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Abstract

Yield farms in decentralized finance dynamically compete for liquidity by offering high yields,
advertised as salient headline rates. Farming these yields involves complex investment strategies
with hidden downside risks. Capitalizing on the transparency of blockchain transactions data,
we show that investors chase farms with high yields and that farms with the highest headline
rates record the most negative risk-adjusted returns. Through randomized shocks to yield farmers’
information display, we show that improved risk disclosure and lower perceived product complexity
reduces yield chasing, thereby improving investor performance. Our evidence is consistent with
salience theory that may underpin reaching for yield behavior.
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“Crypto ‘yield farmers’ chase high returns, but risk losing it all.”
Alexander Osipovich, Wall Street Journal

“We just don’t have enough investor protection in crypto [...J, it’s more like the Wild West.”
Chair Gary Gensler, Securities and Exchange Commission

1 Introduction

Decentralized finance (DeF1i) is a rapidly growing segment of the emerging cryptocurrency ecosystem
(Harvey, Ramachandran, and Santoro, 2021; Makarov and Schoar, 2022; John, Kogan, and Saleh,
2023). Operating through applications built on blockchains and executed through smart contracts,
DeFi intends to counteract the influence of traditional centralized financial intermediaries.

Figure 1 illustrates that total value locked (TVL) in DeFi, a measure of aggregate capital invested
in decentralized financial applications, grew exponentially to almost $200 billion in less than 2
years. Despite the sharp drop associated with a general devaluation of digital currencies in the
summer of 2022, Figure 1 shows that the number of active applications with TVL above $1 million
has remained high, close to 700 DeFi platforms.

The rapid growth of DeFi has raised regulatory concerns. One concern originates from DeFi plat-
forms competing for liquidity provision through offering extraordinarily high yields while exposing
investors to significant downside risks (e.g., Oliver, 2021; Osipovich, 2021; Kruppa, 2022). Moreover,
DeFi platforms bear resemblance to complex structured retail products and are easily accessible to
retail investors despite their product complexity. The Securities and Exchange Commission refers to
certain investments as ‘unregulated and complex strategies’, with ‘hidden risks to unsophisticated
investors’ (e.g., Gensler, 2021).

In this paper, we study yield farming, a decentralized financial service that is well-suited for ex-
amining investor behavior in the presence of product complexity. First, yield farms dynamically
compete for liquidity provision by offering high yields to investors. These yields are salient and
aggressively marketed as headline rates without disclosure of transaction costs, past performance,
or potential downside risks. Second, yield farming is complex in both execution and payoffs, with
hidden risks that are not well understood, according to survey evidence. Finally, we observe the
entire history of transactions from blockchain data and can dynamically study investor behavior,
including investment size, mistakes, and their response to changes in information disclosure and
perceived product complexity.

Our overall evidence is supportive of the key features of salience theory (e.g., Bordalo, Gennaioli,
and Shleifer, 2012, 2013, 2016, 2022). Yield farms promise passive income at impressive headline
rates and investors chase farms with high yields. High yield farms also appear to have shrouded
risk attributes (Gabaix and Laibson, 2006), since farms with the highest promised yields record
the worst risk-adjusted performance ex-post. We find that this underperformance is amplified for
small investment stakes and investor mistakes.

We first provide a conceptual framework for understanding the risk-return trade-offs of yield farm-
ing. Yield farming is a mechanism for passively earning income by supplying digital liquidity. While
farming looks simple and accessible, with salient high yields, it involves a long chain of interlinked
transactions subject to complexity in both execution and payoffs.



To become yield farmers, investors first need to act as digital liquidity providers. That requires the
provision of pairs of cryptocurrency tokens in equal dollar amounts to a liquidity pool. Investors
can choose among a menu of liquidity pools, each one associated with a pair of cryptocurrency
tokens. The liquidity provision is certified through a liquidity token that represents the fractional
ownership of the aggregate liquidity in the pool.

Investors can increase their passive earnings by staking the liquidity token to a yield farm. Each
liquidity pool is linked to a unique farm that promises a salient interest rate often exceeding one
hundred percent. That yield, which is paid using the governance token of the yield farming platform,
is a complex function of farm and aggregate market characteristics. Paradoxically, the governance
token owners maintain centralized voting power to adjust each farm’s yield multiplier, which is one
salient component of the yield function that can be influenced to dynamically compete for liquidity.

Yield farming performance can be decomposed into four components. First, the initial liquidity
provision is rewarded through trading fees collected from third party traders buying and selling
cryptocurrency tokens in a liquidity pool. Second, investors are exposed to the buy-and-hold price
risk of the pledged tokens. Third, liquidity miners face significant downside risk through imper-
manent losses, which are defined through a loss function that non-linearly depends on the return
correlation of the cryptocurrency pair. Fourth, yield farmers earn passive income in proportion to
the aggregate liquidity locked in a yield farm.

Three types of transaction costs significantly alter yield farming performance. Each transaction
requires the payment of a flat gas fee, implying that small investments are penalized by large
overhead costs. Second, large investments relative to the existing liquidity result in significant
price impact, especially at redemption. These observations suggest the existence of a trade-off
that involves an optimal investment size. Finally, since it is strictly dominating to fully pledge the
liquidity tokens into yield farms, staking ratios below one reduce investment performance and are
a sign of investor mistakes.

In a second step, we provide new stylized facts on yield farms, investor behavior, and investment
performance. Our analysis is based on a novel hand-collected data set of 262 yield farms from
PancakeSwap, a yield farm platform hosted on the Binance Smart Chain (BSC), between March 1,
2021 and July 31, 2022. We focus on PancakeSwap because it is the largest yield farm ecosystem,
with 435,130 active users on October 24, 2021, compared to 47,730 active users recorded on Uniswap.
In addition, BSC features high trade execution speeds, lower congestion risks and lower trading
fees than other comparable blockchains like Ethereum, making it more easily accessible to retail
investors. Figure 2 indeed illustrates that gas fees paid for blockchain transactions are an order of
magnitude larger for Ethereum.

There is significant heterogeneity in offered yields among the 262 farms in our sample. The average
(median) offered yield is 80.53% (47.43%) with a standard deviation of 85.54%. These yields are
salient and advertised as headline rates in enticing ways that feature cartoons, rockets, or emojis.
In contrast, information on past performance and impermanent losses is hidden and challenging
to find. Investing into yield farms is complex both in payoff and complexity. There are three
underlying assets, non-linearities, and a full round-trip cost can take up to 14 transactions.

Offered farm yields are driven by five components related to the issuance of the platform’s gov-
ernance token CAKE, its price, which is common across all farms, each farm’s liquidity, a farm
multiplier, and an aggregate farm multiplier. Governance token owners may vote to increase or



decrease farm multipliers as an instrument to incentivize liquidity provision. We find that the com-
ponent of yield changes associated with multiplier changes is positively related to past trading fees
and negatively to past realized yields. In addition, we observe that farms are delisted in response
to low liquidity and weak trading fee revenue.

The examination of transaction records on the blockchain suggests that many yield farmers are
financially unsophisticated. First, we observe that many investors do not migrate their funds
when PancakeSwap switched to a newer and more secure platform in April 2021, even though the
new platform would mechanically provide superior return potential. We see similar patterns when
PancakeSwap migrated its staking functionality to a new staking contract in April 2022. Second,
in spite of an optimal yield farm staking ratio of one, we find that the median staking ratio is below
one most of the time.

The farmer data further suggest that the average yield farmer invests about $7,732 in 2.64 farms.
Strikingly, we observe that smaller investment stakes are correlated with smaller staking ratios,
suggesting that retail investors are more likely to leave money on the table. Survey evidence of
1,347 yield farmers also suggests that many investors lack financial sophistication, since 79% of
them claim to understand the associated risks and rewards of yield farming, while only 33% state
that they understand impermanent loss.

We next assess the return performance of yield farming strategies. Without transaction costs, yield
farming appears to be profitable on average, with Sharpe ratios that are similar (but higher) to
those of investments into the S&P500 index or Ethereum. Sorting farms into quintiles based on
the magnitude of the offered yield reveals that high yield farms systematically generate the lowest
returns because they incur the greatest impermanent loss, which is the hidden downside risk that is
poorly understood. We further show that farmers who invest in higher yielding farms underperform
by an additional 23bps for every 100% increase in offered yields (= one standard deviation). Our
overall evidence suggests that farms with the highest headline rates exhibit the worst risk-adjusted
performance.

High yield farms are also those where investor mistakes have the most severe consequences since
more money is left on the table in the absence of yield farming using the LP tokens. Accounting
for transaction costs such as gas fees, trading fees and price impact further reduces the return
performance across all yield quintiles.

Third, we provide evidence that investors exhibit yield chasing behavior that can result in negative
risk-adjusted returns. Specifically, we identify all cases where Pancake token owners vote on chang-
ing the yield multiplier of one farm without significant changes to the multipliers of competing
farms. In a difference-in-differences setting, we show that the differential increase (decrease) in
aggregate farm flows in response to multiplier increases (decreases) is about 18%-19% (10%-13%),
depending on the measurement of flows. A systematic analysis on the relation between flows and
farm yields suggests that high headline yields predict positive net inflows, while flows are insensitive
to impermanent losses.

At the farmer level, we document a positive propensity to buy riskier assets. We find that the
average farmer provides about 2.55 percentage points more liquidity to a farm if it offers a 100%
larger yield. Because high yield farms exhibit the worst risk-adjusted returns, our evidence is
consistent with reaching for yield behavior. We also find that experience, as measured by the



number of investment farms and the farming duration, reduces the reaching for yield propensity
by 20% to 39%.

As a last step, we capitalize on a unique setting in PancakeSwap to study the impact of information
disclosure and perceived complexity reduction on reaching for yield behavior. Yieldwatch, a third-
party information platform, summarizes statistics on investor performance, such as historical capital
gains and impermanent losses of individual farmers, and discloses it conditional on the acquisition of
Yieldwatch tokens. Using the comprehensive trading history of individual investors, including their
acquisitions of Yieldwatch tokens, we show that the enhanced information disclosure and reduction
in complexity alleviates the intensity of yield-chasing behavior by about 58%, thereby improving
the overall investor performance. This effect is also present in a quasi-natural experiment which
exploits the random token allocation to successful and unsuccessful bidders around an unpredictable
bidding threshold in the Yieldwatch initial token offering.

We confirm these findings in a different setting using airdrops organized by APY.Vision, which
provides similar functions to Yieldwatch, but randomizes the acquisition of tokens needed to access
the information platform. This analysis is implemented on a different yield farming platform,
SushiSwap, built on the Ethereum blockchain, and, therefore, supports external validity of our
findings. Overall, this evidence has important implications for information disclosure and investor
protection in markets for high-yielding financial securities.

2 Literature

Our work relates to theories on financial innovation and security design. One view is that financial
securities can be tailored to complete the market and, therefore, improve risk sharing (Allen and
Gale, 1994; Duffie and Huang, 1995). Another view is that, when investors have salient prefer-
ences (Bordalo, Gennaioli, and Shleifer, 2012, 2013, 2022), financial intermediaries may compete
by attracting consumers based on salient price attributes. An equilibrium outcome of salience bias
may be that investors ‘reach for yield’ (Bordalo, Gennaioli, and Shleifer, 2016). If financial service
providers also shroud risks (Gabaix and Laibson, 2006), then investors may suffer welfare losses
(Inderst and Ottaviani, 2009, 2022).

We capitalize on blockchain records to provide supporting evidence of salience bias in investor
preferences. Using the investor-level transactions data across a cross-section of yield farms that
compete for investor flows based on salient farm yields, we show that investors are attracted to
farms with high salient yields, although they turn out to be riskier ex-post. Thus, we document
reaching for yield in decentralized financial markets, even in the absence of financial intermediaries
and related agency conflicts. Reaching for yield has been documented in the corporate bond (Becker
and Ivashina, 2015; Chen and Choi, 2023), mutual fund (Choi and Kronlund, 2018), money market
fund (Kacperczyk and Di Maggio, 2017; Gomes, Peng, Smirnova, and Zhu, 2022), asset-backed
securities (Efing, 2020), housing (Korevaar, 2023), and structured product markets (Célérier and
Vallée, 2017; Vokata, 2023).

Yield farming is a complex and opaque investment strategy. Thus, we closely relate to the literature
on complex structured finance. For example, Henderson and Pearson (2011) suggest that structured
retail products (SRPs) deliver subpar performance for retail investors in spite of high promised



returns. Supply-based theories explain the popularity of SRPs among retail investors by arguing
that intermediaries exploit investors’ lack of financial sophistication (e.g. Célérier and Vallée, 2017;
Egan, 2019; Ghent, Torous, and Valkanov, 2019; Henderson, Pearson, and Wang, 2020). Shin (2021)
advocates a demand-based explanation whereby investors extrapolate and aggressively chase past
performance. For work on complex securities and structured products, see also Carlin (2009);
Carlin and Manso (2011); Carlin, Kogan, and Lowery (2013); Griffin, Lowery, and Saretto (2014);
Sato (2014); Amromin, Huang, Sialm, and Zhong (2018); Célérier, Liao, and Vallée (2022); Calvet,
Célérier, Sodini, and Vallée (2023); Vokata (2021, 2023); Gao, Hu, Kelly, Peng, and Zhu (2023).

In a significant departure from prior work, we study complex financial products offered through
smart contracts operating on a blockchain without centralized financial intermediaries who may
drive security design to influence sales. The advantage of our study is that we observe the chain
of all transactions at the farm and farmer level. This is in stark contrast to the existing literature
on complex securities, which bases its evidence on prices or transactions in primary markets. That
feature of our data also enables us to understand investor mistakes (Campbell, 2006; Agarwal,
Ben-David, and Vincent, 2017), how investors learn, and how information disclosure and lower
perceived complexity change their behavior.

More broadly, our work is related to the emerging literature on decentralized finance.(e.g., Cong,
Tang, Wang, and Zhao, 2022; Cong, Harvey, Rabetti, and Wu, 2022; Cong, He, and Tang, 2022)
To our knowledge, this is the first empirical study of the risk and return characteristics of yield
farming strategies using a hand-collected data set from PancakeSwap. Several studies investigate
the properties of automated market makers (AMM) with the constant product model adopted
by major decentralized exchanges (DEXs, e.g. Angeris, Kao, Chiang, Noyes, and Chitra, 2021;
Aoyagi, 2021; Capponi and Jia, 2021; Han, Huang, and Zhong, 2021; Foley, O’Neill, and Putnins,
2022; Hasbrouck, Saleh, and Rivera, 2022), or focus on strategic trading and liquidity provision
(Lehar and Parlour, 2024; Park, 2023; Fang, 2023; Li, Naik, Papanicolaou, and Schonleber, 2024).
Appendix Table A.1 illustrates how we differ from these studies. Our main distinction is to exploit
wallet-level data and quasi-natural experiments in the yield farm ecosystem to understand channels
of yield chasing behavior.

3 Conceptual framework

Yield farming allows investors to passively earn income for their liquidity provision to DeFi plat-
forms. Intuitively, it is similar to securities lending, with the distinctive feature that smart con-
tracts, which operate on permissionless blockchains, automatically execute transactions without
involvement of intermediaries. See Appendix A for institutional details.

In practice, yield farming is complex, both in execution and in payoffs. Figure 3 provides a heuristic
illustration of the yield farming mechanism in PancakeSwap, the second largest spot decentralized
exchange (DEX) offering cryptocurrency exchange services. Figure 3 illustrates that yield farming
involves two sequential and independent investment decisions.

First, an investor can passively earn income by providing liquidity to one or several among a large
cross-section of liquidity pools. Each pool is defined by a pair of cryptocurrency tokens (USDT-ETH
in our example). As liquidity providers, investors ‘stake’ (i.e., deposit) the pair of cryptocurrency



tokens in equal dollar amounts to a liquidity pool. The liquidity provision is certified through the
award of a liquidity token, also known as LP token.

Investors are compensated for their liquidity provision through trading fees, which are collected
from third party traders who buy and sell USDT-ETH. The trading fees are paid in the pool’s
currency tokens, i.e., USDT vs. ETH, and amount to 0.25% of a pool’s trading volume. Of that
amount, 0.17% is paid out to liquidity providers, and 0.08% is paid as a reward to the PancakeSwap
main staking contract.

Second, investors can passively earn yield by staking the LP token to a yield farm that is exclusively
linked to one liquidity pool (e.g., USDT-ETH). Farm yields are paid in a currency called CAKE,
PancakeSwap’s native governance token. In this Decentralized Autonomous Organization, CAKE
token holders can influence the governance of the PancakeSwap ecosystem by casting votes on the
future development of the platform or the reallocation of yields across farms. CAKE ownership
also provides rights to participate in services such as non-fungible token (NFT) giveaways or other
PancakeSwap lotteries.

CAKE tokens are continuously issued by PancakeSwap’s main staking contract with creation of
each BSC block. The amount of CAKE tokens allocated to yield farms may vary across farms and
over time, as determined by the votes of the aggregate CAKE ownership. PancakeSwap also uses a
fraction of the revenue it receives from third party trading fees to continuously buy back and burn
(i.e., destroy) CAKE to minimize the currency’s dilution.

Based on the complicated chain of transactions described in Figure 3, the total gross return to yield
farming between day ¢ and ¢ + h, R; 41, comes from two sources associated with liquidity mining,

Rf’t 41> and the staking of LP tokens to a yield farm, Rl{ t+n, such that:

¢
Riprn = Ry + Rz{t—i—h' (1)

3.1 Liquidity provision

A liquidity provider must stake a pair (A, B) of cryptocurrency tokens (e.g., USDT and ETH) in
equal dollar amounts. This implies that the number (a, b;) of tokens to be pledged is determined
by market prices (P, PP) through the relation a; - P = b; - PP.

A pools’ aggregate liquidity L; is characterized by the value of the aggregate number of staked
tokens af' = > a; and of = 3 by, such that:

Li=al P +aP - PP (2)

Returns to liquidity provision are derived from two sources: growth in the value of the liquidity
pool and fee revenue earned from third party trading activity in the pool, that is:

Rf’Hh = Liyn/Li + Trading Fee Returng iy,

A | pA B | pB 3)
Qn Pl o P . (
= + Trading Fee Return .
aft - PA+af PP g b




Crowth in the value of liquidity, Lsys/Ly, is driven by fluctuations in market prices (P, PP) and
by fluctuations in the pool’s token composition (04,‘54, oztB ). Both are pinned down by the constant-
product automated market maker (AMM) technology hardwired into liquidity pools. See, e.g.,

Lehar and Parlour (2024), Capponi and Jia (2021), Park (2023), for details.

The composition of a pool’s liquidity changes because third party traders buy or sell tokens A
and B, say USDT and ETH. The constant-product AMM technology defines the terms of trade
by imposing that, at each point in time, the tokens’ product must equal a constant k, i.e., k =
afaf = oz;i ho‘gh' In other words, the terms of trade are defined through an isoquant curve whose
value is determined by aggregate liquidity provision.! The constant-product AMM technology also
drives price fluctuations, since it imposes, for all ¢, that the products of price and quantity have to

equalize across assets, i.e., af' P = af PP.

Thus, liquidity providers are exposed to risks associated with joint changes in token prices and token
composition. First, in exchange for their liquidity provision, investors receive LP tokens to certify
their partial ownership in the pool. While the fractional ownership stays constant, the number of
each token that can be claimed at redemption may change with the change in pool composition due
to third-party trading. Second, the change in token composition leads to mechanical price changes
driven by the constant-product AMM.

In Appendix B, we explicitly show that the growth in liquidity value can be rewritten as a sum of
two distinct components that are uniquely functions of prices:

1 1 1 2
Lt+h/Lt = <2R;}t+h + 2R5t+h) - 5 (\/RétJrh - \/R5t+h> ’ (4)

impermanent loss

capital gain

where th h = Pt‘ih /PA and th = Pﬁ_h /PP denote the gross returns of tokens A and B,

corresponding to USDT and ETH in our example.

)

The first term, which we call “capital gain,” is the equally-weighted gross return from tokens A and
B. The second term describes investors’ risk exposure, referred to as impermanent loss. Intuitively,
the impermanent loss corresponds to the difference between the return from liquidity provision
Ly p/ Ly and the return from a buy-and-hold strategy (without pledging the cryptocurrency tokens
to a liquidity pool). Impermanent losses depend non-linearly on the relative divergence in token
returns. Importantly, they are strictly negative and expose investors to significant downside risk
analogous to a short volatility exposure (Aigner and Dhaliwal, 2021). See Figure A.5 and Appendix
B.1 for additional discussion.

The total return from liquidity provision may nonetheless exceed that of a simple buy-and-hold
strategy due to the additional income generated from trading fees. PancakeSwap v1 (v2) charges
a trading cost equivalent to 20 (25) basis points (bps) of trading volume. Part of that (17bps) is
passed on to liquidity providers as a fraction c of total trading volume V¢ observed over two
consecutive time periods ¢ and ¢ + h and proportional to the initial fractional dollar investment
I;/L; in the liquidity pool. Since the return from trading fees depends on the initial investment,
the total fee return is characterized as

Trading Fee Returng v, = ¢ ((It/Lt)Vigtn) /It = ¢ - Viggn/ L. (5)

'New liquidity provision or redemption can change k, and, therefore, the curvature of the isoquant curve.




3.2 Yield farming

LP tokens may be staked to the main staking contract (yield farms), which offers yield y; as
additional passive income. Yields are paid in CAKE, PancakeSwap’s governance token.

The annualized yield is implicitly defined through a non-linear function that depends on (a) the
number of CAKE tokens created through new block validation on the blockchain; (b) the total
number of CAKE tokens redistributed for staking M;; (c¢) a farm-specific multiplier m; which
defines the number of CAKE tokens allocated as reward for farming; (d) the total liquidity staked
to the farm, L§**¢d; and (e) the price of CAKE, PFAKE,

Forty CAKE tokens are created with each blockchain validation, which lasts about 3 seconds. This
implies that around 28,800 blocks are created per day. Given 365 days in a year, the annualized
yield from farming is, therefore, given by:

my PtCAKE
yt = C X (M) X <L§tak€d 5 (6)
where C' = 365 x 28,800 x 40. Since CAKE tokens may be allocated to activities other than yield
farming, the aggregate multiplier does not have to equal the sum of all yield farm multipliers, i.e.,

M#>, mPF, where k corresponds to the number of farms. The realized farm yield between ¢ and
t + h, from the perspective of a USD investor, is thus defined as:

h

Rr/  _ pCAKE Yt+n—1 1 (7)

tt+h — T t+h PCAKE 365/
n=1 t+n—1

3.3 Aggregation: Frictionless benchmark

The aggregate h-period return to yield farming is thus composed of four components associated
with capital gains, impermanent losses, trading fees, and realized farm yields:

1 1 1 2
Repen = <2th+h + 2R5t+h) D) (\/Rét-i-h - \/R5t+h> + ¢ Vin/ Ly

trading fee revenue

capital gain impermanent loss

h
Yitn—1 1
T+ pgKE () | ®)
PEAKE | \ 365

n=1

realized Ez;rm yield

3.4 Impact of trading frictions

Table A.2, which breaks down the chain of transactions for a hypothetical yield farming strategy,
shows that harvesting yields from PancakeSwap involves a chain of 12 transactions (excluding step
1 and 14 in Table A.2). A full round-trip transaction involves three types of costs associated with
gas fees, trading fees, and price impact (see Appendix 5.5 for details). These costs may significantly
lower the returns from yield farming.



Gas fees correspond to transaction costs associated with the use of BSC’s computational resources
for trade execution. Among the set of 12 transactions, yield farmers pay gas fees for 10 of them.
The average round-trip gas fee is estimated to be $3.45 in our sample period.

Since gas fees are flat overhead costs, they are more costly for small stake investments and frequent
rebalancing. Thus, they are especially detrimental to smaller retail investors, who have a tendency
to rebalance too frequently (Odean, 1999). Since gas fees grow linearly with each additional yield
farm, there is also less benefit from diversification across farms. As a result, gas fees encourage
larger and more concentrated investments, which may not be optimal for financially unsophisticated
investors.

For example, a $1,000 investment would lose ~35 bps in gas fees for a round-trip transaction, and
35 bps per week for weekly rebalancing. A diversification strategy across 10 farms would incur a
per period cost of 10x3.45 = $34.5, which, for a $1,000 investment, is more than the typical hedge
fund performance fee, not considering hurdle fees or water marks.

Besides gas fees, investors are charged a trading fee of 0.25% (proportional to trading volume)
per transaction. Since one round-trip transaction includes the buying and selling of tokens at
intermediate steps, yield farmers lose at least an additional 0.50% of their initial investment. The
selling of CAKE tokens at redemption also requires a proportional trading fee of 0.25%. See
Appendix 5.5 for more details.

The third transaction cost arises through price impact. We characterize a price impact function
A(f), where f denotes the ratio of the investment amount I; to the value of the liquidity L, i.e.,
f =1I;/L;. Panels (a) to (c) of Figure A.6 illustrate how price impact is increasing in the size of
an investment relative to a pool’s liquidity. Considering both trading fees and price impact, the
growth in liquidity value reduces to:

1 1 1 2
Liwn/Le = (1 — 0.0050)A(f) [(QR;}M + 2th+h> -5 (\/th+h - \/th+h) ] . (9)

We emphasize another indirect channel that negatively affects yield farming performance. Equation
(6) highlights a negative relation between a yield farm’s aggregate liquidity and the offered farm
yield. We provide empirical support for that relation in Figure A.1. Since liquidity provision
increases the size of a farm, it mechanically decreases the offered farm yield. Hence, too much
liquidity provision can be a self-defeating strategy.

3.5 Investor mistakes and aggregation with frictions

Farm yields are strictly non-negative and yield farms are built on the same blockchain as liquidity
pools. Thus, in the absence of lock-up periods, the staking of LP tokens is always a dominating
strategy and the optimal staking ratio k* should equal one. Because all transactions are observed
on the blockchain, we can identify when investors do not stake their LP tokens into yield farms.
We consider staking ratios below one to be a mistake.



Including all trading frictions, we quantify the returns to yield farming as follows:

riction 1 1 1 2
RITiCtion — (1 0.0050)A(f) <2R{}t+h + 2th+h> -5 (\/Bn = VRO
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3.6 Yield farm flows

In our analysis, we examine two measures of yield farm flows. First, we measure farm flows using
LP token growth, i.e., Flow; i, = (#LP tokensiyp/#LP tokens;) — 1. Because this measure is
insensitive to price fluctuations, it is conceptually similar to the use of net fund flows adjusted for
price growth used in the mutual fund literature (e.g., Sirri and Tufano, 1998; Coval and Stafford,
2007). Second, we measure farm flows using the dollar growth in pool liquidity, i.e., Flowp =
(Ltn/Le) — 1.

4 Building yield farm and yield farmer data

We assemble a novel data set on liquidity pools and yield farms listed on PancakeSwap by tracing
information on the Binance Smart Chain. Our data include the full history of prices, transactions,
token shares, liquidity provision, and yield farm multipliers.

4.1 Farms and yields

We consider all contract addresses of liquidity pools with a corresponding yield farm stored in
PancakeSwap’s main staking contract from their inception on September 23, 2020 to July 31, 2022.
With these addresses, we reconstruct, from the blockchain, the daily time series of farm yield
multipliers. We consider only active farms with a non-zero yield multiplier.

Farm yields are a function of aggregate farm liquidity. We, therefore, source each pool’s token
balances o} and prices P} to compute aggregate pool liquidity given by L; = PPaf + PPaP (See
Equation 2). Next, we collect each pool’s supply of LP tokens and their staking ratios to compute
aggregate farm liquidity defined as Ljt*¢? = L, . (# staked LP tokens/Total # of LP tokens).

We impute offered farm yields using Equation (6). We verify their accuracy by collecting offered
farm yields from PancakeSwap’s homepage? at midnight Greenwich Meridian Time (GMT) on
October 11, 2021. We manually verify that the multipliers collected from the main staking contract
are identical to those advertised on PancakeSwap’s web interface.

2See https://PancakeSwap.finance/farms.
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Figure A.2 reports the relation between our imputed farm yields and those publicly listed by Pan-
cakeSwap. Nearly all observations are closely aligned with the 45-degree line. A linear projection
of the imputed on the listed farm yields obtains a slope coefficient of 1.002 with an R? of 1.00. This
strongly supports the validity of our data building procedure.

4.2 Prices, trades, and transaction costs

In a liquidity pool (e.g., ETH-BNB), one token of the cryptocurrency pair is considered a token of
interest (e.g., ETH). Its price is typically expressed in terms of a numeraire token (e.g., BNB). We
source daily end-of-day GMT prices, P}, of the tokens of interest.

To find the prices of the numeraire token (BNB), we first use the native historical quote function on
PancakeSwap. This pins down the historical exchange rate between BNB and Binance-Peg Tether
(USDT), a stablecoin pegged to the US dollar. We then convert USDT to U.S. dollars using the
USDT price from CoinMarketCap. This allows us to compute the U.S. dollar h-period trading
volume V; ;4 as the daily sum of all trades.

We source gas fees from Bitquery, a proprietary data vendor specialized in blockchain data services
covering BSC and other blockchains. Gas fees differ across functions executed by smart contracts.
To accurately account for transaction costs in computing the performance of yield farming strate-
gies, we first identify the transactions that incur gas fees (see Table A.2) and compute their average
daily gas fee in U.S. dollars. Next, we compute the round-trip cost of gas fees by summing the
average fee across all relevant transactions.

4.3 Yield farmers

We collect transaction data for all LP tokens from the transaction logs of BscScan®, a freely-
accessible analytics platform on BSC, and reconstruct each wallet’s historical token holdings.
Transactions that involve a user’s deposit of cryptocurrency to a liquidity pool in exchange for
LP tokens are represented as LP token transfer from the null address (0x000...000) to the user’s
wallet address. Transactions in which a user stakes/unstakes their LP tokens in a yield farm are
captured as a token transfer to/from the active main staking contract. Redemptions of LP tokens
at a liquidity pool in exchange for the underlying tokens are represented as a LP token transfers to
the address of the LP token.

We restrict our analysis to active accounts. We eliminate wallet addresses that are not associated
with PancakeSwap smart contracts and accounts with more than 100,000 trades, since those wallets
may camouflage yield aggregators or automated passive strategies. Relatedly, we remove positions
lower than $1 at the beginning of the holding period because they are below the average exit cost
(see Figure 2), possibly distorting the analysis. In addition, we omit wallet addresses that have
transacted LP tokens with third party smart contracts outside PancakeSwap, since the study of
staking across multi-platform investment strategies is beyond the scope of our study. For accounts
with positive end-of-sample LP token balance, we assume that farmers liquidate their open positions
on July 31, 2022.

3See https://bscscan.com/.
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We merge each transaction with information on token prices and offered farm yield using the
nearest end-of-day prices by block height difference. For each wallet, we also compute the number
of invested farms (No. Farms) and liquidity pools (No. Pools). We define Efficiency at the wallet
level as the duration of staking relative to the duration of liquidity provision ( Time Staked/ Time in
Liquidity Pool), averaged across liquidity pools. Third, we define Staked Balance and LP Balance
as the time-weighted average balance for staking and liquidity provision. For these calculations, we
use the nearest end-of-day price from the beginning of each holding period and weight balances by
the length of the holding period.

We define Offered Farm Yield at the yield farmer level as the time-weighted average offered yield
at the beginning of each holding period. Finally, we calculate a farmer’s Average Daily Return
as the time-weighted geometric average of their holding period returns. We compute all return
components as described in Section 3, making the simplifying assumption that offered yields are
harvested daily without reinvestment.

Yield farmers may split their investments across multiple wallets. Hence, measures such as No.
Farms, Staked Balance, and LP Balance could be underestimated. However, yield farmers are
unlikely to systematically manage multiple wallets since there are no monetary benefits and trans-
action costs significantly increase. This bias, which is not central to our analysis, could be examined
in future research using wallet clustering algorithms.

4.4 The final sample

Our final sample contains 262 unique yield farms that were active between the inception of Pan-
cakeSwap on September 23, 2020 and July 31, 2022. At the investor level, we analyze 439,639
(446,227) unique wallets which hold 6,183,222 (5,975,858) positions for the return (flow) analysis.
Appendix C provides a detailed account of our data cleaning and construction procedure.

Panel (a) of Figure 4 illustrates the number of active farms (right axis). The cross-section varies
over time since new farms may be listed or delisted. The total number of active farms increases
quickly from inception of PancakeSwap to a peak of 160 farms in July 2021.

The left axis in Panel (a) of Figure 4 plots Total Value Locked (TVL) in active farms, i.e., the ag-
gregate amount of LP tokens staked to yield farms. Yield farming at PancakeSwap has experienced
extraordinary growth, with TVL surpassing $7 billion in May 2021. Analogously to the boom-bust
cycles experienced by Bitcoin and other cryptocurrencies, TVL dropped sharply following its peak
and experienced renewed momentum.

Importantly, TVL remained subdued until early 2021. As we show in Panel (b) of Figure 4, the con-
sequential increase in liquidity provision coincides with PancakeSwap becoming more prominently
researched in Google (left axis). Simultaneously, the number of active farmers jumps sharply (right
axis). For that reason, we restrict our main analysis to start on March 1, 2021 to increase the
stability of our estimations and avoid noisy inferences.
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5 Evidence

We first provide new stylized facts on yield farms and farmers. We then describe the trading
behavior of yield farmers and examine the risk and return characteristics of yield farming.

5.1 Stylized facts about yield farms

Yield farms exhibit three important properties for our analysis of reaching for yield. First, they
promise extraordinary high yields with cross-sectional heterogeneity in earnings potential. Second,
promised yields are salient and conspicuously displayed as headline rates, while information on risks
and historical performance is hidden and difficult to find. Third, yield farms appear as simple and
engaging platforms but involve a high degree of complexity.

We report in Table 1 a snapshot of yield farms on July 31, 2022. Each farm features a unique pair
of cryptocurrency tokens. Panel A shows the ten largest farms in terms of TVL. The largest farm
draws from $178.28 million TVL in the USDT-BUSD pool. In Panel B, we show that the leading
farm in terms of earnings potential offers an annualized yield of 357.92% for TVL of $1.72 million in
the BTCST-WBNB liquidity pool. Yield farms feature considerable cross-sectional heterogeneity
in terms of liquidity and earnings potential. For example, the rankings in Table 1 show that TVL
ranges from $0.12 million to $178.28 million (Panel A), while yields range from 0.30% to 357.92%
(Panel B).

In Figure 5, we plot the time-variation of the median farm yield together with its cross-sectional
distribution. To be precise, we plot the total offered yield which is saliently disclosed to investors on
PancakeSwap’s webpage and referred to as the annualized percentage return (APR). This includes
both the offered yield (Equation (6)) and the trading fee yield estimated using the previous day’s
trading volume. The median farm yield is often higher than 50% and the average is 76.34%. In
addition, there is significant variation in dispersion of farm yields, as underscored by the fluctuations
of the interquartile range of the yield farm distribution. Such rich variation in yields across farms
and time together with transparency on blockchain transactions provides an opportunity for better
understanding the motivations behind liquidity provision to yield farms and the performance of
yield farming.

Yields are salient to investors and marketed as headline rates that look attractive, especially in a
low interest rate environment. In Appendix Figure A.3, we provide an example of PancakeSwap’s
user interface. The main information in the foreground relates to the total offered yield (i.e., the
APR), the yield multiplier and the pool’s liquidity.

In contrast, it is difficult to find information about the computation of annualized returns or
the meaning of yield multipliers. Moreover, it is difficult to find information about the return
decomposition. There are hidden downside risks associated with impermanent losses, and hidden
costs due to the price impact of large trades, also known as slippage.

The user interface of PancakeSwap is engaging because it displays cartoons, rockets and emojis.

This gamification of an investment platform makes yield farming look like a simple application. It
is, however, a complex investment strategy, both in terms of payoffs and execution. The payoffs
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to yield farming depend on three underlyings: the two cryptocurrencies in the liquidity pool and
PancakeSwap’s governance token CAKE, which is paid as a reward for yield farming. Furthermore,
the payoffs feature significant non-linearities, epitomized by the impermanent loss function. Finally,
a round trip in yield farming is complex to execute, since it involves a chain of up to 14 transactions
(see Appendix Table A.2).

5.2 Determinants of farm yields

In Equation (6), we characterize the offered farm yield as a function of five components. Among
these, one is mechanically related to the continuous CAKE token issuance (c), one depends on
the aggregate CAKE price (PE4A5E), and one depends on farm-specific liquidity (Lfﬁ“ked). These
factors are outside the influence of CAKE owners. The farm-specific multiplier m;; defines the
allocation of CAKE tokens to a farm. The multiplier M, defines the aggregate distribution of
CAKE tokens. We validate that all components are strongly correlated with the level of offered
farm yields and that they have the correct sign.

CAKE owners can vote on changing the farm-specific multiplier m;; to increase or decrease the
CAKE token allocation. Since increasing the farm multiplier increases the offered farm yield, CAKE
owners can influence the reallocation of rewards across farms and attract liquidity to a liquidity
pool of choice. Thus, the ability to change the yield multiplier m;; equips CAKE owners with
centralized decision power on the amount of passive earnings potential, which, in our opinion, goes
against the spirit of decentralized financial services.

We want to examine the determinants of yield changes that are associated with decisions to change
the yield multiplier, controlling for all common variation (e.g., M, L, PCAKE ). In Table 2, we,
therefore, isolate the impact of yield changes that come from the active decision of farm governors
(i.e., the owners of CAKE tokens). We examine the relation between the change in yield that

A’mi,t+1
mqt
farming return performance over the previous seven days, i.e., capital gains, impermanent loss,

trading fees, realized yields, and farm liquidity.

is driven by platform governance (Ayﬁ 11 = Yit X ) and various components of the yield

Columns (1) and (2) of Table 2 suggest that yields are increased when past trading fees are high,
and decreased when past realized yields are high. This result holds both with and without day
fixed effects that absorb common movements across farm yields due to, for example, the price of
CAKE.

In columns (3) and (4) of Table 2, we find that farms are more likely to be delisted when their
liquidity or trading fee revenues are low. Overall, this evidence is consistent with the idea that the
offered farm yield is an instrument to make the strong farms stronger and the weak farms weaker.
Thus, offering yields is a mechanism to enhance the long-term viability of the yield farm platform
by channeling liquidity to a subset of farms.

5.3 Evidence on lack of investor sophistication

Several infrastructure developments of PancakeSwap enable us to examine trading behavior. First,
PancakeSwap upgraded the technological and security features of its smart contract design on April

14



24, 2021, migrating from ‘PancakeSwap v1’ to a new version ‘PancakeSwap v2’. Since then, liquidity
pools and yield farms associated with a particular pair of cryptocurrency tokens have coexisted on
both old and new platforms. Liquidity providers were encouraged to switch their liquidity provision
from v1 to v2, but had to implement the switch themselves. The switch is strictly dominating,
because migrating liquidity to the new version delivers higher staking rewards than in v1, alongside
lower transaction costs.

In Panel (a) of Figure 6, we show the amount of outstanding assets in the old version of the
platform. This figure shows that the migration of funds is sluggish, which could be a sign of
investor inattention or inertia. Importantly, even after 100 days, a significant amount of liquidity
remains in the liquidity pools associated with the old version.

A second update occurred on April 20, 2022, when PancakeSwap migrated its staking functionality
to a new contract. Users were encouraged in advance, through Twitter and other PancakeSwap
platforms, to migrate their assets.* Migrating is again preferred because assets in the old staking
contract would stop earning yields. Panel (b) of Figure 6 shows a similar pattern in that many
users remain staked in the obsolete staking contract even 100 days after the migration, missing out
on potential yield income in that period. This phenomenon is similarly a sign of investor inertia,
inattention, or of their lack of sophistication.

More evidence on investor behavior comes from staking ratios, defined as the ratio of LP tokens
staked in yield farms to the aggregate amount of LP tokens minted to certify liquidity provision.
Remember that yield farmers sequentially provide liquidity to pools and then to farms. Implement-
ing both transactions is strictly dominating liquidity provision alone, since earning CAKE through
farming is always superior to leaving money on the table. Thus, we would expect the staking ratio
to be equal to one at all times.

Figure 7 shows that the median staking ratio is below one most of the time. The 10th (25th)
percentile of the distribution drops as low as 20.56% (40.51%). This further suggests that some
investors are financially unsophisticated. We caveat this interpretation because of the possibility
that investors stake their LP tokens in third-party yield farm aggregators.

Table A.4 in the Appendix shows that staking ratios increase with experience. We regress the
staking ratios on indicator variables that are one for the 3rd (4th, 5th, >5) farm investment and
zero otherwise. The constant, which captures the baseline for the first two farms, indicates that the
average staking ratio is 62.39%), based on the linear probability model in column (1). The staking
ratio significantly increases with every subsequent farm investment, suggesting that investors learn
over time.

In Panel A of Table 3, we provide farmer-level statistics. The average yield farmer invests in 2.64
farms, has a holding period of 30.92 days, and has $7,732 invested. However, the average staking
ratio is only 0.8422. This suggests that many farmers miss out on farming opportunities, possibly
due to the complex nature of the trading strategy.

In Panel B of Table 3, we separate the farmers into quintiles based on their average Investment
Size. There is significant cross-sectional dispersion in size among PancakeSwap users. For instance,
the average investment in the lowest quintile is only $10.96, whereas that of the highest quintile is
$37,738. Thus, many yield farmers have small investment stakes.

4See, for example, https://twitter.com/PancakeSwap/status/1385463720835379201.
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We observe that Investment Size is positively correlated with the staking ratio, ranging from 0.6211
t0 0.9629 between the lowest and highest quintiles. This suggests that smaller yield farmers are more
likely to leave money on the table. But even in the highest quintile do we see significant evidence of
investor mistakes, given an average staking ratio that is far from one. Since the average farm yield
ranges between 94.28% and 121.69% across quintiles, investors face non-trivial opportunity costs.
Investors also have short holding times, with a holding period ranging between 9.8 and 61.31 days
across quintiles.

Investment performance is non-linear across quintiles with the highest daily return of 20bps in
quintile 4. This echoes our discussion in Section 3.4 that both large and small investments could
generate sub-optimal performance, due to transaction costs and price impact.

Evidence from DappRadar® indicates that PancakeSwap registered 435,130 active users on Oc-
tober 24, 2021, in contrast to 47,730 active users recorded for Uniswap. The trading volume in
PancakeSwap was about $1.2 billion on that day, which implies that the average yield farmer in
PancakeSwap traded $2,757. This suggests that many investors in PancakeSwap are small retail
investors, consistent with our evidence in Table 3.

Survey evidence further supports the view that yield farmers may not be financially sophisticated.
CoinGecko, a data provider, questioned 1,347 cryptocurrency investors about yield farming in
August 2020 (CoinGecko, 2020). According to the survey, 79% of yield farmers claim to understand
the risks and rewards of yield farming to a reasonable extent. However, about 40% of them report
that they could not read smart contracts to verify potential yield vulnerabilities or scams. In
addition, 33% of yield farmers are unfamiliar with the meaning of impermanent loss, implying that
they take risks which they don’t understand.

5.4 Yield farming performance without frictions

In Table 4, we assess the value-weighted performance of yield farming strategies using aggregate
pool liquidity as the weighting factor. We compute returns in excess of the 3-month U.S. Treasury
bill rate from the perspective of a U.S. investor and ignore transaction costs. Panel A (B) reports
results at the daily (weekly) trading frequency with 518 (74) observations.

We find that, prior to transaction costs, yield farming is profitable during our sample period.
The value-weighted index strategy delivers a daily return of 0.15%. This is about twice as large
as the returns to a strategy that focuses only on liquidity mining (0.07%) or on a buy-and-hold
strategy in the same pairs of cryptocurrency tokens associated with the liquidity pools (0.07%).
All three strategies deliver negatively skewed performances, with a non-trivial amount of excess
kurtosis, negative serial correlation, and exhibit a daily volatility of about 3.6%. Results for a
weekly trading frequency are qualitatively similar.

In Figure 8, we report the performance for each the four components (capital gains, impermanent
losses, trading fees, farm yields) after sorting yield farms into quintiles based on the magnitude
of their average in-sample offered yield. Panel (a) shows that the average realized yield, which
strongly correlates with the offered yield, increases monotonically across quintiles from about 2bps

®See DappRadar: https://dappradar.com/rankings.
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in Q1 to about 40bps in Q5. Panel (b) of Figure 8 shows that trading fee revenue is smaller than
other components and more similar across quintiles.

In Panel (c), we illustrate capital gains. While capital losses are largest for farms offering high
yields, these are insignificantly estimated. In contrast, impermanent losses, which are significantly
estimated, as shown by the 95% confidence bounds, are always negative and monotonically decreas-
ing with the headline yields, as shown in Panel (d). Taken together, this evidence at the farm level
suggests that high yield farms’ tokens generate the lowest returns and the largest impermanent
losses.

The evidence that farms with the highest headline yields perform worst ex-post raises concerns
about retail investor protection for three reasons. First, yield farms compete for liquidity by of-
fering high yields. Second, high yields are salient to investors who appear to be unsophisticated.
Second, impermanent losses are shrouded, yet they significantly contribute to yield farming under-
performance. Bordalo, Gennaioli, and Shleifer (2016) show that, in such an environment, reaching
for yield behavior may be an equilibrium outcome.

To better assess the risk-return trade-offs, we standardize the return performance by the standard
deviations and report in Table 4 Sharpe ratios for all investment strategies. These measures suggest
risk-return trade-offs of yield farming that are comparable but higher to that of the S&P 500 (which
has a daily Sharpe ratio of 0.03 in our sample period), with values ranging from 0.0209 for buy-and-
hold strategies to 0.0405 for yield farming.® Thus, without accounting for frictions, yield farming
appears to be profitable and to deliver superior performance to the S&P 500, according to Sharpe
ratios.

We also report alphas estimated using the three-factor cryptocurrency return model of Liu, Tsyvin-
ski, and Wu (2022), in addition to BNB, the native token of the BSC smart chain. Their framework
suggests that a three-factor model with cryptocurrency market, size, and momentum factors prices
the cross-section of cryptocurrency returns. Thus, we assess the risk-adjusted yield farming perfor-
mance relative to this three-factor+BNB cryptocurrency benchmark. We find that the daily yield
farming alpha is, on average, 0.02%. Because of the short and volatile sample period, this alpha is
estimated with a t-statistic of only 0.6822. The alphas of buy-and-hold investments and liquidity
mining are negative, emphasizing that the positive yield farming performance is driven by farm
yield and trading fee revenue.

5.5 Yield farming performance with frictions and investor mistakes

We next consider the impact of investor mistakes by comparing the performance of yield farming
to that of liquidity mining. Panel (a) of Figure 9 shows that investors who do not fully stake their
LP tokens into yield farms perform worse within each quintile. This effect is especially pronounced
for the farms with the highest headline rates. Table 3 documents that smaller investors are more
likely to make mistakes (i.e., staking ratios below one). Thus, they are more likely to leave money
on the table and underperform. Detailed statistics are reported in Panel A of Appendix Table A.7.

We further assess the impact of trading frictions on yield farming performance, including gas fees,
trading fees, and price impact. For that purpose, we assume a holding period of 10 days, or that

SThere are fewer observations for the S&P500 because DeFi markets are continuously open for trading.
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1/10th of the investors rebalance their portfolio each day. This lies within the mean and median
holding periods across yield farmers (see Table 3). We choose an initial investment of $1000, which
is bounded by the mean and median investment amount in our sample. Finally, we approximate
the staking ratio of the average investor using the average daily observed farm-level staking ratio.

Panel (b) of Figure 9 compares the yield farming performance with trading frictions and investor
mistakes to that of the frictionless benchmark. Transaction costs unilaterally lower the risk-adjusted
return performance across all yield quintiles. For example, the risk-adjusted return decreases by
7bps from 0.07% (—0.01%) to 0.00% (—0.08%) for Q1 (Q5). That downward adjustment is further
amplified by investor mistakes such that, for Q5, the daily alpha decreases from —0.01% to —0.21%
(see Table A.7, Panel A). Figure A.8 and Panel B in Table A.7 provide qualitatively similar results
at the weekly trading frequency, but the downward adjustments are larger in magnitude.

Figure A.9 illustrates robustness of our conclusions by showing similar results under alternative
parameter assumptions for the trading frictions. In Panel (a), we first vary the rebalancing duration
from 7 to 14 days. We report annualized alphas for a fair comparison across scenarios. Risk-adjusted
returns decrease monotonically within each quintile. This is expected, since the multiplicity of
transactions needed for a round-trip trade can accumulate to non-trivial amounts for gas and
trading fees, especially with frequent rebalancing.

In Panel (b) of Figure A.9, we vary the investment size from $500 to $5000. Small size investments
are impacted by gas fees, since these are based on flat dollar amounts. This incentivizes larger
investment amounts to reduce the dollar cost per investment. However, larger amounts may not be
an option for unsophisticated retail investors. Indeed, a large proportion of investors invest less than
$1,000 (see Table 3). On the other hand, large investments relative to the size of the liquidity pool
may suffer from price impact due to slippage. In addition, larger investments can endogenously lead
to lower farm yields, thereby putting further downward pressure on the investment performance.
Hence, we observe hump-shaped performance results within each quintile.

These observations bear implications for diversification and optimal portfolio allocation. A portfolio
with fewer yield farms would save more on fixed transaction costs, but would be more exposed to
illiquidity (slippage) when opening/closing positions, due to higher idiosyncratic risk. In contrast,
holding a more diversified portfolio of farms would cost more but would lower potential losses from
illiquidity (slippage) when opening/closing positions. We leave such analysis for further research.

In Table 5 we examine the role of trading frictions and investor mistakes at the farmer level. We
regress the time-weighted average daily holding period return for each farmer on the average value-
weighted displayed farm yield and a set of explanatory variables related to transaction costs and
mistakes. In columns (1) to (3), farmer-level returns without frictions are the dependent variable
and there is, at best, weak significance by any of the explanatory variables.

In contrast, in columns (4) to (6) of Table 5, which do account for frictions, all variables are
strongly significant in explaining daily holding period returns. Investment size is non-linearly
related to performance, as underscored by the positive and negative coefficients on investment size
and its square. More frequent rebalancing is associated with higher gas and trading fees and lower
performance, while higher staking ratios in yield farms lead to better performance since less money
is left on the table. The average difference in daily return performance for a staking ratio of zero
and one equals 1.93% to 2.04%. These results are robust to the inclusion of investment start and
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end month fixed effects, which effectively allows for a comparison between investors over similar
trading horizons.

Importantly, the coefficient on the average total offered yield is negative and statistically significant
at the 5% level. This suggests that farmers who invest in higher-yielding farms underperform by an
additional 24bps for every 100% increase in total offered yields. That evidence is consistent with
our findings at the farm level (Figure 9) in that the farms with the highest headline rates exhibit the
worst risk-adjusted performance. This important observation leads us to further assess the relation
between flow and performance, since there is important evidence from other asset markets that
suggest investors reach for yield (e.g., Becker and Ivashina, 2015; Choi and Kronlund, 2018; Chen
and Choi, 2023; Bordalo, Gennaioli, and Shleifer, 2016; Vokata, 2023; Gomes, Peng, Smirnova, and
Zhu, 2022) and pursue investment strategies with large headline rates (e.g., Henderson and Pearson,
2011; Célérier and Vallée, 2017; Egan, 2019; Henderson, Pearson, and Wang, 2020; Shin, 2021).

6 Reaching for yield in decentralized financial markets

The PancakeSwap ecosystem hosts a large cross-section of yield farms that compete for liquidity by
offering seemingly attractive investment opportunities while shrouding risks. The detailed account
of all wallet transactions registered on the public blockchain provides a unique opportunity to
examine whether and how such an environment encourages reaching for yield behavior (Bordalo,
Gennaioli, and Shleifer, 2016).

We first examine whether yield farmers adjust their positions in response to changes in farm yields.
To that end, we examine the impact of yield changes on liquidity pool flows. We consider both
dollar growth and LP token growth, a measure that is similar to net fund flows to mutual funds
(e.g., Sirri and Tufano, 1998; Coval and Stafford, 2007).

Equation (6) shows that yields are driven by many factors which are either farm-specific or common
to all farms. We would like to isolate the variation associated with the farm multipliers m;;, since
changes in multipliers stand out in PancakeSwap (see Figure A.3) and are changed by votes of the
platform owners. We also want to avoid capturing fund flows that are driven by multiplier changes
to other farms, and therefore restrict our analysis to changes in farm multipliers where the change
in the aggregate multiplier M is small.

We identify 511 cases where Am,;; # 0 and |AM; /M| < 0.15, among which 50 (461) cases are
associated with an increase (decrease) in m; ;. We then compare the change of flows into the treated
farms with Am,; # 0 to those into the non-treated farms with Am;; = 0. Specifically, we plot the
difference-in-differences coefficients 3 from a regression:

k=7
Yit+h = @+ Z Brly x Treatment; + Event X FarmFE + DayFE + €; 44,
k=—T,k#—1

outstanding LP tokens; :ip $ of pool; +yn

outstanding LP tokensi,it1) or lOg($ of pooliyitl )
(¢) ((b) and (d)) in Figure 10 document significant pool inflows (outflows) on the day that farm
multipliers increase (decrease). Token growth (dollar growth) for Am;; > 0 is about 17.94%

(19.11%) on day 0, on average, which is economically meaningful.

where y; 1y, is defined as either log( Panels (a) and
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Platform owners may increase farm multipliers in anticipation of future inflows. To mitigate that
concern, we also examine the sensitivity of aggregate fund flows to yield changes that are associated
with multiplier changes by peer farms, as reflected in the aggregate multiplier M;. These shocks
need to be large enough to have meaningful impact on M; and, therefore, y;;. Thus, we identify
4 events where Am;; = 0 with |AM;/M,| > 0.15. These 4 events are associated with increases in
M;. Since changes in M; affect all farms simultaneously, we conduct a simple event study without
control group. Appendix Figure A.10 confirms the finding that aggregate fund flows are sensitive
to changes in yields.

In Table 6, we provide more direct evidence on reaching for yield behavior by testing whether
future flows are related to high yield farms. Specifically, we regress farm flows on total offered farm
yield, lagged farm performance (Return) and the individual components related to capital gains,
impermanent losses, trading fees and realized farm fields:

Flowg7t+7 =a+ f1Total Of fered Yield{_” + B Capital Gain{_77t + BsImpermanent Loss{_”

+ B4Trading Feeg_” + BsRealized Yz'eld{_” + ')/Tth + FEs+ E{,
(11)
where j denotes the farm-level index. We include farm and week fixed-effects. The control vector
X; includes lagged flows, log size of the liquidity pools, and farm age.

In column (1) of Table 6, we find a positive and statistically significant relation between
Total Of fered Yield and Flow. This result is unchanged when we add lagged return perfor-
mance in column (2). Besides the statistical significance at the 1% level, the coefficient is also
economically significant. A farm with a 100% higher Total Of fered Yield is associated with a
6.35% greater increase in fund inflows.

In column (3), we add the four components of lagged return performance and drop
Total Of fered Yield due to its high collinearity with Realized Yield. We find a positive and
strongly significant relation between farm flows and lagged trading fees and realized yields. Impor-
tantly, these measures are directly observable to investors in the PancakeSwap user interface. This
strongly suggests that flows chase past fees and high yields.

The coefficient on Impermanent Loss is insignificant, which is consistent with the evidence that
information on impermanent losses is challenging to find and difficult to understand, according to
survey evidence. Overall, our results suggest that yield farmers chase farms offering higher, more
salient yields, but do not seem to internalize past impermanent losses.

6.1 The role of learning in reaching for yield behavior

We next examine reaching for yield at the farmer level. Column (1) in Table 7 reports our baseline
result for the relation between flows by investor i to farm j, Flowzzi 47, and farm j’s offered yield,

Total Of fered Yield{_”. The positive and statistically significant coefficient of 0.0255 indicates a
positive propensity of reaching for yield. The average farmer provides about 2.55 percentage points
more liquidity to a farm if it offers a 100% larger yield.

A significant literature has highlighted the underperformance of yield-seeking strategies (e.g., Hen-
derson and Pearson, 2011; Becker and Ivashina, 2015; Bordalo, Gennaioli, and Shleifer, 2016;
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Célérier and Vallée, 2017; Choi and Kronlund, 2018). Similarly, we find that investor funds are more
likely to be channeled to higher-yielding farms, which systematically underperform due to greater
capital and impermanent losses. The underperformance is especially pronounced for investors who
leave money on the table due to their mistake of not staking the LP tokens to earn farm rewards.
We are, therefore, interested in understanding whether experience and learning can contribute to
mitigating reaching for yield behavior.

In columns (2) to (7) of Table 7, we ask whether proxies for learning and experience can reduce
the reaching for yield propensity, defined as the regression coefficient between total offered farm
yields and future fund flows. Our three proxies for learning and experience are the amount of the
investment (Size), the number of days elapsed since the first yield farm investment (Experience),
and the number of farms to which an investor has provided liquidity (# Farms). For all three
measures, we create indicator variables equal to one if the variable is above the 75th percentile of
the variable’s distribution, and zero otherwise.

Columns (2) and (3) provide weak support for investment size playing a role in mitigating reaching
for yield behavior. However, columns (4) to (7) show a significant reduction in the reaching for
yield propensity based on the interaction terms between the total offered yield and the experience
proxies. The most conservative estimations in columns (5) and (7) include farm times week effects,
allowing us to control for time-varying farm characteristics and compare high with low-experience
farmers within the same farms at different points in time. The magnitude of the coefficients in
these estimations suggests that experience can mitigate the reaching for yield propensity by 20%

(0.0050/0.0254) to 39% (0.0117/0.0303).

6.2 The role of information disclosure in reaching for yield: Yieldwatch

High yield-seeking behavior has been observed in many other financial markets (Henderson and
Pearson, 2011; Becker and Ivashina, 2015; Bordalo, Gennaioli, and Shleifer, 2016; Célérier and
Vallée, 2017; Choi and Kronlund, 2018; Vokata, 2023). Much of that research emphasizes the
role of complexity and risk shrouding in explaining reaching for yield behavior (e.g., Gabaix and
Laibson, 2006; Célérier and Vallée, 2017). A main advantage of the blockchain data is that it
allows us to directly test, using natural experiments, whether information disclosure and reduction
in complexity can alleviate reaching for yield behavior.

In particular, we rely on the novel setting of Yieldwatch.net, a third-party information platform that
selectively discloses information on past performance and return components in exchange for buying
Yieldwatch tokens. Launched on March 3, 2021, Yieldwatch Pro, Yieldwatch.net’s main service,
provides customized information on yield farming. Appendix Figure A.4 provides a screenshot of
Yieldwatch Pro’s user interface.

Unlike PancakeSwap’s main user interface, which provides limited information on farm-level char-
acteristics like yield, size, and multiplier (see Appendix Figure A.3.), Yieldwatch Pro provides a
more user-friendly interface with richer information. In addition to information on farm charac-
teristics, YieldWatch Pro breaks down farmers’ historical capital gains (also called HODL value),
impermanent losses, trading fee revenue, and realized yields for a particular yield farming position.
Notably, this information is only available to yield farmers who own Yieldwatch.net’s native utility
token, called the WATCH token.
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We leverage two unique features of YieldWatch Pro to construct shocks to individual investors’
information display. First, through the complete transfer history of WATCH tokens available from
Binance Smart Chain, we identify WATCH token holders and their balances on each day. Second,
an initial farm offering (IFO) of WATCH tokens on March 4, 2021 was designed in such a way that
only those investors bidding more than $570 were allocated WATCH tokens. Since that threshold
was unpredictable, we can compare yield-chasing behavior among investors just above (treated)
and below (control) that cutoff level, using the quasi-random token allocation as a randomized

shock to investors’ information.”

Column (1) of Table 8 provides the baseline result for the reaching for yield propensity based
on the regression of individual investors’ farm Flows on the one-week lagged farm-specific Total
Offered Yield. To alleviate concerns associated with endogenous token acquisition, we compare
the reaching for yield propensity of the WATCH token holders to that of matched control wallets
that have a similar farm composition over the previous 180 days (number and types of farms) and
TVL deviating no more than 30% in absolute value from that of the treatment group. We further
require a minimum of two weeks of continuous data prior to the Yieldwatch token acquisition. The
coefficient of 0.0497 is comparable to our baseline coefficient at the farm level reported in column
(1) of Table 6. That is, a farm with a 100 points higher Total Offered Yield is associated with a
4.97% greater net increase in flows.

In column (2) of Table 8, we test whether more granular performance information and disclosure
of hidden risks through WATCH token acquisition reduces reaching for yield behavior. The key
coefficient of interest is the triple interaction between Total Offered Yield and two indicator variables
that are equal to one if a farmer has ever owned Yieldwatch tokens or provided liquidity to the
WATCH-BNB pool (YieldWatch), and after the Yieldwatch token acquisition (Post), respectively,
and zero otherwise. The negative and statistically significant coefficient of —0.0290 suggests that,
following the token acquisition, WATCH token holders with access to Yieldwatch.Pro exhibit a
reduction in their reaching for yield propensity of about 58% (0.0290,/0.0497) relative to investors
without the WATCH tokens.

Our results are robust to controlling for farm times week fixed effects, allowing us to compare the
reaching for yield propensity among WATCH token holders and non-holders while accounting for
unobserved time-varying characteristics at the farm level. We also add interactions of treatment-
control pair with week, farmer, and farm fixed effects to alleviate concerns of endogenous selection
into farms and treatment-control pairs. Moreover, in columns (3) to (5), we impute the treatment
effect using the three, five, and ten most closely matched control wallets (equally weighted).® Across
specifications, the magnitude of the coefficient of interest barely changes and remains significant at
the 1% level.

In Appendix Figure A.13 we plot the dynamics of the triple interaction coefficient between three
quarters before and three quarters after the token acquisition. Before the acquisition, the estimated
coefficients are statistically indistinguishable from zero, suggesting that there is a parallel trend in
the reaching for yield propensity between wallets who do and do not hold WATCH tokens. Following
the token acquisition, however, we observe that token holders significantly reduce their propensity

"To the extent that some investors are unsophisticated, the display of more information also changes investors’
information sets. Enhanced information disclosure also reduces the perceived product complexity.

8Not all treated farmers have up to ten control wallets satisfying our matching criteria. We, therefore, implement
equally-weighted regression to mitigate the impact of differential sizes in control groups. Our results are robust to
non-weighted regressions.
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to chase yields. Estimates become noisier for more distant periods following the access to more
granular risk and performance information.

In columns (6) to (10) of Table 8, we further mitigate concerns that the token acquisition may
be correlated with investor skill using a quasi-natural experiment. Specifically, we exploit the
Yieldwatch initial farm offering (IFO) on March 4, 2021 that resulted in a random allocation of
8 Yieldwatch tokens to investors who offered below or above $569.4 USD. In Appendix C.4, we
provide details about the institutional design of the IFO and supportive evidence that the allocation
of WATCH tokens around the threshold was as good as random. Importantly, we find no evidence
of strategic bidding over the time of the auction and no differential bidding behavior by successful
and unsuccessful bidders. Hence we can consider bidders just below and above the threshold as
similar and examine their change in reaching for yield propensity after the token acquisition.

In columns (6) to (8), we examine differences in the reaching for yield propensity between successful
and unsuccessful bidders for the Yieldwatch tokens in a narrow window of +/— $200 around the
bidding threshold. That narrow band contains 148 treated (i.e., successful) and 86 control wallets.
The coefficient on the triple interaction term is again negative and statistically significant at the
1% level, providing further evidence that better risk disclosure decreases the salience of prices in a
relative sense, and reduces the propensity to reach-for-yield. In these regressions, we add farmer
and farm fixed effects to absorb unobserved time-invariant heterogeneity. But our results do remain
robust in the conservative specification reported in column (8) of Table 8, where we account for
latent time-varying characteristics at the farm level using the inclusion of farm times week fixed
effects.

In column (9), we extend the bandwidth to plus and minus $250 around the allocation threshold and
find that the coefficient remains significant and of similar magnitude. As we expand the bandwidth
further to plus and minus $300, the coefficient is no longer significant.

Taken together, our evidence consistently shows that yield-chasing behavior becomes less pro-
nounced once investors access more complete information on their yield farming portfolios, specif-
ically more detailed information on the determinants of returns that tend to be hidden and are
associated with downside risks (e.g., impermanent loss). This result is consistent with the hypoth-
esis that investors chase yield because they are salient thinkers (Bordalo, Gennaioli, and Shleifer,
2016). We show that investor’s reliance on salient features of financial products in their decision-
making can be reduced by the increased availability of information on other less-salient features
through third-party information services.

6.3 Randomizing the information acquisition through airdrops

One concern with our analysis is that more sophisticated investors are more likely to know about
Yieldwatch.Pro and are more likely to acquire Yieldwatch tokens. In that case, our results could
be explained by unobserved differences in financial sophistication rather than salience shocks intro-
duced by changes in displayed information about risks and historical investment performance that
arguably reduce perceived product complexity.

Farmer fixed effects should absorb time-invariant differences in sophistication across investors.
Moreover, the quasi-random Yieldwatch token allocation to ex-ante similar bidders in the Yield-
watch IFO should mitigate concerns of endogeneous adoption. We further address this concern by
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exploiting a natural experiment based on airdrops organized by APY.Vision. Airdrops are events
in which APY.Vision provides a select group of users with APY.Vision NFT tokens granting access
to premium tracking services. APY.Vision operates across multiple platforms and selects users
randomly. PancakeSwap is not covered by APY.Vision, which operates on Ethereum, a different
blockchain, and we manually collect all the airdrop announcements through X (formerly Twitter).
We, therefore, focus our data collection efforts on wallets present in SushiSwap. See Appendix C.5
for details.

Access to the APY.Vision information service is enabled through the ownership of NFT tokens.
APY.Vision randomly allocates these NFT tokens to liquidity providers in eligible liquidity pools.
During our sample period, we identify 20 airdrops, in which 38 among all eligible wallets were
randomly chosen to receive NFTs. We compare the reaching for yield propensity between the 38
investors with access to APY.Vision and 14,266 unsuccessful wallets in Sushiswap that were eligible
to receive the NFT tokens. Since many treated wallets do not have yield farming history before
the airdrops, we compare their cross-sectional differences in yield chasing propensity.

Table 9 reports results that are qualitatively similar to those obtained for the Yieldwatch experi-
ment. First, the baseline magnitude of the coefficient in column (1), 0.0285 is reasonably similar
to that reported in Table 7, even though the data come from a different decentralized market op-
erating on a different blockchain. This is reassuring and supports external validity of our findings.
Second, the interaction term between total offered yield and APY.Vision NFT token holder dummy
variable is negative and statistically significant.

In column (3), we show that this result is robust to the more stringent specification with farm
times week fixed effects. For columns (4) to (6), we select control groups based on the eligibility
requirements and investment duration, since our results in Table 7 suggest that experience impacts
reaching for yield. This analysis compares the behavior of unsuccessful farmers to those who
happened to be lucky and received NFTs. We observe consistent results in the baseline specification
in column (4), and in a more conservative specification in (5) using farm times week fixed effects.
To further mitigate concerns of unbalanced control groups, we show consistent results using a
weighted regression specification in column (6). Overall, these findings similarly suggest that a
shock to investors’ information access that reduces perceived complexity can significantly reduce
investors’ salience bias.

7 Conclusion

We provide the first characterization of yield farming, a decentralized financial service available to
retail investors in the cryptocurrency ecosystem. Using a novel hand-collected dataset of all trade
records in 262 yield farms listed on PancakeSwap, the largest automated market-maker operating on
the Binance Smart Chain, we assess yield farming’s return performance and document its associated
risks.

Yield farms offer high yields that are saliently advertised as headline rates, while downside risks are
hidden and not easily understood. Yield farming appears to be profitable, but risk-adjusted returns
are significantly reduced after accounting for transaction fees, price impact, and investor mistakes.
Investor flows are attracted to high yield farms but are insensitive to impermanent losses, a type of
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hidden downside risk. But, high yield farms systematically underperform due to large impermanent
losses. Thus, we document reaching for yield behavior that results in negative risk-adjusted returns.

By means of two quasi-natural experiments designed by third-party information platforms, we study
how information shocks that increase risk disclosure and arguably reduce complexity can affect
yield-chasing behavior. We find consistent evidence that farmers’ propensity to reach for yield
becomes less pronounced once they are provided more detailed information on the performance of
their portfolios. We also document evidence that investor learning and experience contributes to
reducing their yield-chasing behavior over time.

Our results have important policy implications. First, our evidence emphasizes the need for better
information disclosure, since it can mitigate investors’ salience bias. Notably, the type of informa-
tion matters, since our findings highlight the role of risk disclosure as opposed to price disclosure.
In contrast, Frydman and Wang (2020) show that enhanced information about prices can increase
the bias related to the disposition effect. Nonetheless, our results suggest that, even without regula-
tory mandates on information provision, market-based alternatives, such as third-party information
platforms, can help assuage yield-chasing behavior and improve investment performance. Second,
our evidence on investor mistakes and learning emphasizes the importance of financial education,
especially for retail investors. Third, mandatory reductions in product complexity and proactive
notifications can help overcome investors’ inattention or inertia and, therefore, improve their per-
formance.
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Figure 1: Growing Popularity of Decentralized Finance

In this figure, we plot the total value locked (TVL, left axis), a measure of market capitalization,
and the number of active platforms (right axis) in the market for decentralized finance. The solid
blue line plots total value locked (TVL) in billions of dollars. The dashed red line illustrates the
number of DeFi platforms whose TVL is over $1 million. We source historical TVL data from
DeFiLlama API (https://api.llama.fi/v2/historicalChainTvl). To construct the number of active
DeFi platforms, we first download each platform’s TVL from DeFiLlama API on historical TVL
for platforms (https://api.llama.fi/protocol/rainbow). Among the platforms, we drop “CEX” and
“Liquidity Staking” following DeFillama’s approach to construct a conservative measure of TVL.
Each day, we count the number of remaining platforms whose TVLs are above $1 million. The
figure starts on January 1, 2020 and ends on July 31, 2022. Source: https://defillama.com/.
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Figure 2: Average Gas Fee to Enter and Exit a Yield Farming Position

In this figure, we compute the average gas fee paid by users on PancakeSwap (Panel (a)) and
SushiSwap (Panel (b)) to enter (exit) a yield farming position on each day since the inception of
the respective platform. For one round of yield farming, the total gas fee paid is the entry fee on the
portfolio formation day, plus the exit fee on the last day of the holding period. For PancakeSwap,
the average cost to enter (exit) over all days is $1.49 ($1.96). For SushiSwap, the average cost to
enter (exit) over all days is $117.75 ($178.10).
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Figure 3: Heuristic Description of Yield Farming in PancakeSwap

This figure provides a heuristic description of yield farming in the decentralized exchange (DEX)
PancakeSwap v2, which is built on the Binance Smart Chain (BSC). In PancakeSwap, investors face
a menu of liquidity pools, each one being defined for a pair of cryptocurrencies. Our illustration
showcases the USDT-ETH pool as an example. Investors can provide liquidity by “staking” a
pair (x,y) of cryptocurrency tokens (in this example, USDT and ETH) in equal dollar amounts
(x - PUSPT — 4. pPETH) into the liquidity pool, thereby making these tokens available for USDT—
ETH trading by third-party traders. These must pay a trading fee for buying and selling USDT
vs. ETH equal to 0.25% of trading volume. Of the 0.25% trading fee, 0.17% is paid to liquidity
providers as compensation for their liquidity provision. The other 0.08% is passed on to the Treasury
of PancakeSwap’s main staking contract and partially used for burning (i.e., buy back and destroy)
CAKE tokens, the native governance token of PancakeSwap. The main staking contract issues
CAKE tokens on a continuous basis with each block creation in BSC. The trading fees are paid
in the currency of the liquidity pool, i.e., USDT vs. ETH. As a liquidity provider, an investor
faces buy-and-hold price risk from the price evolution of USDT and ETH as well as downside risk
arising from the impermanent loss function, defined by the constant product trading rule of the
automated market maker (AMM). The liquidity provision is certified by a liquidity token (i.e., the
LP token), which can be staked into a USDT-ETH main staking contract (yield farm) specific to the
USDT-ETH currency pair. The passive income in the yield farm is earned in CAKE. The number
of CAKE tokens distributed across yield farms depends on a farm multiplier that we describe in
Section 2. This farm multiplier may change over time following a collective vote by all owners of
CAKE tokens.
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Figure 4: Yield Farm Activity

In Panel (a) of this figure, we plot the number of active farms and Total Value Locked (TVL)
in $million at a weekly frequency during our sample period. On the right axis, we provide the
time series of active farms. We define active farms as those whose yield multipliers are larger
than 0, implying that investors who stake LP tokens in these farms receive non-negative yields.
On the left axis, we plot TVL of active farms, or the amount of LP tokens deposited for yield
farming. The vertical axis is in millions of USD. In Panel (b) of this figure, we illustrate the
Google search intensity for the word, “PancakeSwap,” and the number of active farmers in Pan-
cakeSwap. We download the Google search intensity for the word, “PancakeSwap,” and calculate
the monthly average search intensity. Then, we normalize it by the maximum monthly aver-
age search intensity so that the index is 100 at its maximum. The dotted blue line (left axis)
plots the normalized monthly average of the search intensity. Google search data are available at
https://trends.google.com/trends/explore?q=PancakeSwap. The dashed red line (right axis) plots
the number of active farmers, where an active farmer is defined to be an investor whose balance
in yield farms is positive. The red dotted vertical line corresponds to March 1, 2021. The figures
start on September 23, 2020 and end on July 31, 2022.

(a)

8000

7000 |

6000 |

o
(=3
(=]
=]

TVL ($ million)
B
=]
8

2000 -

1000 |

Average Monthly Google Search Index

w

(=3

o

(=]
T

70 -

60 -

50 -

400

30

20

10

===TVL ($ million)
== == # of Active Farms

1a
P L) "r

H"

nfy
Y
le¥ ETYIRAL

—

Jan 2021

Jul 2021

Jan 2022

Average Monthly

® = Google Search Index
— = #of Active Farmers {1,000)

Jan 2021

Jul 2021

32

Jan 2022

1140
4120
4100
180
460
140

120

— 0
Jul 2022

=300

250

1150
1100

+150
D

— 0
Jul 2022

# of Active Farms

# of Active Farmers (1,000)



Figure 5: Total Offered Farm Yields Displayed to Investors

In this figure, we plot the annualized total offered farm yields displayed to yield farmers. Total
offered yield, referred to as the annual percentage return (APR), is the sum of the offered farm
yield (Equation (6)) and the trading fee yield estimated using the previous day’s trading volume
Vici.

Total __
n =

y yi " 4365 Vieig/Le, (12)

— P
offered farm yield trading fee yield

where ¢ denotes the constant trading fee and L; the pool liquidity. We provide the historical
annualized total offered farm yields (in %) between March 1, 2021, and July 31, 2022. The solid
blue line indicates the median annualized total offered farm yield. Dark and light shaded areas

represent the interquartile range, as well as the 10th and 90th percentiles of the yield distribution,
respectively.
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Figure 6: Migration of PancakeSwap Platforms

In this figure, we show the amount of outstanding liquidity in obsolete liquidity pools after two
technical updates in the PancakeSwap platform. In Panel (a), we plot the total value locked in
liquidity pools and their associated yield farms in PancakeSwap v1 with their equivalent counterpart
yield farms available in PancakeSwap v2. On April 24, 2021, farms corresponding to liquidity pools
in PancakeSwap v1 stopped providing farm yields. PancakeSwap encouraged farmers to move their
liquidity to the corresponding counterpart farms available in PancakeSwap v2 so that the existing
yield farmers could continue to earn farm yields. The solid blue line in Panel (a) indicates the total
value locked of unmigrated assets that remained in the liquidity pools associated with PancakeSwap
vl. In Panel (b), we examine the outstanding liquidity staked in the old PancakeSwap staking
contract, following the contract’s upgrade from v1 to v2 on April 20, 2022. Upon this migration,
LP tokens staked in the old staking contract ceased to be eligible for earning yields. PancakeSwap
advertised through Twitter and other channels that users should unstake from the v1 contract and
re-stake in the new v2 contract.
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In this figure, we plot the ratio of LP tokens staked in active yield farms listed in PancakeSwap,
relative to the total number of LP tokens distributed as rewards for liquidity provision in the
liquidity pools. Thus, the LP staking ratio is defined as the number of LP tokens of a liquidity
pool staked in its corresponding farm, divided by the total number of outstanding LP tokens for
the liquidity pool. The solid blue line indicates the median staking ratio. Dark and light shaded
areas represent the interquartile range, as well as the 10th and 90th percentiles of the yield farm

distribution, respectively.
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Figure 8: Yield Farming Return Decomposition

In this figure, we plot each component of daily value-weighted returns across yield farms, by quintiles
based on the magnitude of their in-sample offered yield. Every day, we compute the daily capital
gain, impermanent loss, trading fee, and realized yield for all listed farms. Then, we take the
average of each component across farms in each quintile using the size of each farm as weights.
In Panels (a) to (d), the blue bars illustrate the average daily realized yield, trading fee, capital
gain, and impermanent loss. The red error bars plot their associated 95% confidence intervals. The
mean of each component is displayed above their respective