution and
zero otherwise. High Experience (days) is an indicator variable equal to one if an investor’s number
of days elapsed since the start of the yield farming investment is greater than the 75th percentile
of the distribution and zero otherwise. High # Farms is an indicator variable equal to one if the
number of farms to which an investor has provided liquidity is greater than the 75th percentile of
the distribution and zero otherwise. Flow is winsorized at the 0.25% and 99.75% levels. Standard
errors are double clustered at the investor and week level.∗,∗∗, and ∗∗∗ indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)
Flowt,t+7

Total Offered Yield 0.0255∗∗∗ 0.0278∗∗∗ 0.0254∗∗∗ 0.0303∗∗∗

(0.0074) (0.0065) (0.0075) (0.0067)

High Size -0.0713∗∗∗ -0.0714∗∗∗

(0.0049) (0.0046)

Total Offered Yield× High Size -0.0029 -0.0032
(0.0033) (0.0023)

High Experience (days) 0.0219∗∗∗ 0.0177∗∗∗

(0.0024) (0.0017)

Total Offered Yield× High Exp. (days) -0.0091∗∗∗ -0.0050∗∗

(0.0033) (0.0020)

High # Farms -0.0076∗ -0.0045
(0.0045) (0.0042)

Total Offered Yield× High # Farms -0.0123∗∗∗ -0.0117∗∗∗

(0.0035) (0.0028)

Farmer FE Yes Yes Yes Yes Yes Yes Yes
Farm FE Yes Yes No Yes No Yes No
Week FE Yes Yes No Yes No Yes No
Farm x Week FE No No Yes No Yes No Yes
N 9,705,043 9,705,043 9,705,043 9,705,043 9,705,043 9,705,043 9,705,043
adj. R2 0.199 0.201 0.229 0.199 0.227 0.199 0.227
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Table 8: Yieldwatch Experiment: Information Display and Reaching for Yield

In this table, we investigate whether information on hidden risks and past performance displayed
at YieldWatch.net impacts farmers’ reaching for yield propensity using an event study analysis.
Flowt,t+7 defines investors’ farm flows over the subsequent 7 days. Yieldwatch is an indicator
variable equal to one if an investor/wallet holds the Yieldwatch token or provides liquidity to the
Watch-BNB liquidity pool, and zero otherwise. Post is an indicator variable equal to one after the
acquisition of Yieldwatch tokens and zero otherwise, defined in event time (i.e., one for positive
event times and zero otherwise). Total Offered Yield is the total offered farm yield of a farm
displayed to investors (APR). The total offered farm yield is the sum of the offered yield and the
trading fee yield estimated using the previous day’s trading volume. Investor controls include the
natural logarithm of the dollar value of the yield farming portfolio of an investor and the natural
logarithm of one plus the number of days since the starting date of the yield farming investment.
In columns (1) to (5), we compare the Yieldwatch holders (treatment) to matched control wallets
conditional on (i) data availability within two quarters before the Yieldwatch acquisition; (ii) a
minimum of 2 weeks of data prior to the Yieldwatch acquisition; (iii) similar farm composition
over the past 180 days (number and types of farms); (iv) total value locked one day before the
event date deviating no more than 30% in absolute value from that of the treatment group. We
add interactions of treatment-control pair (T-C Pair) and week, farmer, and farm fixed effects. In
columns (6) to (10), we exploit the Yieldwatch initial farm offering (IFO) on March 4, 2021 that
resulted in a random allocation of 8 Yieldwatch tokens to investors who offered below or above
$569.4 USD. We examine windows of +/- $200, $250 and $300 USD around the threshold. Flow is
winsorized at the 0.25% and 99.75% levels. Standard errors are double clustered at the investor and
week level. ∗,∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Flowt,t+7

Total Offered Yield 0.0497∗∗∗ 0.0537∗∗∗ 0.0282
(0.0095) (0.0148) (0.0282)

YieldWatch×Total Offered Yield 0.0190∗∗ 0.0222∗∗∗ 0.0246∗∗∗ 0.0241∗∗∗ 0.0319 0.0620∗ 0.0531∗ 0.0067
(0.0091) (0.0071) (0.0070) (0.0069) (0.0309) (0.0323) (0.0304) (0.0307)

Post×Total Offered Yield 0.0694∗∗∗ 0.0784∗∗∗ 0.0745∗∗∗ 0.0674∗∗∗ 0.0533∗∗

(0.0156) (0.0121) (0.0130) (0.0115) (0.0263)

YieldWatch×Post -0.0022 -0.0083 -0.0122 -0.0123 0.0907 0.1729∗∗ 0.1561∗ 0.1052
(0.0134) (0.0114) (0.0104) (0.0104) (0.0660) (0.0764) (0.0811) (0.0822)

YieldWatch×Post×Total Offered Yield -0.0290∗∗∗ -0.0311∗∗∗ -0.0313∗∗∗ -0.0328∗∗∗ -0.0663∗∗ -0.0934∗∗∗ -0.0918∗∗∗ -0.0411
(0.0095) (0.0076) (0.0072) (0.0066) (0.0300) (0.0299) (0.0276) (0.0290)

N 94,903 94,029 207,784 303,792 506,960 6,653 6,653 5,035 6,292 7,476
adj. R2 0.263 0.254 0.390 0.436 0.485 0.268 0.269 0.269 0.272 0.269
Investor controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
T-C Pair ×Week FE Yes Yes Yes Yes Yes No No No No No
T-C Pair ×Farmer FE Yes Yes Yes Yes Yes No No No No No
T-C Pair ×Farm FE Yes Yes Yes Yes Yes No No No No No
Farm x Week FE No Yes Yes Yes Yes No No Yes Yes Yes
Week FE No No No No No Yes Yes Yes Yes Yes
Farmer FE No No No No No Yes Yes Yes Yes Yes
Farm FE No No No No No Yes Yes Yes Yes Yes
Weighted Regression No No Yes Yes Yes No No No No No
# treatment 2,690 2,690 2,690 2,690 2,690 148 148 148 179 197
# control 2,690 2,690 6,982 10,574 17,987 86 86 86 99 128
Sample nearest 1 nearest 1 nearest 3 nearest 5 nearest 10 [-$200,$200] [-$200,$200] [-$200,$200] [-$250,$250] [-$300,$300]
IFO No No No No Yes Yes Yes Yes Yes

Unconditional Regression IFO Threshold Regression

46



Table 9: APY.Vision Airdrop Experiment: Information Display and Reaching for Yield

In this table, we investigate whether information on hidden risks and past performance displayed
by APY.Vision impacts farmers’ reaching for yield propensity. Flowt,t+7 defines investors’ farm
flows over the subsequent 7 days. APY.Vision NFT token is an indicator variable equal to one if
an investor holds the randomly allocated APY.Vision NFT token in the wallet and zero otherwise.
Total Offered Yield is the total offered farm yield displayed to investors (APR). The total offered
farm yield is the sum of the offered yield and the trading fee yield estimated using the previous
day’s trading volume. Investor controls include the natural logarithm of the dollar value of the
yield farming portfolio of an investor and the natural logarithm of one plus the number of days
since the starting date of the yield farming investment. In columns (1) to (3), we compare the
38 wallets that received NFT tokens via airdrops (treated wallets) to all eligible investors on the
SushiSwap platform. In columns (4) to (6), we compare treated wallets with all other eligible
wallets conditional on satisfying the eligibility requirements described in Appendix Table A.8 and
having an investment duration within two weeks of that of a treated wallet. One treated wallet is
dropped because it does not have corresponding control wallets. All variables are winsorized at the
0.1% and 99.9% levels. Standard errors are double clustered at the investor and week level. ∗,∗∗,
and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel A (1) (2) (3) (4) (5) (6)
Flowt,t+7

Total Offered Yield 0.0285∗∗∗ 0.0186∗∗∗ 0.0277∗∗

(0.0048) (0.0039) (0.0107)

APY.Vision NFT 0.0134 0.0101 0.0130 0.0142 0.0141
(0.0137) (0.0141) (0.0162) (0.0162) (0.0200)

APY.Vision NFT×Total Offered Yield -0.0370∗ -0.0419∗∗ -0.0504∗ -0.0452∗ -0.0614∗∗

(0.0213) (0.0200) (0.0276) (0.0249) (0.0297)
N 422,700 422,700 422,648 264,317 263,945 263,945
adj. R2 0.108 0.125 0.137 0.118 0.145 0.559
Include control vars. Yes Yes Yes Yes Yes Yes
T-C Pair ×Week FE No No No Yes Yes Yes
T-C Pair ×Farmer FE No No No Yes Yes Yes
T-C Pair ×Farm FE No No No Yes Yes Yes
Farm × Week FE No No Yes No Yes Yes
Farmer FE Yes Yes Yes No No No
Week FE Yes Yes No No No No
Farm FE Yes Yes No No No No
Weighted Regression No No No No No Yes
# treatment 38 38 38 37 37 37
# control 14,266 14,266 14,266 7,071 7,071 7,071
Sample All All All All eligible All eligible All eligible

wallets wallets wallets
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INTERNET APPENDIX

Reaching for Yield in Decentralized Financial Markets

Abstract

Yield farms in decentralized finance dynamically compete for liquidity by offering high yields,
advertised as salient headline rates. Farming these yields involves complex investment strategies
with hidden downside risks. Capitalizing on the transparency of blockchain transactions data,
we show that investors chase farms with high yields and that farms with the highest headline
rates record the most negative risk-adjusted returns. Through randomized shocks to yield farmers’
information display, we show that improved risk disclosure and lower perceived product complexity
reduces yield chasing, thereby improving investor performance. Our evidence is consistent with
salience theory that may underpin reaching for yield behavior.

JEL Classification Codes: G12, G13, G14, O33, Y80

Keywords: complexity, decentralized finance, derivatives, reaching for yield, salience
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A Institutional background

We first provide institutional details on decentralized finance, yield farming, and Binance Smart Chain. We then

discuss PancakeSwap and its benefits for studying yield farming.

A.1 Decentralized finance and cryptocurrency yield farming

Decentralized finance (DeFi) corresponds to an emerging ecosystem of protocols and financial applications built on

blockchain technology with programmable capacities, such as Ethereum and Binance Smart Chain. Smart contracts

on the blockchain execute all transactions automatically, without third-party intervention.

According to DeFi Llama9, a public dashboard with data on DeFi, the total dollar value locked (TVL) in decentralized

financial services, a measure of market capitalization, increased from less than $1 billion in February 2020 to a peak

of $190.82 billion on November 18, 2021, and was measured at $63.55 billion on July 31, 2022 (sample end).

Yield farming is a financial service that offers compensation for liquidity provision in sequential steps. Holders of

cryptocurrency tokens can deposit their tokens in liquidity pools, which issue and award ‘LP tokens’ (a.k.a. ‘flip

tokens’) that certify the liquidity provision and represent a fractional claim on the pool’s liquidity. These ‘LP tokens’

can be deposited in the PancakeSwap main staking contract, which promises farm yields as passive source of income,

paid to yield farming investors in the governance token currency of the PancakeSwap platform, called CAKE.

Intuitively, yield farming is a decentralized variant of securities lending, although the chain of transactions is more

complex. By offering yield enhancements for liquidity provisions, platform owners (i.e., the aggregate ownership of

the native governance tokens) can incentivize liquidity provision. This impacts a platform’s long-term success, since,

in a decentralized exchange, a more liquid pool implies a smaller price impact per trade, which is desirable for traders.

In a lending pool, greater pool liquidity may drive down borrowing costs, which can attract more borrowers. Since

the platform owners can vote on the reallocation of yields across farms, they can also channel liquidity to the pools

of their choice and encourage adoption of the corresponding tokens.

Headline rates for promised investment performance can be large. Annual yields north of 100% are commonly

observed. There exists, however, significant cross-sectional heterogeneity in promised yields across the farms, as we

show in Figure 5.

While yield farming is marketed as being simple through means of engaging platforms, cartoons, rockets, and emo-

jis, both executing a yield farming investment and understanding its payoffs is complex. The strategy involves a

sequence of 12 transactions in three different underlyings. Return performance is highly non-linear and comes from

4 components: realized farm yield from staking LP tokens, capital gains from cryptocurrencies staked to liquidity

pools, fees from trading by third-party investors in liquidity pools, and impermanent losses driven by relative price

changes of the cryptocurrencies locked in liquidity pools. Thus, the complexity of yield farming resembles obfuscated

investment strategies observed in complex structured derivative products (e.g. Henderson and Pearson, 2011; Célérier

and Vallée, 2017; Egan, 2019; Henderson, Pearson, and Wang, 2020; Shin, 2021).

We focus our analysis on yield farms listed on PancakeSwap, a popular automated market maker that ranks second

in the league tables of decentralized exchanges offering cryptocurrency lending services during our sample period.

Transaction costs in PancakeSwap are significantly lower than in other popular decentralized exchanges like Uniswap

(Figure 2). This lowers the barriers to entry for retail investors, who are active investors in yield farms.

9https://defillama.com/home. See also Figure 1.
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The combination of low barriers to entry, a large number of service providers, and complex investment strategies

promising high returns with significant downside risk raises concerns about the protection of retail investors in

cryptocurrency markets. These concerns are underscored by the aggressive stance taken by the U.S. Securities and

Exchange Commission, who have become increasingly vocal about enhanced regulatory scrutiny of decentralized

financial services (e.g., Gensler, 2021). Our work is intended to inform this ongoing debate by means of assessing the

risk and return characteristics of yield farming strategies.

A.2 Binance Smart Chain

Binance Chain was launched by Binance in April 2019.10 Its main goal is to facilitate faster decentralized trading.

The largest and most well-known decentralized application on the Binance Chain is Binance DEX. Despite its success

in DEX trading, Binance DEX embeds several limitations that limit its flexibility. For example, to guarantee high

throughput, the application does not support smart contracts, which require significant computational resources.

This can, therefore, easily congest the entire network.

Binance Smart Chain (BSC) is a public blockchain running in parallel to the Binance Chain. Distinctive features of

BSC include smart contract functionality and compatibility with the Ethereum Virtual Machine (EVM). BSC was

launched for the dual purpose of maintaining the high throughput of Binance Chain and allowing the integration of

smart contracts.

In the BSC ecosystem, Binance Coin (BNB) is used as the basic medium of exchange, similar to Ether (ETH) in

the Ethereum network. End users pay their transaction fees in BNB and use BNB to trade cryptocurrencies on

decentralized exchanges deployed on BSC.

The primary advantages of BSC are its high throughput rate and low transaction fees. BSC updates its blocks

approximately every 3 seconds, using a variant of the Proof-of-Stake consensus algorithm. More specifically, it

employs Proof-of-Staked Authority (or PoSA), in which participants stake BNB to become validators of the blocks.

As of September 5, 2021, the platform’s 21 active validators play an important role in keeping the network running.

According to the CEO of Binance, Changpeng Zhao, BSC allows for a maximum of 300 transactions per second.11 In

contrast, Ethereum processes up to a maximum of 16 transactions per second. The current version of BSC is, thus,

about 20 times faster than Ethereum.

BSC transaction fees are also lower than those of Ethereum. As of September 5, 2021, the average transaction fee

charged by BSC is $0.399, whereas it is $5.842 for Ethereum. The difference in fees widens significantly when the

Ethereum network becomes congested. For example, the average Ethereum transaction fee was $71.72 on May 19,

2021, whereas the maxium daily average transaction fee of BSC was $1.08 on May 11, 2021.12

These advantages make BSC one of the strongest competitors to Ethereum. As of October 9, 2021, total transactions

on BSC have outpaced those on Ethereum, despite Ethereum preceding BSC by almost 4 years.13 As of the same date,

Binance Coin is the third largest cryptocurrency in terms of market capitalization, following Bitcoin and Ethereum.

Another important feature of the BSC is its EVM-compatibility. This implies that the chain can benefit from the rich

universe of Ethereum tools and DApps. For example, project developers can easily transition their projects between

10In February 2022, Binance Smart Chain rebranded to BNB Smart Chain.
11https://twitter.com/cz_binance/status/1361596039698944000.
12https://ycharts.com/indicators/ethereum_average_transaction_fee and https://ycharts.com/

indicators/binance_smart_chain_average_transaction_fee_es
13Ethereum launched on July 2015, whereas Binance Smart Chain launched on April 2019.
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Ethereum and BSC. The growth of PancakeSwap is in part spurred by the popularity of Uniswap, which is built on

the Ethereum blockchain. This is because a significant part of Uniswap’s source code was directly ported to BSC to

build an initial version of PancakeSwap.

A.3 PancakeSwap

PancakeSwap is the largest decentralized exchange built on the Binance Smart Chain. Unlike traditional financial

markets employing market-maker systems based on limit order books, PancakeSwap employs a new system called

automated market maker (AMM), implemented through smart contracts. For details on the mechanism of AMMs

and their pricing schedules, see, for example, Lehar and Parlour (2024).

In PancakeSwap, multiple liquidity pools are deployed to facilitate trading of pairs of cryptocurrencies. Investors

deposit an equal dollar amount of two cryptocurrencies into a liquidity pool, and thereby become liquidity providers.

In exchange for the liquidity provision, the liquidity provider receives LP tokens to certify their liquidity provision.

In return for their liquidity provision, liquidity providers receive a fixed proportion of trading volume registered in a

pool. Third-party trades on PancakeSwap are charged a fee proportional to 0.20% and 0.25% of the trading volume in

versions v1 and v2, respectively, of which 0.17% is added to the liquidity pool associated with the corresponding cryp-

tocurrency pair. Despite the earnings potential, investors are also exposed to price risk associated with impermanent

losses, which are driven by return divergence across a pool’s tokens.

In addition to the income generated from trading fees, liquidity providers can passively earn income if the liquidity

pool has a corresponding yield farm. Such income, called farm yield, is earned by staking the LP tokens to the

corresponding yield farm in PancakeSwap’s main staking contract. Farm yields are paid in PancakeSwap’s governance

token, called CAKE.

PancakeSwap migrated from version 1 (v1) to version 2 (v2) on April 24, 2021. This transition was implemented to

enhance the platform’s technological and security features. Both versions have co-existed since then. In April 2023,

PancakeSwap announced another migration to version 3, which was concluded by April 20. We study yield farming

for versions v1 and v2.

In PancakeSwap, the CAKE token serves as the governance token for the Decentralized Autonomous Organization

(DAO). CAKE token holders can cast votes to influence the future development of the platform or to reallocate

CAKE tokens across farms.

A.4 PancakeSwap as an ideal laboratory to study yield farming

Many decentralized trading venues offer passive income opportunities through yield farming. Among DeFi platforms,

Uniswap and PancakeSwap consistently lead the league ranks in terms of trading activity in our sample period. The

key difference between both platforms is that Uniswap (PancakeSwap) runs on the Ethereum blockchain (Binance

Smart Chain).

Several features of PancakeSwap make it particularly appealing for the study of yield farming. First, and most

importantly, Uniswap does not offer yield farms. Liquidity providers in Uniswap liquidity protocols receive a fixed

fraction of trading volume as their reward. However, there are no farms in Uniswap to which liquidity providers can

stake their LP tokens to earn additional income through yield farming.
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Second, PancakeSwap is one of the largest decentralized exchanges. In Table A.3, we report the daily trading volume

for the ten largest decentralized exchanges as of October 9, 2021.14 The largest DEX is dYdX, which specializes in

derivatives trading. Augustin, Rubtsov, and Shin (2023) discuss the market for regulated and unregulated cryptocur-

rency derivatives.

The second largest DEX is PancakeSwap (v2) with a 24-hour trading volume of $1,185.34 on October 9, 2021.

PancakeSwap (v2) is followed by Uniswap (v3), 1inch Liquidity Protocol, Uniswap (v2), and SushiSwap. The trading

volume on PancakeSwap (v2) is comparable to the combined trading volumes of Uniswap (v3) and Uniswap (v2).

While the rank tables vary over time, PancakeSwap is among the leading DEXs focused on spot trading.

Third, the low transaction cost and high transaction speed of Binance Smart Chain make PancakeSwap easily

accessible to retail investors. As discussed in Section A.2, transaction costs of the Binance Smart Chain are an order

of magnitude lower than those of Ethereum. Yet, the transaction speed of Binance Smart Chain is faster than that of

Ethereum. According to DappRadar, PancakeSwap registered 435,130 active users on October 24, 2021, in contrast

to 47,730 active users recorded for Uniswap.15 The number of active users is highest for PancakeSwap among all

decentralized applications built on all blockchains tracked by DappRadar. In light of the growing concern about the

risks of complex yield farming strategies for retail investors, our study has policy implications for investor protection.

Fourth, PancakeSwap features a large cross-section of yield farms with heterogeneity in yield farming opportunities.

This provides important variation to help understand the risk and return characteristics of yield farms. We study

262 unique yield farms that were active between the inception of PancakeSwap on September 23, 2020 and July 31,

2022.

14The data in Table A.3 are from Coinmarketcap. Also according to DeFiLlama, PancakeSwap is ranked second
next to Uniswap in daily trading volume and cumulative trading volume as of March 15, 2024.

15DappRadar: https://dappradar.com/rankings
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B Derivation of conceptual framework

In this section, we provide supporting explanations for the conceptual framework and detailed steps in the derivation

of Equations (8) and (10). In Section B.1, we ignore frictions, which we cover in Section B.2.

B.1 Capital gains and impermanent loss

To help build intuition, we explain all derivations using a specific example. We assume the existence of a liquidity pool

with a cryptocurrency pair (A,B) ≡ (BNB,BUSD). Thus, this liquidity pool covers the BNB-BUSD cryptocurrency

token pair, where BUSD is a stablecoin pegged to USD. Assuming a BNB–BUSD exchange rate of 100, a liquidity

provider deposits 1 BNB and 100 BUSD at time t to the liquidity pool. After the liquidity provision, the aggregate

liquidity in the pool is 10 BNB and 1,000 BUSD, implying that the liquidity provider’s fractional owenrship is 10%.

After h days, at time t + h, the BNB price increases to, for example, 200 BUSD (hypothetically). The liquidity

provider withdraws his/her liquidity.

The constant product model imposes that the product of the aggregate number of tokens in the pool is equal to

constant K, i.e., k = αA
t · αB

t = 10× 1, 000 = 10, 000, where αi denotes the number of tokens of cryptocurrency i in

the liquidity pool. Lemma B.1 shows that the valuation of token A (i.e., BNB) should be identical to the valuation

of token B (i.e., BUSD) at any t, i.e., αA
t · PA

t = αB
t · PB

t for all t.

Lemma 1. In a constant product automated market maker, αA
t · PA

t = αB
t · PB

t for all t.

Proof. Under the constant product model, the product of the quantities of two cryptocurrencies should be constant,

i.e. αA
t ·αB

t = k. This implies that
∂αB

t

∂αA
t

= −αB
t

αA
t
. A third-party investor wanting to purchase δ units of A for the sale of

asset B would need to sell a quantity B equivalent to δ
αB
t

αA
t
. This implies that δ ·PA

t = δ
αB
t

αA
t
·PB

t → PA
t αA

t = PB
t αB

t .

Since we have two equations including the aggregate number of tokens A and B, αA
t ·PA

t = αB
t ·PB

t and k = αA
t ·αB

t ,

we can solve for the expressions of αA
t and αB

t , such that:

αA
t =

√
k

(
PB
t

PA
t

)
, αB

t =

√
k

(
PA
t

PB
t

)
. (B.1)

We numerically illustrate the impact of a transaction by a third-party investor on the pool’s token composition at

time t+ h using the example of an increase in the exchange rate of BNB–BUSD from 100 to 200, which is equivalent

to $100 to $200 if we assume that BUSD is perfectly pegged to USD:

αA
t+h =

√
k

(
PB
t+h

PA
t+h

)
=
√

10, 000× ($1/$200) =
√
50 = 7.07,

αB
t+h =

√
k

(
PA
t+h

PB
t+h

)
=
√

10, 000× ($200/$1) =
√

2, 000, 000 = 1414.21.

The liquidity provider’s fractional pool ownership is 10%. Upon redemption, he/she will receive 10% of the pool’s

tokens, corresponding to 0.707 BNB and 141.421 BUSD. This amounts to 0.707× 200 + 141.421× 1 = $282.82.

Compare the redemption value to the counterfactual buy-and-hold strategy of the two tokens (1 BNB and 100 BUSD).

In that case, the liquidity provider’s portfolio would be worth $300 = 1×200+100×1, more than the redemption value
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after liquidity provision. The difference is the impermanent loss, which arises due to divergence in price correlation

of tokens A and B. In this case, the impermanent loss corresponds to a loss of (282.82/300− 1)× 100 = -5.727%.

In the crypto community, the impermanent loss is often defined as the percentage of the ratio of investment outcomes

at time t+h in two scenarios: (1) providing liquidity to the pool at t or (2) directly holding the underlying assets. If

the liquidity provider simply held the assets (1 BNB and 100 BUSD), he/she would now have $300 = 1×200+100×1

worth of assets. In this case, the impermanent loss corresponds numerically to (282.82/300− 1)× 100 = −5.727%.

We formalize the impermanent loss through the ratio of the portfolio value in the liquidity provision and buy-and-hold

strategies minus one, using a generic ownership share ω:

ω(PA
t+hα

A
t+h + PB

t+hα
B
t+h)

ω(PA
t+hα

A
t + PB

t+hα
B
t )

− 1. (B.2)

We emphasize that αi in the denominator corresponds to the number of tokens in the intial liquidity provision,

whereas αi in the numerator corresponds to the number of tokens after trading by third-party investors between t

and t+h has changed the token composition in the pool. We rewrite Equation (B.2) in terms of price ratios PA/PB

and PB/PA using Equation (B.1):
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We can simplify the above expression using the relative price ratio ρt =
PA
t

PB
t
:

ρt+h

√
1
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+

√
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√
1
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− 1.

The above expression illustrates the impermanent loss as a function of the relative price ratio between two tokens.

This clearly emphasizes that, as long as prices are perfectly correlated, i.e., ρ = 1, there will be no impermanent

loss. As soon as ρ ̸= 1, there is a loss, since it is straightforward to show that the impermanent loss is strictly

non-positive, i.e.,
2
√

ρt+h/ρt

ρt+h/ρt+1
− 1 = − (

√
ρt+h/ρt−1)2

ρt+h/ρt+1
< 0. Figure A.5 illustrates numerically the non-linearity between

the impermanent loss and ρt+h/ρt.

For our analysis, we simplify the liquidity provider’s gross return defined as:
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by decomposing it into two independent parts:
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where the gross returns to tokens A and B are defined as RA
t,t+h =

(
PA
t+hα

A
t+h

)
/
(
PA
t αA

t

)
and RB

t,t+h =(
PB
t+hα
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)
/
(
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t αB

t

)
. The first term, which we call capital gains, reflects the counterfactual return from a buy-

and-hold investment strategy without liquidity provision to the pool. The second term defines the impermanent loss

and reflects the return difference between the liquidity provision and a buy-and-hold strategy.

Using Lemma B.1, we can rewrite the expression for capital gains as:(
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Using Lemma B.1, we can also simplify the expression for the impermanent loss as:
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It is straightforward to show that the impermanent loss defined in the context of return on liquidity provision is

closely related to the percentage impermanent loss:
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.

B.2 Trading frictions in yield farming

We examine three types of trading frictions: gas fees, trading fees, and price impact.

Gas fees: Table A.2 lists the 14 steps involved in one round trip yield farming strategy. Among the 14 steps,

10 require the farmers to pay gas fees. Gas fees are the transaction costs imposed on BSC users for using the

computational resources of the network. Gas fees are flat overhead costs and are not proportional to the size of the

transaction. We source gas fees from Bitquery, a data provider specialized in blockchain services. To compute the

returns to yield farming with frictions, we subtract the aggregate gas fee for each round trip investment from the

initially invested capital.

Trading fees: Let c∗=0.0025 (0.25%) denote the trading fee cost paid by third-party investors as a proportion of

trading volume. In step 2 of Table A.2, the purchase of token A requires the payment of a 0.25% trading fee. Because

this trading fee applies to half the investment amount dedicated to token A, the farmer effectively pays half the

trading fee c∗
2

(=0.125%). Moreover, the farmer pays an additional c∗
2

fee when he/she converts the withdrawn token

A to token B. Similar arguments apply in steps 3 and 13 enumerated in Table A.2. A yield farmer would thus pay
c∗
2

four times, implying that a farmer’s gross return on capital gain and impermanent loss should be adjusted by

(1− 2c∗).

In step 10 of Table A.2, the yield farmer also pays trading fees when he/she sells CAKE tokens harvested from yield

farming. Thus, we further multiply the realized farm yield term in Equation (8) with (1− c∗).
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Price impact: Executing a yield farming strategy involves buying and selling token A, as we illustrate in step 2

of Table A.2. As a result of price impact, the yield farmer will buy token A at a price above the current market

price. Symmetrically, the yield farmer will sell token A at a price below the current market price. Such adverse price

impacts will result in losses for the yield farmer. The size of the loss is proportional to the relative contribution of

the investment (It) to the size of the liquidity pool, i.e., It = f ·Lt. We go through each step in Table A.2 to examine

the price impacts involved in a yield farming strategy.

(1) Step 1: The liquidity pool has two tokens A and B. The aggregate number of tokens are given by αA
t and αB

t

and their prices are denoted by PA
t and PB

t .

(2) Step 2: A yield farmer must provide tokens A and B in equal amounts. Thus, he/she must acquire tokens A

and B proportionally to αA
t /α

B
t . For this purpose, we divide his/her investment into x · It and (1− x) · It to allocate

towards tokens A and B, respectively. The yield farmer first converts $x · It to acquire token B in a liquid market for

B. Then, the farmer will own x · It
PB
t

of token B, which he/she will use to buy ∆A
t units of token A by means of the

liquidity pool. Due to the constant product model technology, we have that:(
αA
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t
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xIt
PB
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)
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t α
B
t

Solving for ∆A
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∆A
t =

(
xIt
PB
t

)
αA
t

αB
t + xIt

PB
t

=
xItα

A
t

PB
t αB

t + xIt
=

xItα
A
t

1
2
Lt + xIt

=
xfαA

t
1
2
+ xf

.

(3) Step 3: The yield farmer uses the remaining funds, $(1− x) It, to buy token B in a liquid market for B. Then,

he/she will get ∆B
t of token B, where ∆B

t is expressed as follows.

∆B
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(1− x) It
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=
(1− x) fLt
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Finally, we solve for x that satisfies:
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implying that: (
x

1− x

) (
1

1 + 2xf

)
= 1,

with two solutions for x, with the relevant positive solution given by:

x =
f − 1 +

√
f2 + 1

2f
.

(4) Step 4: Arbitrageurs correct the price by supplying ∆A
t of token A in reurn for ∆B

t of token B. This restores

the liquidity pool to its initial state.

(5) Step 5: The yield farmer receives LP tokens to certify the liquidity provision. Define s(f) the ratio of the yield

farmer’s share to the current share in the liquidity pool before the yield farmer provides the liquidity.

s(f) =
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xItα
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.
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After the liquidity provision by the yield farmer, the shares of token A and B become αA
t (1 + s(f)) and

αB
t (1 + s(f)) . Now, we measure the price impact when the yield farmer buys ∆A

t of token A. The farmer uses

$xIt to buy ∆A
t of token A. This means that the effective price paid by the farmer is:

P̃A
t =

xIt
∆A

t

=
xfLt

xfαA
t

1
2
+xf

=
xf
(
2PA

t αA
t

)
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+ xf
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= PA

t (1 + 2fx) = PA
t

[
1 +

(
f − 1 +

√
f2 + 1

)]

Since f − 1 +
√

f2 + 1 > 0, we have that P̃A
t > PA

t .

(6) Step 6: The yield farmer stakes the LP tokens to a farm.

(7) Step 7: The yield farmer waits for h days. After trading by third-party investor, the aggregate number of tokens

A and B in the pool change and become αA
t+h (1 + s(f)) and αB

t+h (1 + s(f)) .

(8) Step 8: The yield farmer receives (harvests) realized farm yields in CAKE tokens.

(9) Step 9: The yield farmer withdraws his/her LP tokens from the farm.

(10) Step 10: The yield farmer sells CAKE tokens.

(11) Step 11: The yield farmer withdraws his/her liquidity from the liquidity pool by sending the LP tokens to the

pool. After the farmer has withdrawn liquidity, the shares of token A and B in the pool change to αA
t+h and αB

t+h.

(12) Step 12: The yield farmer sells his/her ∆A
t+h = s(f)αA

t+h of token A and receives ∆B
t+h of token B. At this

stage, there are αA
t+h and αB

t+hof token A and token B in the pool. After the farmer has sent ∆A
t+h = s(f)αA

t+h of

token A, he/she receives ∆B
t+h units of token B. Due to the constant product model, we have that:(
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)(
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)
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The farmer sends s(f)αA
t+h units of token A in return for PB

t+h∆
B
t+h worth of USD. Thus, the effective price faced by

the yield farmer when selling token A is equal to:
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This illustrates that the yield farmer sells at a lower price than PA
t+h.

(13) Step 13: The yield farmer sells ∆B
t+h + s(f)αB

t+h units of token B in a liquid market for token B.

(14) Step 14: An arbitrageur corrects the price by supplying ∆B
t+h of token B in reurn for ∆A

t+h units of token A.

A new round of yield farming starts.

Our goal is to compute the return of this yield farming strategy considering the price impact. First, the yield farmer

uses his/her fund It = fLt = P̃A
t

(
s(f)αA

t

)
+ PB

t (s(f)αB
t ) to buy s(f)αA

t and s(f)αB
t units of token A and B at

P̃A
t and PB

t . After h days, the yield farmer withdraws s(f)αA
t+h and s(f)αB

t+h units of token A and B and sells them

at P̃A
t+h and PB

t+h. In this case, the gross return can be expressed as:
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We simplify this expression as follows:
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Accounting for both price impact and trading fees, the gross return is adjusted as follows:

(1− 2c∗)λ (f)
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t+h +
1
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2

(√
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,

where (1− 2c∗)λ (f) < 1.

Figure A.6 illustrates the price impact in buying and selling token A and λ(f), which summarizes the overall effect

of price impacts on the performance of yield farming. Panel A shows the relation between f and
P̃A
t

PA
t
.

P̃A
t

PA
t

is greater

than or equal to 1 and increasing in f , which implies that the yield farmer pays higher prices than the current market

price when they purchase token A, which is attenuated as the size of his/her investment increases. Panel B shows

the relationship between f and
P̃A
t+h

PA
t+h

. This is less than or equal to 1 and decreasing in f , which means that the yield

farmer sells token A at a larger discount as the size of investment increase. Finally, Panel C plots λ(f) with respect

to f . λ(f) is less than or equal to 1, decreasing in f , and its effect is substantial when f is large. For example, if the

yield farmer’s investment is very small such that f is close 0, λ(f) = 1 and therefore, there is no effect. However, if

the yield farmer invests as much as the size of the pool (f = 1), he/she will lose more than 50% of their gross return.

Aggregate Frictions for a Given Holding Time:

We assume that investors arrive uniformly and hold their positions for a period of τ each time. Therefore, fric-

tions are incurred h/τ times in aggregate over a horizon h. We approximate the aggregate loss from frictions as:(
Rt,t+h −Rfriction

t,t+h

)
× h

τ
.

C Data appendix

We describe the technical construction of all data sets related to farms (C.1), prices (C.2), token transfers (C.3),

Yieldwatch (C.4), APY.Vision Giveaways (C.5), and cryptocurrency factors (C.6). We also discuss the cleaning of

farm (C.7) and farmer (C.8) data.

We source all information from public blockchains. Interactions with the blockchain are facilitated by the Web3

application programming interface (API) together with a blockchain archive node service. Archive nodes provide

the record of all blocks since inception of the blockchain, unlike full nodes, which tend to store only more recent

blockchain data. The Web3 API operates as a middleman between the user and the archive node, allowing for a

simple object-oriented programming interface. Our technical documentation primarily reflects the perspective of a
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Python Web3 interface, although most of its functionality should be comparable to Web3 interfaces based on other

programming languages.

To clarify the time convention, note that blockchain time is measured by the ‘height’ of a block, a unique identifier

which represents the order of a particular block relative to the inception of the blockchain. The history of all mined

blocks is freely accessible through an archive node or a block explorer service. A given block height can be passed

onto an archive node as an optional argument in an API to ‘restrict’ observable data to everything in that block

and before. This enables the reproduction of the historical conditions of the blockchain corresponding to a specific

point in time. For our analysis, we use the height of the last block mined on each day in coordinated universal time

(UTC+0) to index an observation on a particular date for all following sections. As an example, the last Binance

Smart Chain block height in our sample is 20045095, a block that was mined on July 31, 2022 at 11:59:58 PM UTC,

and used to extract observations for July 31, 2022.

C.1 Accessing farm data

We extract farm data in two steps: first, we identify each day the set of addressable smart contracts corresponding

to yield farms on a given platform and calculate, for each farm, the quantities of interest in the set.

We find the set of contracts on each day by interacting with the active version of the main staking contract through

the poolInfo(q) function, where q is a non-negative integer. This returns information about the q-th liquidity pool

added to the main staking contract: first, the blockchain address of the pool, and second, the weight corresponding to

the current share of minted tokens that this pool receives (‘allocPoint’). The total amount of pools stored in this way

is given by the poolLength() function at each day, and it is straightforward to iterate over them until all information

has been collected.

For each farm, we then make several direct calls to its smart contract to extract further information: token0()

and token1() return the addresses of the two tokens traded by the pool, while getReserves() returns the balances

of the two tokens. To stake tokens, users must transfer LP tokens to the main staking contract, so we simply call

balanceOf(mainStakingContract) to get the amount of staked tokens, and totalSupply() to get the total outstanding

amount of LP tokens. For these steps, it is critical to account for variable decimal precision across different tokens,

which we can identify by calling the decimals() function for each token and then explicitly adjust for.

C.2 Prices and trades

To identify prices for each token, we use the getAmountsOut(N, [B, Token]) function from the main router of the

platform. The main router for a decentralized exchange is the smart contract responsible for quoting swap rates, and

getAmountsOut(N, [B, Token]) is a request for a quote where N units of token B are exchanged for quoted units

of Token, absent considerations of fees or price impact. For our purpose, we take the wrapped version of the native

token for a block chain (e.g. WBNB for BSC) as B, and 0.01 as N .

Our choice of B is motivated by the fact that the native token is the most liquid token on its smart chain, N is

chosen such that there is no loss of exchange rate precision from trading overly small amounts16, nor is the size big

enough to distort the liquidity of any pool. This function allows us to compute exchange rates on the decentralized

exchange. Finally, we determine the exchange rate between B and USDT and source a centralized quote for USDT

against USD. This allows us to get the exchange rates of all tokens versus USD.

16If N is less than 1e-06 USDT, the quote is zero because it is less than the token’s decimal precision.
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To determine trading volume for each pool, we pass the pool address and date range to Bitquery, a third-party data

provider which calculates the total amounts of the two tokens traded through a given smart contract for a given

date range. We merge this information with the main dataset. Once all of these items are compiled, it is then

straightforward to calculate the total return and its individual components according to our formulae in the main

text: the offered yield, the offered total yield, and the staking ratio.

C.3 Token transfer data

We construct token transfer data using the event logs emitted by smart contracts when they update their internally

stored variables. We utilize the eth.getLogs() function to collect these logs. Each log has the following fields: the

block height of record, the smart contract/token which performs the update, an id corresponding to the particular

event that has occurred (the 1st ‘topic’), additional key information (subsequent ‘topics’), and additional general

information (log ‘data’).

Events for which LP tokens are transferred always follow the same event id, which allows us to restrict our attention

to the set of events corresponding to this particular id and emitted by the LP tokens within our sample. For such

events, the second topic in an event log is the address of the token sender, and the third topic is the recipient. The

amount transferred is contained in the log data, in hexadecimal.

We validate a subset of the reconstructed token transfer data against the displayed token transfer records on the

bscscan website (https://bscscan.com/), and find a perfect match. These data form the backbone of our user-level

analysis.

C.4 Yieldwatch Initial Farm Offering

Yieldwatch is a smart dashboard hosted on the Binance Smart Chain. Through its user interface, Yieldwatch provides

enhanced information on yield farming and token staking performance, including information related to pool liquidity,

impermanent loss, pending yield rewards and generated trading fees.

Access to Yieldwatch Pro, Yieldwatch.net’s main service, is granted through the acquisition of Yieldwatch tokens

(henceforth WATCH tokens). Yieldwatch organized an initial farm offering (IFO) of WATCH tokens at PancakeSwap

on March 4, 2021.17 The IFO was organized during one hour, between 5p.m. and 6p.m. SGT on 4th of March 2021,

corresponding to the sale start and end blocks 5383360 and 5384550, respectively.

A total of 8 million WATCH tokens (40% of maximum supply) was supplied during the IFO at a fixed offer price of

$0.1 per WATCH token. Thus, the intention was to raise $800,000 USD worth of WATCH tokens, for which investors

could bid using CAKE-BNB LP tokens. Final allocation of WATCH tokens was administered using the so-called

“overflow” sales method. According to PancakeSwap’s Medium page, this implies that providing more funds would

lead to a greater token acquisition and that, in the event of oversubscription, individual allocations would be be

prorated according to the percentage of the aggregate funding bids.18

As an example, consider a total supply of $8 million for a fixed supply of $800,000 worth of WATCH tokens. This

corresponds to an oversubscription of 10 times the target fundraising amount. An individual bid of $1,000 corresponds

17Since March 4 is immediately after the start of our sample period, we also use data before March 1, 2021 for the
reaching for yield analysis.

18See https://medium.com/pancakeswap/yieldwatch-watch-ifo-to-be-hosted-on-pancakeswap-d24301f17241.
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to 0.0125% of the aggregate capital supply, which, on a pro-rated basis, would give the bidder a right to purchase

1,000 WATCH tokens at a price of $100 (i.e., $0.1 per token). In that case, 90% of the supplied capital or $900 would

be returned to the bidder.

The IFO attracted 16,061 users bidding a total of $569 million for the 8 million WATCH tokens. The first subscription

time was at 05:01:16 p.m. SGT and the last subscription time was at 6:01:12 p.m. SGT. Importantly, both the

aggregate capital supply and the initial threshold for token acquisition were unpredictable. This gives rise to a

threshold analysis with quasi-randomized token allocation.

To support the quasi-random nature of token allocation around a threshold, we provide in Panel A of Figure A.11

the ex-post allocation schedule of WATCH tokens. In contrast to the announced continuous proportionality rule, this

figure shows that the allocation of tokens was implemented as a step function by multiples of 8 tokens. Moreover,

even if someone would have been aware of the details of the allocation mechanism, it would have been impossible to

perfectly predict the aggregate capital supply in the IFO. In fact, Figure A.12 shows that the dynamics of the capital

supply in the Yieldwatch IFO do not exhibit strategic bidding patterns. We further verified that those investors who

received token allocations did not strategically delay their bids to the final minutes of the IFO.

Panel B of Figure A.11 focuses on the first allocation cut-off by restricting the x-axis to capital supply below $1,200.

Investors who supplied less than $569.4 did not receive any WATCH tokens while investors who supplied more than

$569.4 received 8 WATCH tokens. As discussed, it is virtually impossible to predict the aggregate capital supply and

the details of the allocation rule were not transparent. The lack of evidence on strategic bidding further mitigates

concerns that the acquisition of WATCH tokens around the first threshold is correlated with investor skill. As a

result, we conclude that the allocation of WATCH tokens around this threshold is quasi-random and that investors

bidding just below and just above this threshold are similar.

C.5 APY.Vision Giveaways

In our sample period, APY.Vision organized several airdrops. Airdrops (or giveaways) are events in which APY.Vision

gives a select group of users access to premium tracking services. APY.Vision operates across multiple platforms and

selects users randomly to provide their services. We identify 20 airdrops through their announcements on X (formerly

Twitter) and the bulk-transfer patterns of NFT tokens on specific days between December 2020 and May 2022.

Upon selection, a recipient is granted a unique NFT belonging to a collection of NFTs. Each collection is unique

to a specific giveaway. Using NFT tracking websites Rarible and Opensea, we first match each giveaway to the

corresponding collections minted by the APY Vision minting address and then collect information on the address of

the recipient manually.

Each giveaway has unique eligibility requirements for receiving NFTs. The announced number of wallets is selected

randomly from those that satisfy the requirements. Detailed information about the giveaways is presented in Table

A.8. Out of 20 giveaways, 16 of them present eligibility requirements verifiable from public blockchain data, and four

of them do not. These four are “CoinGecko + APY Vision #1”, “CoinGecko + APY Vision #2”, “APY Vision V2

Release Party NFT”, and “APY Vision Ambassador NFT” airdrops.

For the 16 giveaways, we generally follow the described requirements strictly. Ideally, we should find that all the

NFT recipients satisfy the eligibility requirements described on the giveaway website. However, the information on

the website is sometimes ambiguous, and some NFT recipients do not strictly satisfy the requirements. For those

cases, it is unavoidable to make assumptions regarding the requirements for eligibility. For example, the eligibility

requirement for “Balancer + APY Vision” is that investors should hold veBAL tokens on April 7, 2022, 10 PM UTC.
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The number of NFT recipients from this airdrop was 30. However, out of 30 recipients, 23 recipients strictly meet

the requirement. If we relax the requirement by checking the balance on April 8, 2022, at 9 PM instead, because

the NFT started to be airdropped from 09:36:11 PM, we find that all 30 recipients satisfy the requirement. We

transparently describe detailed information about the necessary adjustment under the column header “Procedure for

collecting data” in Table A.8. Following this procedure for data collection, we find most of the NFT recipients satisfy

the requirements: Out of 321 NFT recipients from the 16 giveaways, 306 of them, which is 95% of 321, satisfy the

requirements. Among them, 35 are in our Sushiswap sample data.

From the four giveaways where the eligibility requirements are not verifiable from the blockchain data, we identified

291 wallets that received NFTs. Due to the lack of data on eligible wallets, it is unavoidable to make an assumption

about eligible wallets. Therefore, we assume that all wallets are eligible for receiving the NFTs from the four

giveaways. Among the 291 wallets, 3 are in our SushiSwap sample data. Overall, we identified 38 NFT recipients in

total, on which our analysis is based.

C.6 Cryptocurrency Factors

Liu, Tsyvinski, and Wu (2022) document that a three-factor model using the cryptocurrency equivalents of the

market, size and momentum factors are useful for explaining the cross section of expected cryptocurrency returns.

We replicate these factors using their approach.

We obtain the cross-section of daily closing prices for cryptocurrencies from Coinmarketcap’s historical API endpoint.

We then compute volume-weighted average prices across all markets for which Coinmarketcap has data. Our risk-free

rate is from the St. Louis Fed’s one-month constant maturity Treasury rate.

We exclude from our sample coins without trading volume, coins with less than $1 million in market capitalization at

the time of portfolio formation, and coins without price data for the following day. To control for potential outliers,

we winsorize the market capitalization at the 1st and 99th percentiles during portfolio formulation.

For all three factors, we form portfolios at the end of the prior day and consider a one-day holding period. All returns

are measured in U.S. dollars. The daily excess cryptocurrency market return is constructed as a value-weighted

portfolio of all coins with data on the portfolio formation day (prior to applying the filters) minus the risk-free rate.

The excess cryptocurrency size factor is computed using the return from a long-short trading strategy that takes a long

(short) position in the value-weighted portfolio of coins ranked in the bottom (top) quintile of market capitalizations

on the portfolio formation day. For the cryptocurrency momentum factor, we exclude coins for which the three-week

price history is unavailable. The momentum factor is then constructed from a long-short strategy with a long (short)

position in the value-weighted portfolio of coins ranked in the top (bottom) quintile of coins with positive three-week

momentum on the portfolio formation day.

As a test of the accuracy of our methodology, we replicate the three-factor regressions from Table 11 in Liu, Tsyvinski,

and Wu (2022) for portfolios sorted on one-week momentum by quintile, a set of implementable trading strategies

not used in the construction of the three factors. Table A.6 provides summary statistics on the coins used for the

construction of cryptocurrency factors. In Table A.5, we compare our parameter estimates to those obtained in Liu,

Tsyvinski, and Wu (2022) (NBER version dated May 2019, strategy “r 1,0” in Table 11). The two are nearly identical

with only minor deviations, which may be due to small variations in the sample period used and/or changes in the

markets for which Coinmarketcap tracks price data.19

19See Schwenkler, Shah, and Yang (2023) for recent work on the reliability of cryptocurrency data.
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In addition, it is worth noting that the estimates for alpha obtained in Liu, Tsyvinski, and Wu (2022) are reported

in weekly frequency, whereas our measures of alpha have been annualized. For instance, a weekly alpha of 0.025,

as is the case for the fourth quintile of one-week momentum in Table A.5, translates into a yearly alpha of 2.611

when annualized. Therefore, the magnitudes of our estimates of alpha for yield-farming strategies are reasonably

comparable to strategies analyzed in Table 11 of Liu, Tsyvinski, and Wu (2022), in which three-factor weekly alphas

exceed 0.02 (or an annualized alpha of 1.80) for many price- and momentum-based strategies.

C.7 Data Cleaning: Farm Data

After the initial data construction, we identify 304 unique yield farms. We restrict our analysis to the sample period

March 1, 2021 to July 31, 2022. This reduces our sample to 299 farms with 281 unique cryptocurrencies and 61,023

observations. We exclude 6 farms where UST was one of the tokens in the LP pool (UST-MCOIN, ‘UST-MIR’, ‘UST-

mAMZN’, ‘UST-mGOOGL’, ‘UST-mNFLX’, and ‘UST-mTSLA’), since we could not obtain a reliable estimate of

the token price for the complete sample, owing to the events of the Terra-Luna collapse. We further exclude two

farms, ‘PNT-PBTC’ and ‘QSD-KUN’, for which our data provider does not have any trading volume information.

We exclude farms that have less than two weeks’ worth of data in our sample. These farms most likely correspond

to ‘Farm Auctions’ - promotional partnerships where a liquidity pool receives yield for a week to generate interest

and trading activity. These filters reduce our sample to 262 unique farms that cover 247 unique cryptocurrencies and

59,051 daily observations at the farm level.

C.8 Data Cleaning: Farmer Data

We collect all wallet addresses with transactions in the 262 unique farms in our sample. After removing two common

burn (null) addresses that do not represent investors, we have 1,190,623 unique wallet addresses (wallets) which have

provided liquidity to 529 unique smart contracts (i.e., liquidity pools), corresponding to 2,687,061 unique wallet-

liquidity pool pairings (wallet pools) and 62,352,957 observed historical states of wallet pools (total positions).

In a second step, we exclude wallets which trade at an implausibly high frequency, with over 10,000 positions held

through our sample period. This reduces our sample to 1,190,442 wallets in 529 liquidity pools and 2,682,603 wallet

pools, and 23,944,735 total positions.

Third, we exclude wallets with a smart contract interface, since their positions are not directly managed by investors.

This lowers our sample to 1,172,762 wallets in 529 liquidity pools and 2,647,640 wallet pools, and 18,618,936 total

positions.

Finally, we exclude wallet-pools in which the wallet transferred LP tokens to a third party, as these represent multi-

platform strategies outside the scope of this paper. This lowers our sample to 641,477 wallets in 529 liquidity pools

and 1,442,486 wallet pools, and 7,838,261 total positions.

To implement our analysis at the investor level, we need to collect additional information that leads to further loss

in observations. We create two separate data sets to implement analysis on flows and on returns.

For investor-level flow analysis, we define flow based on the balance of # LP tokens measured on every Sunday

midnight at the weekly frequency. Therefore, wallets that do not have positions as of Sunday midnight are dropped

from our sample. This selection process yields 446,227 wallets corresponding to 5,975,858 positions for investor-level

flow analysis. These wallets make 10,818,661 transactions in our raw dataset.
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For our investor-level return analysis, we make a few additional refinements to reasonably estimate the investor

returns. First, we discard positions worth less than $1 at the start of the holding period, since investors must pay gas

fees in excess of 100% of their initial investment to liquidate these positions. Secondly, we require that all positions

held by the yield farmer are entered and exited during the yield farm’s active period, to ensure that each investor-level

return is an unbiased representation of the true yield farming return realized by the respective investor. After these

additional refinements, we are left with 532,713 investor return observations. Finally, we focus on investors whose

total participation in yield farming lasts at least one day, since our farm-level data is at daily frequency. This leaves

439,639 investors corresponding to 6,183,222 positions in our final investor-level return analysis. These wallets make

up for 11,175,192 transactions in our raw dataset.
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Figure A.1: Liquidity and Offered Farm Yield

In this figure, we show the relation between a yield farm’s offered yield and its aggregate liquidity.
The x-axis corresponds to the natural logarithm of the dollar value of liquidity in the yield farm
in units of $1 million. The y-axis corresponds to the natural logarithm of one plus the annualized
offered farm yield measured in decimal units. (For example, 50% of the annualized farm yield is 0.5
in decimal units.) The blue dots are observations measured at a daily frequency. The red dashed
line plots the best linear fit obtained by regressing the natural logarithm of (1 + annualized offered
farm yield) on the natural logarithm of the dollar value of liquidity in the yield farm.

-6 -4 -2 0 2 4 6 8

Log(Liquidity in $M) 

-100

-50

0

50

100

150

200

250

300

350

400

450

L
o
g
 O

ff
e
re

d
 F

a
rm

 Y
ie

ld
 (

%
)

65



Figure A.2: Relation between Model-implied and Listed Offered Farm Yields

In this figure, we compare the offered farm yields calculated using Equation (6) on the y-axis to
those listed on PancakeSwap’s homepage on the x-axis (https://PancakeSwap.finance/farms). The
listed farm yields were manually collected from PancakeSwap’s web page at midnight Greenwich
Meridian Time (GMT) on October 11, 2021. All values are reported in percentage points. The
blue circles represent all observations and the red dashed line connects (0%,0%) and (300%,300%),
i.e., a 45-degree line. A linear regression where we regress the calculated on the listed farm yields
obtains an R2 of 1.00 and an estimated regression line given by ŷt = 1.002× yt − 0.001.
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Figure A.3: User Interface of Yield Farms in PancakeSwap

In this figure, we provide a snapshot of the user-interface environment for yield farms in Pan-
cakeSwap. For a current snapshot, see https://PancakeSwap.finance/farms.
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Figure A.4: User Interface of Yieldwatch

In this figure, we provide a snapshot of user-interface environment of Yieldwatch, a 3rd-party
information platform. For a current snapshot, see https://www.yieldwatch.net/.
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Figure A.5: The Impact of Price Divergence on Impermanent Loss

In this figure, we illustrate the impact of price divergence on impermanent loss, defined as the
ratio of the portfolio value in the liquidity provision versus buy-and-hold strategies minus one (see
Equation (B.2)). The y-axis indicates the impermanent loss (in %). The x-axis provides, for a
representative pair of tokens A and B used for liquidity provision, a measure of price divergence
over an h-period horizon defined as ρt+h/ρt, where ρt = PA

t /PB
t .
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Figure A.6: Model-Implied Price Impact due to Yield Farming

In this figure, we illustrate how the size of investment in yield farming creates price impact, which
affects returns from yield farming. The parameter f defines the relative ratio of the size of the
investment to the size of the liquidity pool, i.e. investment/size of liquidity pool (It/Lt). Consider
two cryptocurrencies A and B in a liquidity pool with token B being the numeraire token such as
BNB or BUSD. Panel (a) shows the relation between f and the price impact on token A when
purchasing token A for providing liquidity (together with token B) to a pool. The y-axis plots the
multiple to the current price of token A in U.S. dollars. A value of 2 implies that a yield farmer
would have to pay twice the current market price of token A to acquire it for liquidity provision.
Panel (b) plots the relation between f and the price impact on token A when selling it after
liquidity withdrawal from the pool. Panel (c) plots the impact of investment size on gross returns
from capital gain and impermanent loss. For example, λ(f) = 0.5 implies that the gross return of
capital gain and impermanent loss is halved by the price impact.

(a) (b)

(c)
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Figure A.7: Yield Farming Return Decomposition - Weekly Frequency

In this figure, we plot each component of weekly value-weighted returns across yield farms, by
quintiles based on the magnitude of their total offered yields at the start of the week. The total
offered farm yield is the sum of the offered yield and the trading fee yield estimated using the
previous day’s trading volume. Every week, we compute the weekly capital gain, impermanent loss,
trading fee, and realized yield for all listed farms. Then, we take the average of each component
across farms in each quintile using the size of each farm at the start of the week as weights. In
Panels (a) to (d), the blue bars illustrate the average weekly capital gain, impermanent loss, trading
fee, and realized yield. The red error bars plot their associated 95% confidence intervals. The mean
of each component is displayed above their respective bars.
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Figure A.8: Risk-Adjusted Returns from Yield Farming - Weekly Frequency

In this figure, we plot average risk-adjusted returns (i.e., alphas) and their associated 90% & 95%
confidence intervals for different trading strategies at the weekly trading frequency. In Panel (a), we
compare the performance of yield farming to that of liquidity mining without considering trading
frictions. On each day, we sort farms into quintiles based on their in-sample total offered farm yields.
The total offered farm yield is the sum of the offered yield and the trading fee yield estimated using
the previous day’s trading volume. In each quintile, we form value-weighted portfolios by using size
of the liquidity pools as weights. A yield farming strategy is a strategy in which investors not only
earn trading fee revenue but also farm yields, whereas investors that restrict themselves to liquidity
mining can only earn trading fee revenue. We estimate alphas from a three factor model based on
the work of Liu, Tsyvinski, and Wu (2022) and also account for the performance of BNB. The circle
(square) and the associated bar display alphas and their 95% confidence intervals for yield farming
(liquidity mining) without considering frictions. In Panel (b), we follow a similar procedure but
provide alphas for yield farming strategies without trading frictions, yield farming strategies with
frictions including gas fees, trading fees, and price impact, and yield farming strategies considering
not only the frictions but also investor mistakes. We describe detailed trading strategies in Section
5.5.
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Figure A.9: Risk-Adjusted Returns from Yield Farming - Robustness

In this figure, we plot average risk-adjusted returns (i.e., alphas) and their associated 90% & 95%
confidence intervals for different trading strategies, varying certain parameter choices. The starting
set of parameters include an investment size of $1,000, investment duration (i.e., time to rebalance)
of 10 days, and diversification across two farms. In Panel (a), we change the duration, keeping all
other parameters fixed. In Panel (b), we change the investment size keeping all other parameters
fixed. We estimate alphas from a three-factor model based on the work of Liu, Tsyvinski, and Wu
(2022) and also account for the performance of BNB. We account for frictions including gas fees,
trading fees, price impact, and investor mistakes.
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Figure A.10: The Impact of Aggregate Farm Multiplier Changes on Flows

In this figure, using an event study, we illustrate how changes in the aggregate CAKE allocation
multiplier, ∆Mt, affect flows to farms. In Panel (a), we measure cumulative flows net of any price
growth from one day before the event date (t− 1) to date t+ h by measuring the change in # LP
tokens. In Panel (b), we measure the growth rate of the dollar value of the pool. We are interested
in changes in cumulative flows and dollar value of the pools that are driven by shocks to the
aggregate multiplier (Mt) due to changes to the multipliers of other farms, i.e., ∆mj,t | j ̸= i, while
∆mi,t = 0. These shocks need to be large enough to have a meaningful impact on Mt and, therefore,
yi,t. We identify 4 events where ∆mi,t = 0 with |∆Mt/Mt| > 0.15. These 4 events are associated
with increases in Mt. We then plot the average change in the outcome variables around the event
dates, using a simple event study analysis. Specifically, we plot the coefficients βk (and their 95%
confidence intervals) from a regression yi,t+h = α+

∑k=7
k=−7,k ̸=−1 βkIk +Event×FarmFE + εi,t+h,

where yi,t+h is defined as either log(
outstanding LP tokensi,t+h

outstanding LP tokensi,t−1
) or log(

$ of pooli,t+h

$ of pooli,t−1
). We cluster the

standard errors at the farm and date levels.

(a) (b)



Figure A.11: YieldWatch Initial Farm Offering Allocation Schedule

Panel (a) plots the number of allocated WATCH tokens and the cumulative fraction of participants
as a function of the dollar value of supplied capital (log scale) in the initial farm offering (IFO).
Panel (b) illustrates the same relation between the allocated token amount/cumulative fraction of
IFO participants and the aggregate bid amount, but restricts the x-axis to less than $1,200 USD.
In both graphs, the dashed vertical line at $569.4 USD indicates the lowest dollar threshold for
receiving any WATCH tokens. Bidders below that threshold did not receive any tokens. Source:
PancakeSwap Yieldwatch IFO contract.

(a)

(b)
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Figure A.12: YieldWatch Initial Farm Offering Capital Suply

This figure plots the time series of capital offered in the Yieldwatch initial farm offering (IFO) for
the acquisition of WATCH tokens. The time scale indicates the number of seconds elapsed since
the start of the IFO. Source: PancakeSwap Yieldwatch IFO contract.
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Figure A.13: YieldWatch DiD Parallel Trends

In this figure, we report the results from a difference-in-differences regression for the impact of
Yieldwatch token acquisition on the reaching for yield propensity. Specifically, for farmer i in farm
j at time t, we run the regression:

Flowi,j
t,t+7 = α+

k=3∑
k=−3,k ̸=−1

βkIk × Y ieldwatchi × Total Offered Y ieldjt + ...+ εi,jt ,

as per regression specifications reported in Table 8, where Flowi,j
t,t+7 is the net inflow (token growth)

into farm j by famer i, Ik are quarterly time indicator variables cast in event time around the
Yieldwatch token acquisition, Y ieldwatchi is one if a farmer ever holds Yieldwatch tokens or
provides liquidity to the WATCH-BNB pool, and zero otherwise, and Total Offered Y ieldjt is
the total yield offered by farm j. The total offered farm yield is the sum of the offered yield and the
trading fee yield estimated using the previous day’s trading volume. We use the quarter just prior
to the token acquisition as benchmark. Standard errors are clustered at the farmer level and by
week. In the figure, we report 95% and 90% confidence bounds. The sample period is September
23, 2020 to July 31, 2022. The vertical dashed line indicates the quarter of the first Yieldwatch
token acquisition.
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Table A.1: Literature on Decentralized Finance and Decentralized Exchanges

This table summarizes a selection of key academic studies that focus on decentralized exchanges (DEXs) within the emerging ecosystem
of decentralized finance. We indicate whether the study is primarily of empirical or theoretical nature, and list the decentralized platforms
studied in each paper: Uniswap, SushiSwap, PancakeSwap. We also emphasize whether the study focuses on liquidity mining/provision
and market making, strategic trading and hedging or yield farming.

Theory vs. Empirical DEX Activity
Liquidity Provision/ Strategic Trading/ Yield

Study Theory Empirical Uniswap SushiSwap PancakeSwap Market Making Hedging Farming
Angeris, Kao, Chiang, Noyes, and Chitra (2021) ✓ ✓ ✓
Aoyagi (2021) ✓ ✓ ✓
Aoyagi and Ito (2021) ✓ ✓ ✓ ✓
Neuder, Rao, Moroz, and Parkes (2021) ✓ ✓ ✓ ✓
Park (2023) ✓ ✓ ✓ ✓
Lehar and Parlour (2024) ✓ ✓ ✓ ✓ ✓
Han, Huang, and Zhong (2021) ✓ ✓ ✓
Capponi and Jia (2021) ✓ ✓ ✓ ✓ ✓
Foley, O’Neill, and Putnins (2022) ✓ ✓ ✓ ✓ ✓ ✓
Fang (2023) ✓ ✓ ✓
Li, Naik, Papanicolaou, and Schönleber (2024) ✓ ✓ ✓
This study ✓ ✓ ✓ ✓
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Table A.2: Chain of Transactions for Yield Farming Strategies

In this table, we itemize the individual transactions in a yield farming strategy. We explain how each step of the yield farming strategy
can change the number of tokens in a liquidity pool and we describe three different types of transaction costs: gas fees, trading fees, and
price impact. We refer to a hypothetical pair of cryptocurrency tokens A and B in a liquidity pool (LP) A/B.

Step Timing Event # Tokens A # Tokens B Trading Frictions
in LP for A/B in LP for A/B Gas Fee Trading Fee Price Impact

1 t Yield farming starts. αA
t αB

t

2 t

The yield farmer buys ∆A
t units of token A us-

ing a part of his/her fund, It = fLt, using ∆B
t

units of token B. This generates a temporary
price change from price impact. αA

t −∆A
t αB

t +∆B
t ✓ ✓ ✓

3 t
The yield farmer buys token B in a liquid pool
for B using the rest of his/her fund. αA

t −∆A
t αB

t +∆B
t ✓ ✓

4 t
Arbitrageurs correct the price by supplying ∆A

t
of token A and receiving ∆B

t of token B. αA
t αB

t

5 t

The yield farmer provides liquidity to the pool
and receives LP tokens. Denote the fraction of
his/her tokens to the tokens in the current pool
by s(f). (1 + s(f))αA

t (1 + s(f))αB
t ✓

6 t
The yield farmer stakes the LP tokens in a
farm. (1 + s(f))αA

t (1 + s(f))αB
t ✓

7 t+ h h days elapse. (1 + s(f))αA
t+h (1 + s(f))αB

t+h

8 t+ h
The yield farmer receives (harvests) realized
farm yields in CAKE tokens. (1 + s(f))αA

t+h (1 + s(f))αB
t+h ✓

9 t+ h The yield farmer withdraws his/her LP tokens. (1 + s(f))αA
t+h (1 + s(f))αB

t+h ✓
10 t+ h The yield farmer sells their CAKE tokens. (1 + s(f))αA

t+h (1 + s(f))αB
t+h ✓ ✓

11 t+ h

The yield farmer redeems their LP tokens at
the liqudity pool and receives his/her shares of
token A and B. αA

t+h αB
t+h ✓

12 t+ h

The yield farmer sells his/her ∆A
t+h =

s(f)αA
t+h of token A using the same pool. This

generates a temporary price change from price
impact. They receive ∆B

t+h of token B in ex-
change from the liquidity pool. αA

t+h +∆A
t+h αB

t+h −∆B
t+h ✓ ✓ ✓

13 t+ h
The yield farmer sell his/her (∆B

t+h+s(f)αB
t+h)

of token B in a liquid pool for B. αA
t+h +∆A

t+h αB
t+h −∆B

t+h ✓ ✓

14 t+ h

Arbitrageurs correct the price by supplying
∆B

t+h of token B and receiving ∆A
t+h of token

A. A new round of yield farming starts again. αA
t+h αB

t+h
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Table A.3: Top 10 Cryptocurrency Decentralized Exchanges

In this table, we report information about the 10 largest cryptocurrency decentralized exchanges
in terms of daily trading volume as of October 9, 2021. For each exchange, we provide information
on the daily trading volume (in $ million), the market share (in %), the number of markets at
the exchange, the exchange type (swap, aggregator, order book, ...), whether spot assets or deriva-
tives are traded on a DEX, and the month/year in which the exchange was launched. Source:
https://coinmarketcap.com/rankings/exchanges/dex/.

Rank DEX Daily Volume Mkt Share # Markets Type Spot Launch
($ million) (%) /Derivatives Date

1 dYdX $1,756.41 25.05% 13 Orderbook Derivatives Apr 2019
2 PancakeSwap (V2) $1,185.34 16.90% 1667 Swap Spot Apr 2021
3 Uniswap (V3) $789.82 11.26% 627 Swap Spot May 2021
4 1inch Liquidity $515.69 7.35% 26 Swap Spot Dec 2020

Protocol
5 Uniswap (V2) $287.57 4.10% 1556 Swap Spot Nov 2018
6 Sushiswap $278.78 3.98% 387 Swap Spot Sep 2020
7 Honeyswap $220.18 3.14% 66 Swap Spot Jul 2020
8 MDEX $206.81 2.95% 140 Swap Spot Jan 2021
9 QuickSwap $96.52 1.38% 330 Swap Spot Oct 2020
10 Raydium $93.89 1.34% 112 Swap Spot Feb 2021
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Table A.4: Determinants of Staking Ratios

In this table, we regress the staking ratio on a constant and indicator variables that take the value
one if the staking ratio corresponds to the third farm (3rd farm dummy) to which the farmer
provides liquidity and zero otherwise. Other indicator variables are defined similarly for the 4th
(4th farm dummy), 5th (5th farm dummy), and more than five farms (> 5th farm dummy). The
aggregate staking ratio is defined as the ratio of LP tokens staked in yield farms to the aggregate
amount of LP tokens minted to certify liquidity provision. At the farmer/wallet level, we define
the staking ratio to be the number of LP tokens staked to the main staking contract divided by
the number of LP tokens received from PancakeSwap. The staking ratio is one if the investor’s
average staking ratio is greater than 0.99 and 0 otherwise. In columns (1) to (3), we deploy a linear
probability model. In columns (4) to (6), we deploy a logistic regression model. Standard errors
are clustered at the farmer level. ∗,∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and
1% levels, respectively.

(1) (2) (3) (4) (5) (6)
Staking Ratio (0 or 1)

3rd farm dummy 0.1656*** 0.0833*** 0.0088*** 0.8156*** 0.9613*** 0.2331***
(0.0023) (0.0018) (0.0018) (0.0135) (0.0262) (0.0505)

4th farm dummy 0.1982*** 0.0991*** 0.0133*** 1.0247*** 1.2614*** 0.3711***
(0.0029) (0.0021) (0.0018) (0.0193) (0.0369) (0.0563)

5th farm dummy 0.2182*** 0.1099*** 0.0195*** 1.1678*** 1.5083*** 0.5642***
(0.0033) (0.0021) (0.0020) (0.0244) (0.0416) (0.0657)

>5th farm dummy 0.2406*** 0.1139*** 0.0219*** 1.3472*** 1.6467*** 0.6687***
(0.0030) (0.0024) (0.0013) (0.0251) (0.0586) (0.0390)

Constant 0.6239*** 0.5062***
(0.0008) (0.0034)

Sample All All inv. > $1000 All All inv. > $1000
Model LPM Logit
Week FE No Yes Yes No Yes Yes
Farm FE No Yes Yes No Yes Yes
N 9,777,759 9,777,759 2,616,346 9,777,759 9,777,759 2,615,351
adj. R-sq 0.045 0.545 0.655
pseudo R-sq 0.039 0.484 0.609
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Table A.5: Comparison of Cryptocurrency Three-Factor Regressions

This table compares our regression results for portfolios sorted on one-week momentum by quintile
to those reported in Liu, Tsyvinski, and Wu (2022). The sample period used in Liu, Tsyvinski,
and Wu (2022) is from the beginning of 2014 to the end of 2018, which we interpret to be from the
first week in 2014 to the 52nd (last) week of 2018 as the period for our replication. We compare
our parameter estimates to those obtained in Liu, Tsyvinski, and Wu (2022) (NBER version dated
May 2019, strategy “r 1,0” in Table 11).

Panel A: Regressions from Quintile
Liu, Tsyvinski, and Wu (2022) 1 2 3 4 5

α -0.015 -0.010 -0.003 0.025 -0.012
t(α) -1.970 -1.535 -0.657 1.470 -1.080
βCMKT 1.041 1.029 0.958 1.093 0.924
βCSMB 0.124 0.014 0.204 0.072 0.297
βCMOM -0.164 -0.125 -0.071 0.072 0.424
R2 0.531 0.606 0.687 0.198 0.435

Panel B: Replicated Regressions Quintile
1 2 3 4 5

α -0.019 -0.015 -0.004 0.031 -0.013
t(α) -2.640 -2.362 -0.718 1.562 -1.230
βCMKT 0.994 0.957 0.873 1.119 0.996
βCSMB 0.019 0.030 0.150 -0.034 0.081
βCMOM -0.148 -0.056 -0.045 -0.040 0.325
R2 0.578 0.635 0.699 0.190 0.503
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Table A.6: Summary Statistics of Coins used for Constructing Cryptocurrency Factors

In this table, we provide summary statistics of cryptocurrencies used for the construction of cryp-
tocurrency factors as in Liu, Tsyvinski, and Wu (2022). Our sample period for cryptocurrency
factors starts on December 28, 2013 and ends on July 31, 2022. The unit for market capitalization
and daily trading volume in this table is $ million.

Year # Coins Market Capitalization Daily Trading Volume

Mean Median Mean Median

2013 27 388.7469 7.3785 1.7534 0.0449
2014 110 249.6613 3.9564 1.1680 0.0304
2015 83 133.3719 2.6832 1.1360 0.0094
2016 177 157.6816 3.2750 1.7023 0.0183
2017 818 366.8033 8.8999 15.2997 0.1123
2018 1612 334.4740 8.9061 18.8046 0.1064
2019 1452 179.7373 5.4237 59.5064 0.1390
2020 1695 282.0723 6.7168 114.3506 0.2594
2021 2701 807.3235 15.0370 127.6496 0.5835
2022 2093 1,049.0538 14.2498 105.4045 0.5382
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Table A.7: Impact of Trading Frictions on Returns from Yield Farming Portfolios

This table reports the summary statistics for percentage excess returns from yield farming invest-
ment strategies, accounting for frictions. We report all information from the perspective of an
initial USD investment. We provide detailed description of parameters used to compute returns
on each strategy in Section 4.5.1. On each day, we sort farms into quintiles based on their offered
yields to form value-weighted portfolios. A yield farming strategy is a strategy in which investors
not only earn trading fee revenue but also farm yields whereas in liquidity mining, investors can
only earn trading fee revenue. Frictionless Benchmark (Liquidity Mining) refers to yield farming
(liquidity mining) strategies with full staking and no frictions. Yield Farming with Frictions refers
to yield farming strategies considering gas fee, trading fee, and price impact which adversely affect
returns. Yield Farming with Frictions & Investor Mistake not only considers the frictions but also
investors not fully staking in farms. Panel A (B) describes trading strategies where we rebalance
portfolios every day (week). Excess returns are computed relative to the three-month U.S. Treasury
bill secondary market rate from FRED. All returns are value-weighted using the pools’ aggregate
liquidity as weighing factors. The column (OBS) reports the number of observations. We report
the mean return (Mean), the standard deviation, the Sharpe ratio (SR), information ratio (IR),
the alpha from a three factor model based on the work of Liu, Tsyvinski, and Wu (2022) and BNB’s
performance, and the t-statistic for alpha from the three-factor regressions. The sample period is
March 1, 2021 to July 31, 2022. Return-based statistics are not annualized.

Panel A: Daily
Strategy Mean SD SR IR α t-stat of α OBS
Yield Farming (Frictionless Benchmark)
Quantile 1 0.0007 0.0242 0.0276 -0.0046 0.0000 -0.1038 518
Quantile 2 0.0022 0.0451 0.0492 0.0765 0.0011 1.9758 518
Quantile 3 0.0022 0.0465 0.0464 0.0681 0.0010 1.5542 518
Quantile 4 0.0000 0.0463 -0.0002 -0.1047 -0.0015 -2.2153 518
Quantile 5 -0.0001 0.0513 -0.0027 -0.0745 -0.0013 -1.5535 518

Liquidity Mining
Quantile 1 0.0004 0.0242 0.0179 -0.0357 -0.0003 -0.7992 518
Quantile 2 0.0016 0.0450 0.0355 0.0335 0.0005 0.8720 518
Quantile 3 0.0009 0.0463 0.0203 -0.0090 -0.0001 -0.2044 518
Quantile 4 -0.0022 0.0460 -0.0478 -0.2505 -0.0036 -5.2177 518
Quantile 5 -0.0041 0.0509 -0.0806 -0.2860 -0.0052 -5.9415 518

Yield Farming with Frictions
Quantile 1 -0.0004 0.0242 -0.0156 -0.1498 -0.0011 -3.3414 518
Quantile 2 0.0012 0.0451 0.0259 0.0012 0.0000 0.0307 518
Quantile 3 0.0011 0.0465 0.0238 -0.0005 0.0000 -0.0111 518
Quantile 4 -0.0011 0.0463 -0.0230 -0.1789 -0.0025 -3.7878 518
Quantile 5 -0.0012 0.0513 -0.0234 -0.1325 -0.0024 -2.7627 518

Yield Farming with Frictions & Investor Mistakes
Quantile 1 -0.0004 0.0242 -0.0162 -0.1514 -0.0011 -3.3756 518
Quantile 2 0.0012 0.0451 0.0256 0.0001 0.0004 0.0032 518
Quantile 3 0.0010 0.0465 0.0213 -0.0082 -0.0001 -0.1877 518
Quantile 4 -0.0016 0.0463 -0.0349 -0.2147 -0.0030 -4.5383 518
Quantile 5 -0.0025 0.0512 -0.0495 -0.2031 -0.0037 -4.1603 518



Panel B: Weekly
Strategy Mean SD SR IR α t-stat of α OBS
Yield Farming (Frictionless Benchmark)

Quantile 1 0.0056 0.0584 0.0955 0.0783 0.0016 0.6040 74
Quantile 2 0.0104 0.1089 0.0954 0.1136 0.0034 0.9304 74
Quantile 3 0.0145 0.1240 0.1172 0.1183 0.0055 1.1495 74
Quantile 4 0.0077 0.1236 0.0621 0.0489 0.0017 0.3849 74
Quantile 5 0.0036 0.1333 0.0273 -0.1200 -0.0062 -0.9904 74

Liquidity Mining
Quantile 1 0.0041 0.0582 0.0699 0.0039 0.0001 0.0307 74
Quantile 2 0.0065 0.1082 0.0599 -0.0212 -0.0006 -0.1661 74
Quantile 3 0.0065 0.1224 0.0534 -0.0554 -0.0025 -0.5555 74
Quantile 4 -0.0067 0.1224 -0.0550 -0.3366 -0.0128 -2.4740 74
Quantile 5 -0.0219 0.1304 -0.1678 -0.6093 -0.0318 -4.6301 74

Yield Farming with Frictions
Quantile 1 -0.0017 0.0582 -0.0288 -0.2719 -0.0056 -2.0765 74
Quantile 2 0.0031 0.1087 0.0288 -0.1270 -0.0038 -1.0333 74
Quantile 3 0.0072 0.1237 0.0586 -0.0379 -0.0017 -0.3698 74
Quantile 4 0.0004 0.1234 0.0030 -0.1585 -0.0055 -1.2409 74
Quantile 5 -0.0037 0.1330 -0.0279 -0.2610 -0.0135 -2.1383 74

Yield Farming with Frictions & Investor Mistakes
Quantile 1 -0.0018 0.0582 -0.0307 -0.2774 -0.0057 -2.1175 74
Quantile 2 0.0030 0.1087 0.0275 -0.1322 -0.0040 -1.0764 74
Quantile 3 0.0065 0.1240 0.0527 -0.0541 -0.0025 -0.5301 74
Quantile 4 -0.0034 0.1242 -0.0270 -0.2504 -0.0092 -1.9381 74
Quantile 5 -0.0123 0.1322 -0.0927 -0.4188 -0.0217 -3.3233 74
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Table A.8: APY.Vision NFT Airdrops
This table describes the 20 airdrops for APY.Vision NFTs for which we could identify useful information on eligibility for receiving NFTs. The column Airdrop

lists the name of an airdrop. The column Eligibility requirements describes the eligibility requirements for receiving NFTs. The column Procedure of collecting

data explains how we collect data to identify wallets eligible for receiving NFTs. The column # NFT receivers/Receipt dates lists the number of NFT receivers

and the starting time of the corresponding airdrop. The column Matched # NFT receivers/# eligible wallets lists the number of wallets that received the NFTs

and the number of wallets that were eligible to receive NFTs by satisfying the eligibility requirements.

Airdrop Eligibility requirements Procedure for collecting data # NFT receivers/Receipt

dates

Matched #

NFT re-

ceivers/#

eligible wallets

Balancer + APY

Vision

Anyone holding veBAL on April 7,

2022, 10 PM UTC.

Approach

� 1. Download the transfer data for 80BAL20WETH LP

tokens.

� 2. Find the wallets that staked the 80BAL20WETH LP

to the veBAL contract address as of the date for a snap-

shot.

Adjustment

� We find that 23/30 are matched if we use “April 7, 10

PM UTC” as the date for snapshot. If we use April 8,

9 PM instead, 30/30 are matched. So we decided to use

April 8, 9 PM instead.

30/Apr-08-2022 09:36:11 PM 30/439

APY Vision X

YAxis 2022

Provide liquidity to the YAXIS/ETH

pool on yAxis between the dates Feb

14 and Feb 28. Users who already

have funds in the vaults are already

eligible.

Approach

� 1. Download the transfer data for YAXIS/ETH LP to-

kens.

� 2. Find wallets that have ever provided liquidity to the

pool as of Feb 28, 2021, 11:59:59 PM.

29/Mar-07-2022 10:23:15 PM 29/595

Tesseract X APY

Vision

Provide liquidity to one of the vaults

on Tesseract between the dates Dec

17 and Dec 24. Users who already

have funds in the vaults are already

eligible. Eligible vaults: WMATIC,

DAI, USDC, WETH, WBTC.

Approach

� 1. Download the tVault tokens for the pools.

� 2. For each tVault token, find wallets that have ever held

tv tokens as of 11:59:59 PM on Dec. 24, 2021.

9/Dec-29-2021 02:05:21 AM 9/3598

Continued on next page

86

https://blog.apy.vision/vebal-nft/
https://blog.apy.vision/vebal-nft/
https://blog.apy.vision/yaxis-2022/
https://blog.apy.vision/yaxis-2022/
https://blog.apy.vision/tesseract-nft/
https://blog.apy.vision/tesseract-nft/


Table A.8 – Continued from previous page

Airdrop Eligibility requirements Procedure for collecting data # NFT receivers/Receipt

dates

Matched #

NFT re-

ceivers/#

eligible wallets

Swapr + APY Vi-

sion

To be eligible to win the NFT pic-

tured above, provide liquidity to the

SWPR/wETH pool on Swapr be-

tween the dates Nov 8 and Nov 15 (A

new position is not required existing

LPs are eligible)

Approach

� 1. Download the SWPR-wETH LP token transfers data.

� 2. Find wallets that have ever provided liquidity to the

SWPR-wETH pool as of 11:59:59 PM on Nov. 15, 2021.

Additional Information

� To identify wallets that have ever provided liquidity, we

choose wallets that ever received the LP tokens as a

consequence of execution of methods starting with ”ad-

dLiq.”

15/Nov-17-2021 04:45:56 AM 15/851

Trader Joe x

APY Vision

Provide liquidity to the JOE-AVAX

pool on Trader Joe between the dates

Oct 26 and Nov 2.

Approach

� 1. Download JOE-AVAX LP token transfers data from

Avalanche SnowTrace.

� 2. Find wallets that have ever provided liquidity to the

pool as of 11:59:59 PM on Nov. 2, 2021.

15/Nov-03-2021 10:30:58 PM 15/12944

CoinGecko +

APY Vision #1

(1) Purchase CoinGecko Candy Code

Voucher. (2) Enter your Candy

Voucher Code in the input field. (3)

Follow CoinGecko on Twitter. (4)

Follow APY.vision on Twitter. (5)

Join APY.vision on Discord. (6)

Retweet This Tweet.

Approach

� We need to know who are CoinGecko Candy holders but

CoinGecko Candies are not cryptocurrencies, and there-

fore, we cannot get this information. So, we cannot per-

fectly do this.

12/Oct-26-2021 09:16:56 PM 12/N.A.

CoinGecko +

APY Vision #2

(1) Purchase CoinGecko Candy Code

Voucher. (2) Enter your Candy

Voucher Code in the input field. (3)

Follow CoinGecko on Twitter. (4)

Follow APY.vision on Twitter. (5)

Join APY.vision on Discord. (6)

Retweet This Tweet.

Approach

� We need to know who are CoinGecko Candy holders but

CoinGecko Candies are not cryptocurrencies, and there-

fore, we cannot get this information. So, we cannot per-

fectly do this.

232/Oct-26-2021 09:11:20 PM 232/N.A.

xDai + APY Vi-

sion

Provide delegator services for the

xDai chain between the dates Oct 5

and Oct 12. The lucky winners will

receive an XDAIxAPY NFT that al-

lows access to the PRO edition of

APY.vision until 01/01/2022. A to-

tal of 10 NFTs will be given to the

winners.

Approach

� 1. Download transfer data for STAKE token.

� 2. Find wallets that have ever staked the STAKE tokens

to the staking contract as of 11:59:59 PM on Oct. 12,

2021.

Additional Information

� We find that all NFT receivers sent their STAKE tokens

to the staking contract before the NFT airdrop. There-

fore, we use this approach to identify wallets that provide

delegator services.

10/Oct-18-2021 11:45:22 PM 10/521

APY Vision V2

Release Party

NFT

No information available. No information available. (1) 14/Jul-22-2021 03:48:35 AM

(2) 12/Jul-23-2021 05:27:15 PM

26/N.A.

Continued on next page
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Airdrop Eligibility requirements Procedure for collecting data # NFT receivers/Receipt

dates

Matched #

NFT re-

ceivers/#

eligible wallets

Lift Kitchen x

APY Vision NFT

#1

To enter, you must have over $10K

USD deposited in either the lfBTC-

LIFT or the wBTC-lfBTC pool.

Approach

� 1. Download transfer data for WBTC-LFBTC and

LIFT-LFBTC tokens.

� 2. Find wallets that have provided liquidity to those

pools as of 8:00:00 PM on July 2, 2021, because the first

NFT receipt date was Jul-02-2021 08:21:24 PM.

Additional Information

� If we use only WBTC-LFBTC and LIFT-LFBTC, we can

only find 15 matches out of 20. If we add ETH-LFBTC,

we can find 20/20.

20/Jul-02-2021 08:21:24 PM 20/220

YAxis + APY Vi-

sion Vault NFT

How do I enter? You must stake your

yAxis tokens here! (← the staking

contract)

Approach

� 1. Download transfer data for yAxis.

� 2. Find wallets that have ever staked yAxis to the stak-

ing contract as of

– (1) 9:00:00 PM on May 25, 2021. (The first NFT

receipt date was May 25, 2021, 09:36:11 PM.)

– (2) 10:00:00 PM on June 1, 2021. (The last NFT

receipt date was June 1, 2021, 10:28:17 PM.)

(1) 5/May-25-2021 09:36:11 PM

(2) 5/Jun-01-2021 10:28:17 PM

10/4482

APY Vision Am-

bassador NFT

No information available. No information available. 15/Jul-22-2021 03:48:35 AM 15/N.A.

Index Coop x

APY Vision Owl

Supply over $10K liquidity to the new

MVI/ETH pool on the first day - You

can win by entering the MVI/ETH

pool with over $10,000 of liquidity in

the first 24 hours.

Approach

� 1. Download transfer data for MVI-ETH LP tokens.

� 2. Find wallets that have ever provided liquidity to the

pool as of

– (1) 4:00:00 PM on April 9, 2021. (The first NFT

receipt date was Apr-09-2021 04:15:33 PM.)

– (2) 5:00:00 PM on April 26, 2021. (The first NFT

receipt date was Apr-26-2021 05:35:50 PM.)

Additional Information

� I used 4/9/2021 noon as the time for a snapshot. There

are two batches: April 9 and April 26.

(1) 10/Apr-09-2021 04:15:33 PM

(2) 13/Apr-26-2021 05:35:50 PM

12/509

Continued on next page

88

https://blog.apy.vision/liftkitchen/
https://blog.apy.vision/liftkitchen/
https://blog.apy.vision/liftkitchen/
https://blog.apy.vision/partner-spotlight-yaxis-project/
https://blog.apy.vision/partner-spotlight-yaxis-project/
https://blog.apy.vision/index-nft/
https://blog.apy.vision/index-nft/


Table A.8 – Continued from previous page

Airdrop Eligibility requirements Procedure for collecting data # NFT receivers/Receipt

dates

Matched #

NFT re-

ceivers/#

eligible wallets

Pickle x

APY.Vision

NFT

You must provide liquidity to the

PICKLE/ETH Uniswap V2 Pools and

then stake that in the farm.

Approach

� 1. Download transfer data for PICKLE-ETH LP tokens.

� 2. Find wallets that have ever staked the LP tokens to

the staking contract as of

– (1) 10:00:00 PM on March 10, 2021. (The first

NFT receipt date was Mar-10-2021 10:32:07 PM.)

– (2) 10:00:00 PM on March 17, 2021. (The first

NFT receipt date was Mar-17-2021 10:15:32 PM.)

– (3) 11:00;00 PM on March 24, 2021. (The first

NFT receipt date was Mar-24-2021 11:51:39 PM.)

(1) 5/Mar-10-2021 10:32:07 PM

(2) 5/Mar-17-2021 10:15:32 PM

(3) 5/Mar-24-2021 11:51:39 PM

15/13295

Benchmark

Protocol x

APY.Vision

NFT

You must provide liquidity to the

MARK/ETH or MARK/USDC

Uniswap V2 Pools and then stake

that pool on “The Press” at Bench-

mark Protocol.

Approach

� 1. Download transfer data for MARK-ETH, MARK-

USDC LP tokens.

� 2. Fine wallets that have ever staked the LP tokens to

the Benchmark Protocol’s staking contract as of

– (1) midnight on March 6, 2021. (The first NFT

receipt date was Mar-06-2021 12:16:15 AM.)

– (2) 7:00:00 PM on March 13, 2021. (The first

NFT receipt date was Mar-13-2021 07:58:48 PM.)

(1) 5/Mar-06-2021 12:16:15 AM

(2) 5/Mar-13-2021 07:58:48 PM

10/1079

Alpha Finance

2.0 x APY.Vision

NFT

On Monday, starting from Feb 8th,

we will randomly select and announce

5 addresses on Twitter that will re-

ceive these NFTs. The 5 addresses

will be randomly selected from a pool

of addresses that use Alpha Homora

V2 in the previous week (in this case

from Feb 1st to Feb 8th). The pro-

gram will run for 4 weeks, and in to-

tal, 20 NFTs will be distributed.

Approach

� 1. Download all transactions executing functions of Al-

pha Router.

� 2. Find wallets that have ever executed any functions of

Alpha Router as of

– (1) 8:00:00 PM on February 8, 2021. (The first

NFT receipt was Feb-08-2021 08:47:39 PM.)

– (2) 7:00:00 AM on February 20, 2021. (The first

NFT receipt was Feb-20-2021 07:37:25 AM.)

– (3) 11:00:00 PM on March 5, 2021. (The first

NFT receipt was Mar-05-2021 11:56:43 PM.)

(1) 5/Feb-08-2021 08:47:39 PM

(2) 10/Feb-20-2021 07:37:25 AM

(3) 5/Mar-05-2021 11:56:43 PM

20/1843
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Airdrop Eligibility requirements Procedure for collecting data # NFT receivers/Receipt

dates

Matched #

NFT re-

ceivers/#

eligible wallets

88MPHxAPY.Vision

NFT

If you already stake in the MPH-ETH

farm contract, you’re already eligi-

ble to participate in the giveaway! If

you haven’t staked yet, you’ll need

to stake the Uniswap MPH-ETH liq-

uidity pool (UNI-V2) tokens in the

88MPH staking contract, located at

https://88mph.app/farming.

Approach

� 1. Download transfer data for MPH-ETH LP tokens.

� 2. Find wallets that ever staked the LP tokens in the

staking contract as of

– (1) 11:00:00 PM on December 27, 2020. (The

first NFT receipt was Dec-27-2020 11:49:31 PM.)

– (2) 6:00:00 PM on January 6, 2021. (The first

NFT receipt was Jan-06-2021 06:57:58 PM.)

– (3) midnight January 19, 2021. (The first NFT

receipt was Jan-19-2021 12:46:38 AM.)

(1) 10/Dec-27-2020 11:49:31 PM

(2) 10/Jan-06-2021 06:57:58 PM

(3) 5/Jan-19-2021 12:46:38 AM

21/2946

SUSHISWAPxAPY.Vision

NFT

If you already staked in the SUSHI-

ETH farm contract, you’re already el-

igible to participate in the giveaway!

If you haven’t staked yet, you’ll need

to stake the SushiSwap SUSHI-ETH

liquidity pool (UNI-V2) tokens in the

SushiSwap staking contract, located

at https://sushiswap.fi (min. 1 ETH

liquidity value is required to partici-

pate). We will be randomly drawing

25 winners from the list of addresses

that have staked in the farming con-

tract between now and 23:59:59 Dec

23, 2020 (GMT).

Approach

� 1. Download transfer data for SUSHI-ETH LP tokens.

� 2. Find wallets that ever staked the LP tokens in the

SushiSwap staking contract as of Jan-06-2021 09:00:00

PM because the first NFT receipt date was Jan-06-2021

09:40:50 PM.

Adjustement

� If we use Dec 23, 2020, we cannot find that the treated

wallets have SUSHI-ETH LP. So we used the later snap-

shot, January 6, 2021, 4 PM. Then, we tracked the wal-

lets of those who had ever staked until then.

10/Jan-06-2021 09:40:06 PM 10/6511

INDEXxAPY.Vision

NFT

Stake - If you already stake in the

DPI/ETH farm contract, you’re

already eligible to participate

in the giveaway! If you haven’t

staked yet, you’ll need to stake

the Uniswap DPI/ETH liquidity

pool (UNI-V2) tokens in the IN-

DEX staking contract, located at

https://www.indexcoop.com/farm.

Approach

� 1. Download transfer data for DPI-ETH LP tokens.

� 2. Find wallets that ever staked the LP tokens in the

INDEX staking contract as of 6:00:00 PM on Dec.22,

2020, because the first NFT receipt date was Dec 22,

2020, 06:04:27 PM.

10/Dec 22, 2020, 06:04:27 PM 10/855
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Airdrop Eligibility requirements Procedure for collecting data # NFT receivers/Receipt

dates

Matched #

NFT re-

ceivers/#

eligible wallets

Harvest +

APY.Vision

Partnership

If you already staked in the

UNISWAP-LP (FARM/USDC

LPs) farm on Harvest.finance,

you’re already eligible to participate

in the giveaway! If you haven’t

staked yet, you’ll need to stake

the eligible Uniswap FARM/USDC

liquidity pool (UNI-V2) tokens in the

Harvest.finance Farm.

Approach

� 1. Download transfer data for FARM-USDC and FARM-

ETH LP tokens.

� 2. Find wallets that have ever staked the LP tokens in

the Harvest Finance staking contract as of

– (1) 4:00:00 pm on December 12, 2020. (The first

NFT receipt date was Dec-12-2020 04:34:50 PM.)

– (2) 1:00:00 am on December 20, 2020. (The first

NFT receipt date was Dec-20-2020 01:42:32 AM.)

– (3) 11:00:00 pm on December 29, 2020. (The first

NFT receipt date was Dec-29-2020 11:58:26 PM.)

– (4) 6:00:00 pm on January 12, 2021. (The first

NFT receipt date was Jan-12-2021 06:21:09 PM.)

– (5) 2:00:00 am on January 24, 2021. (The first

NFT receipt date was Jan-24-2021 02:19:11 AM.)

– (6) 5:00:00 am on February 10, 2021. (The first

NFT receipt date was Feb-10-2021 05:15:42 AM.)

– (7) midnight on March 2, 2021. (The first NFT

receipt date was Mar-02-2021 12:18:39 AM.)

Adjustment

� We find that 67/70 are matched using this approach.

We find that many others staked their FARM-ETH LP

tokens instead of FARM-USDC LP tokens. Therefore, we

added FARM-ETH LP tokens to find the eligible wallets.

(1) 10/Dec-12-2020 04:34:50 PM

(2) 10/Dec-20-2020 01:42:32 AM

(3) 10/Dec-29-2020 11:58:26 PM

(4) 10/Jan-12-2021 06:21:09 PM

(5) 10/Jan-24-2021 02:19:11 AM

(6) 10/Feb-10-2021 05:15:42 AM

(7) 10/Mar-02-2021 12:18:39 AM

70/17195
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