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Abstract

We model a community platform where users learn about the quality

of its services over time by using its native tokens. The key friction is

users can buy tokens for services or trade them primarily for speculation.

In the presence of network effects, this tension can lead to situations

where no user adopts the platform’s services because the risk-adjusted

benefit of adoption is lower than that from speculation. Our model

can be applied to any asset that derives value from network effects

and suggests high token inflation and incentive schemes favoring service

usage may be integral to sustaining community participation.
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Alternative asset classes such as digital assets, collectibles, and real estate

have become increasingly popular among financial investors.1 One common

theme in these asset classes is that each can be viewed as a community centered

around a durable asset, a “community asset”, that acts as both a medium for

member interactions and a speculative asset that trades in secondary markets.

For example, a trading card game community consists of players who both play

the game and collect the cards for their price appreciation. On a blockchain-

based platform, the asset is a token that is both a means to use the technology

and a store of value that can be traded for fiat currencies or other digital assets.

Although many members buy these risky assets to enjoy the benefits of these

communities, others speculate and primarily hold them for their capital gain.

Importantly, this decision to participate or speculate is endogenous to the

platform environment. How does speculation in a community asset impact

the platform community — especially for new, uncertain platforms that rely

on the network effects among their members?

In this paper, we investigate how speculation interacts with adoption when

it acts as an outside option to adoption, and users learn about the quality of

the platform over time. Our key insight is that speculation may not only

hinder learning and adoption, but also lead to a total collapse in participa-

tion. This is because the option to speculate acts as an implicit incentive

compatibility constraint for adopters that introduces rigidity into each user’s

adoption decision. In the presence of network effects, a community or platform

may thus fall into a situation where no user is willing to use the platform’s

services at any price. When this happens, the platform’s native token has

a degenerate price and learning about platform fundamentals ceases even for

1For example, a study by Bank of New York Mellon found 41% of the 270+ institutional
investors surveyed held digital assets in their portfolios, and 91% expressed interest in
investing in them (BONY (2022)). A 2020 survey by Credit Suisse suggests over 70% their
ultra high net worth individual clients owned collectibles with an average asset allocation
of 5% of their wealth (Credit Suisse (2022)).
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platforms with potentially strong fundamentals, giving rise to learning traps.

A collapse in participation also paradoxically destroys the option value of to-

kens that comes from their retradability. This is contrary to the conventional

wisdom that speculators provide liquidity and aid in price discovery for risky

assets. Our key contribution is to show how price discovery can be distinct

from “use” discovery in the presence of a novel negative network externality.

In short, speculation can deter the growth of a community.

We model a token platform whose innate benefit depends on an unknown

fundamental. A user can buy the platform’s tokens in a secondary market

and can use its services to receive a noisy benefit. This benefit is amplified

by how many other agents use the platform’s services at the same time, such

that it exhibits network effects (e.g., Katz and Shapiro (1986)). The more

users who use the platform’s services, the larger the benefit and the stronger

it is as a signal about the platform’s fundamental. The key friction is a user

at any instant can either use the platform’s services, and be an “adopter”, or

hold the tokens primarily for their price appreciation, and be a “speculator”.2

Adopters both buy tokens and incur a heterogeneous flow cost to use the

platform’s services. They receive both the noisy benefit and the token return.

Speculators, in contrast, trade tokens and do not incur the cost. They instead

earn only a small fraction of the noisy benefit in addition to the token return.

The key economic mechanism in our model is that the outside option to

speculate with a platform’s tokens raises the expected return a user requires to

become an adopter (i.e., sum of convenience yield and capital gain) above her

participation cost. This wedge is largest when uncertainty about the platform

fundamental benefit, and consequently token price volatility, is highest. In our

continuous-time setting, it is summarized by the Sharpe Ratio from speculat-

ing (i.e., the ratio of expected excess return to return volatility). Platform

2With conventional stocks and bonds, in contrast, there is a clear distinction between
investors in a company and the consumers of its product; as such, speculation is not an
outside option for consumers.
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participation collapses when the difference in Sharpe Ratios between adopt-

ing and speculating is below the participation cost for any potential marginal

adopter. This can occur because the Sharpe Ratio of adopting is relatively

more exposed to the expected benefit, and current beliefs about the platform’s

fundamental may be too weak to justify the additional risk from adoption. In

contrast, both adopters and speculators share equally in the token’s capital

gain, which reflects beliefs about the platform’s expected future benefit.

Our main analysis offers three results. First, we establish that a necessary

condition for positive participation is the platform’s “adoption information ra-

tio” (the ratio of the expected value of the noisy benefit to its volatility) must

be greater than the Sharpe Ratio of speculation when speculators receive only

a small fraction of the noisy benefit. The tension that arises between adoption

and speculation when users must pay participation costs is essential for plat-

form instability. Without participation costs, similar to the case of owning a

stock or bond, or when users can only be adopters and not speculators, there

is always an equilibrium with positive participation. Importantly, whether

the platform has nonzero participation is not driven by users who will always

adopt (i.e., low participation costs) or who will always speculate (i.e., high

participation costs), but by users in the middle who face a nontrivial adop-

tion/speculation decision. Second, we show platform instability is increasing in

uncertainty about the platform’s fundamental. Holding fixed the conditional

expectation of the fundamental, increasing uncertainty raises the required re-

turn for both adopters and speculators, shrinking the gap between the Sharpe

Ratios of both activities. Finally, learning is fastest when the perceived plat-

form fundamental is high because this supports high participation and the

revelation of more precise information at each instant. In numerical examples,

we demonstrate path-dependence in that positive shocks to beliefs early on

can improve the speed of learning, while negative shocks can cause platforms

of the same ex ante fundamental to collapse.
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We then consider several extensions to explore further the negative network

externality introduced by speculation. First, we consider the implications of

the conflict between adopters and speculators for optimal platform manage-

ment. We highlight a novel role for token seigniorage to dampen incentives

to speculate on the platform’s token by initially inflating their supply. This

initial inflation can be beneficial because it eases the tension between adoption

and speculation, and can foster an equilibrium with positive participation on

the platform. Consequently, while inflation supports adoption, deflation sup-

ports speculation. Such a role for token inflation is particularly pronounced

for younger platforms with ex ante relatively weak fundamentals. Second, we

examine the role of platform incentives that target speculators and adopters,

respectively. We show how incentives that favor speculators, such as staking on

digital asset platforms, can exacerbate the speculation problem by rewarding

speculators for holding unused tokens. Intuitively, this second-use for tokens

creates a premium that makes it less attractive for users to adopt the plat-

form’s technology. In contrast, incentive schemes that favor adopters, like

enthusiasts clubs, can add incentive for users to adopt rather than speculate.

The externalities from speculation we highlight can apply to a variety of

community-based asset classes, including digital assets and collectibles. The

platform in our model can represent any asset-intermediated community that

relies on interactions among users and is subject to uncertainty about its fun-

damentals. For instance, after accounting for short-sale constraints and in-

divisibility, our model can help explain housing market phenomena, such as

the appearance of “ghost cities” in China where real estate speculation is high

but occupancy is low. We focus on digital assets in an extension because

speculation is particularly relevant in that asset class.

Our model is related to the literature on community assets like passion

assets and collectibles.3 Bikhchandani et al. (1992) and subsequent work ra-

3See Burton and Jacobsen (1999) and Goetzmann et al. (2021) for reviews.
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tionalize the rise of fads, such as fashion trends, as information cascades in

which agents become sufficiently confident after observing others’ actions that

they ignore their own private signals and herd. Because agents do not have

private information in our setting, our mechanism for adoption is distinct from

herding. A tradition following Pesendorfer (1995) views luxury goods, such

as high-end fashion, as signaling devices. We instead emphasize the role of

such items as retradable assets whose value derives from the social benefits

they foster. Communities collapse because of the destabilizing role of specula-

tion with network effects, which differs from crashes in Bulow and Klemperer

(1994) where prices drop discontinuously after a buying frenzy because con-

sumers learn from it and delay their purchases. Häckner and Nyberg (1996)

considers a model of negative reciprocal externalities where agents value exclu-

sivity to study how high demand induces congestion and reduces willingness

to pay. Hughes (2022) estimates the value of rarity, as opposed to scarcity, in a

trading card game. Mandel (2009), Lovo and Spaenjers (2018), and Penasse et

al. (2021) apply models of conspicuous consumption, emotional dividends with

auctions, and heterogeneous beliefs with short-sale constraints, respectively, to

explain art markets. In contrast, we focus on how learning and network ef-

fects impact the success of community-based assets. Intuitively, we posit if all

artwork were hidden in private collections, and access were not subsidized by

public venues like museums, artwork would be less valuable.

More recently, speculation has been explored in the context of digital as-

set platforms. Cong et al. (2021) link the convenience yield to a money-

in-the-utility function preference, but do not distinguish between adopters

and speculators. Sockin and Xiong (forthcoming, 2023) illustrate how outside

speculators can impair token platforms by crowding out and subverting users,

which compromises network effects. Mayer (2019) finds speculators provide or

take liquidity from adopters depending on the volatility of the platform fun-

damental. Lee and Parlour (2022) shows how retradability with speculators
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and heterogeneous beliefs can extract more revenue when launching a project.

Athey et al. (2016) shows how speculators in coins like Bitcoin can crowd out

users by making returns more sensitive to the capital gain. In our paper, there

is no ex ante distinction between users and speculators, and the choice to be

one versus the other interacts with network effects and risk premia. Danos et

al. (2018) examines a platform where tokens have a cash-in-advance constraint

and users either use the service or save tokens at the risk-free rate. There is

no learning, uncertainty, or network effects, and consequently no platform in-

stability. In contrast to conventional wisdom in this literature (e.g., Cong et

al. (2021), Gryglewicz et al. (2021)), we show token retradability with network

effects can hinder rather than accelerate early-stage adoption.

Our paper also contributes to the literature on social experimentation (e.g.,

Foster and Rosenzweig (1995)) Chamley and Gale (1994) highlights a free-

riding effect in which social learning can stall because economic agents do not

fully internalize the social benefit of adoption. Persons and Warther (1997)

study investment waves in which firms’ past adoption of a new technology

impacts future adoption through a learning externality because the outcomes

of past adoption are publicly observable. Frick and Ishii (2020) study the role

of forward-looking consumers who can free-ride off of the information created

by other consumer’s adoption decisions. Similar to Frick and Ishii (2020), our

agents are forward-looking but this is reflected in their hedging demand for

tokens rather than the internalization of the free-riding problem. Sákovics and

Steiner (2012) explores how a principal optimally subsidizes participation of

high and low externality agents, whereas we emphasize that token retradability

can cause non-adopting agents to impose negative network externalities on

other agents.4 In contrast to much of this literature, adoption in our setting

not only represents a reversible decision, but not adopting also distorts supply

4This negative speculation network externality is distinct from many other negative ex-
ternalities explored in the networks literature, such as congestion externalities like The El
Farol Bar problem (e.g., Easley and Kleinberg (2010)).
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and potentially crowds out adoption.

Methodologically, our analysis brings convex duality, mean-field game, and

Malliavin methods to the study of the economics of community assets. Cong et

al. (2022) also formulates a token platform as a mean-field game, but focuses

on the dynamics of the wealth distribution from staking, rather than platform

stability and network effects. To the best of our knowledge, we are also among

the first to provide a computational method for solving for an endogenous

cutoff boundary in a mean-field game with network effects.

I. Applications

Consider a community that provides a benefit to agents who use its services.

Our paper highlights that speculation can stymie adoption and learning. A

community needs three ingredients to create this tension: (1) the community

is associated with a tradable asset that allows speculation; (2) its benefits are

increasing in the number of agents who adopt, i.e., network effects; and (3) the

community’s quality is uncertain and participants learn about it over time. In

this section, we relate our model to four settings with these properties.

A. Scrip Currencies

A notable example arises in scrip currencies, or credits that can be re-

deemed for services. Sweeney and Sweeney (1977) recount a story of the

Capitol Hill Babysitting Cooperative that issued scrip currency. Co-op mem-

bers traded scrip with each other in exchange for babysitting duties. However,

parents started to hoard scrip and the co-op faced a liquidity trap. This under-

lying monetary lesson, made infamous by Paul Krugman and other subsequent

scholarship,5 reflects a similar mechanism to the one we present in our model.

B. Collectibles and “Passion” Assets

Our model can also be applied to analyze the economics of collectibles or

“passion assets” such as luxury sneakers, classic cars, toys, high-end watches,

5See https://slate.com/business/1998/08/baby-sitting-the-economy.html.
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baseball cards, and trading cards, amounting to a sizable asset class. Market

Decipher estimated the market capitalization of the collectibles market to be

$426 billion in 2022. In the context of our model, we can interpret a platform

as a supplier of a new community-based collectible of unknown quality that

attracts both user interest and speculation.

The underlying collector community and network effects often play key

roles in these passion asset markets. For example, and consistent with our

theory, the high-end watch market features local communities in the form of

watch clubs that facilitate social gatherings for watch enthusiasts and experi-

mental risk-taking for participating brands.6 Such local clubs are also present

among stamp collectors under the American Philatelic Society and informally

among shoe collectors known as “sneakerheads.” However, asset valuations

are driven not only by collector passion and community credibility,7 but also

by speculation. Luxury sneakers, for example, are held by both collectors for

nostalgia and status purposes, and investors to speculate on resale websites

like Stadium Goods and StockX. In China, speculation became so severe that

the People’s Bank of China explicitly warned financial institutions against

sneaker-trading in October 2019. High-end watch speculation, which picked

up heavily in 2017, has also led to backlash from the watch community.8

A tension between collectors and speculators is also endemic to the comic

book community. From the late 1980s to 1990s, a speculative frenzy overtook

the asset class when non-collectors sought to profit from buying new issues

and flipping them for profit. Ultimately, and consistent with our theory, this

speculative bubble crashed because both established and new publishers satu-

6See https://www.gq.com/story/cam-wolf-march-watch-column.
7For example, community influence is important in both shoes (https://

thesolesupplier.co.uk/news/why-do-we-collect-sneakers/) and watches (https://
www.gq.com/story/how-to-start-collecting-watches)

8See https://usa.watchpro.com/cooling-prices-could-rid-the-watch-world-of-flippers-and-speculators/.
To quote the article, “Everyone from brand to retailer to end user wants to ensure that the
watches do not end up in the hands of chancers and flippers.”
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rated the market with an increased supply of new (and often gimmicky) issues,

culminating with the bankruptcy of Marvel in 1997. The importance of net-

work effects in this episode is apparent as publishers dampened enthusiasm

among collectors by diluting story quality and increasing character turnover,

by “killing off” and creating new characters, to produce “key” books.

As an example of trading card games, consider Magic: The GatheringTM,

which introduces new mechanics over time through new expansions, and play-

ers have to play with the cards to discover their usefulness. This community

also features adopters, or players who find enjoyment in interacting with others

and learning about new game mechanics, and speculators who occupy part of

the card supply for pecuniary gain. There is a well-known tension in this com-

munity between players and collectors over the reprinting of valuable cards.

In contrast, and consistent with our theory, The Pokémon Company printed

9 billion Pokémon cards in 2021 to limit the returns to speculators.9

C. Housing Markets

Our insights are also applicable to housing markets. Residents of a neigh-

borhood derive value from their social connections with neighbors. The for-

mation of these communities and the process of evaluating a neighborhood’s

long-term quality represents a noisy learning process for homeowners (e.g.,

Gao et al. (2021)). Speculators who buy houses for speculation or short-term

rentals, however, can act as a drag on growth in nascent neighborhoods. Bayer

et al. (2020), for instance, provide suggestive evidence that housing specula-

tors destabilize housing markets during boom periods, while Gao et al. (2020)

show their negative local economic impact during busts. Consistent with our

view that speculators do not participate in communities, Gao et al. (2020)

measures housing speculation as non-owner occupied home purchases.

The potential for speculation to compromise local network effects in a com-

munity is arguably what occurred in Amsterdam after the introduction of

9See https://fortune.com/2022/07/06/pokemon-trading-card-shortage-prices-bubble-nine-billion/.
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Airbnb (Almagro and Domınguez-Iino (2021)). A similar wave of speculation

can explain China’s purported “ghost cities,” referring to newly constructed

cities that have markedly low occupancy rates. This has been partially at-

tributed to speculators buying a substantial fraction of new housing stock, in

part at the encouragement of the Chinese government as an investment vehicle

for its middle-class. These high-bidding, non-occupying speculators crowd out

potential occupants and harm community formation. Such a union of specu-

lation and urbanization is part of a broader push for city growth in Asia and

the Arabian Gulf known as “speculative urbanism” (e.g., Goldman (2011)).

D. Digital Assets

Digital asset platforms are salient examples of communities founded on

uncertain fundamentals. These platforms distinguish themselves through the

specialized services that each provides, such as facilitating transactions, smart

contracts, or data-sharing. Like the other communities we discussed, these

services improve as the user base grows. A key novelty of these platforms is

that they are mediated by a retradable currency, such as utility tokens.10 The

ability to retrade the tokens underpinning these platforms arguably represents

an advantage for them over conventional online platforms that use fiat cur-

rencies. Beyond providing liquidity, the potential for financial gain acts as a

source of enthusiasm for users to experiment with and learn about the quality

of these platform’s services. However, this financial gain also introduces strong

incentives to speculate in these tokens rather than to use them.

Our analysis can help rationalize the sudden collapse of promising plat-

forms, such as the Internet Computer Protocol (ICP), a decentralized internet

project with the goal of replacing the existing data-centers. Tremendous en-

thusiasm surrounded the project, which raised $121M from leading venture

capital firms, including Andreessen Horowitz. It premiered as the 7th largest

10For instance, Filecoin is a community that allows users to store and retrieve files in
a decentralized storage system using FIL tokens. Ethereum enables users to write smart
contracts and provides an infrastructure on which to build new services using Ether tokens.
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cryptocurrency by market capitalization with a valuation reaching in excess of

$70B. Within days of its launch in 2021, however, the ICP token lost over 95%

of its value; the platform has yet to fully recover. We plot the history of ICP

from inception in Figure 1. Panel A plots the briefly high-flying market cap-

italization. Panel B plots the number of transactions on the ICP blockchain,

compared with the launch of Ethereum in 2015. While ICP launched with tens

of thousands of daily user transactions, growth in activity has been lackluster

compared to Ethereum, which now hosts over one million transactions per day.

The proximate cause for ICP’s collapse is still a puzzle. Interestingly, the

ICP token experienced notable price volatility during the initial days of its

launch, and outsized speculative activity on exchanges. Our analysis links

these observations to the platform’s tepid success: the speculative pressure on

ICP overwhelmed early adopters and deterred further adoption. Consistent

with the importance of experimentation for social learning, ICP tried to jump-

start the platform a month after its launch with a “fork” to restart the project.

Our analysis also provides several empirical predictions. First, is that spec-

ulation can compete with platform adoption rather than complement it. Sec-

ond, is that platform usage reveals information about the platform’s funda-

mentals. Third, is that platforms for which there are Decentralized Finance

(DeFi) opportunities and that employ the Proof of Stake consensus protocol

should see a drag on usage. Consistent with our predictions, Silberholz and Wu

(2021) show a roughly 90% decline in token utility usage in the cryptocurrency

space relative to speculation since 2017. 11

II. A Model of a Community Platform

In this section, we present an infinite horizon model of a community plat-

form in which a tradable token is used for the platform’s services. There is

11Rather striking is the decline in usage is inversely related to the rise of DeFi opportu-
nities. They further provide evidence that higher utility usage by token holders improves
price discovery on the platform.
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a unit continuum of long-lived users on the platform who at each instant can

invest in the token as a speculative vehicle. They also have the option of

adopting the platform’s technology to benefit from its services. These services

can be viewed as the convenience yield from using the token. In what follows,

we refer to users who primarily hold the token for its capital gain at time t as

speculators, and those who also use the platform’s services as adopters. Let

πt be the fraction of users who are adopters at time t and Pt the token price.

We assume the platform fundamental A is unknown to all agents.12

The service benefit at time t, dDt, which is the same for all agents, is

dDt = πtAdt+ σDdZ
D
t , (1)

where σD > 0 is the diffusion of dDt and ZD
t is a standard Wiener process. This

captures many salient features that are exhibited by new platforms. Notably,

the total benefit from using the platform is noisy. This ensures that users

cannot perfectly learn the platform fundamental, A, from observing dDt, and

reflects why many new platforms also launch information campaigns to educate

the public. It also represents the instantaneous source of risk from buying the

platform’s tokens. As in Cong et al. (2021), this risk is not diversifiable for

users, and captures systematic fluctuations in the real value of a platform’s

services. Such shocks could represent shocks to the desirability of platform

services or shocks to sentiment that correlate with the broader economy.

Because using a platform’s services often relies on having other users on

the platform with whom to interact, the benefit from this service exhibits

network effects. A user who adopts the platform’s services at time t with xat

tokens receives an expected benefit A for each token from each other adopting

user with whom she interacts. If the size of the community of adopters is πt,

12Assuming a fixed fundamental is convenient for parsimony, and for providing sharp
predictions on the platform’s life-cycle because learning represents endogenous risk. It is
not essential and can be easily relaxed to allow for time-variation to study cyclical behavior.
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then she receives a total expected flow benefit of xatπtAdt.
13 Importantly, the

more users that make use of the platform’s services, the larger is this expected

benefit, and the more that users learn about this fundamental.

If a user does not adopt the platform’s services, she is a speculator. She

does not pay a participation cost and instead receives a much smaller fraction

α << 1 of dDt as a convenience yield from holding tokens. This smaller yield

can be viewed as either a positive externality from adopters or as the revenue

from loaning unused tokens.14

A. Learning

Since the platform fundamental A is not publicly observable, all users must

form expectations about it. We assume that from the perspective of all users

at t = 0, A is normally distributed A ∼ N
(
Ā, σ2

A

)
, and that Ā and σA are

such that A > 0 with probability arbitrarily close to 1. As there is no private

information in the economy, and dDt is the only public signal about A, all users

have symmetric information, summarized in the public information filtration

F ct = σ
(
{Ds}s≤t

)
. Because users begin with a normally distributed prior, their

beliefs evolve according to the standard Kalman-Bucy filter. In this situation,

their posterior for A is Gaussian, A | F ct ∼ N
(
Ât,Σt

)
where Ât and Σt have

laws of motion

dÂt =
πtΣt

σD
dẐA

t (2)

dΣt

dt
= −

(
πtΣt

σD

)2

, (3)

and

dẐA
t =

1

σD

(
dDt − πtÂtdt

)
, (4)

13This benefit can reflect collaborative consumption as in Benjaafar et al. (2019).
14Speculators receive a small noisy convenience yield to ensure a non-degenerate steady-

state when uncertainty dissipates. That it is proportional to dDt is not necessary. We could
assume instead that speculators receive a noisy yield unrelated to it. This would complicate
the analysis by introducing market incompleteness, a friction that is not our focus.
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is a standard Wiener process with respect to F ct by Girsanov’s Theorem. The

posterior variance Σt can be expressed implicitly as

Σt =
σ2
A

1 +
(
σA
σD

)2 ∫ t
0
π2
sds

, (5)

and is decreasing over time; as such, Σt ∈ [0, σ2
A] . This expression also reveals

that learning is convex in the size of the adopting population, πt, and therefore

high levels of adoption have a larger impact on learning than a longer time

history of low levels of adoption. The fraction of adopters will consequently

be the key determinant of how quickly users learn about the platform’s fun-

damental. This is consistent with the intuition that the more users who use

the platform, the more public discussion there is about it.

Importantly, equation (1) implies if no user use the platform’s services at

time t, then πt = 0 and users do not learn anything about A in that instant.

As a result, their posterior about A, N
(
Ât,Σt

)
, remains unchanged. Given

that no users given this posterior, and there is no new information, it follows

no users adopt the platform’s technology at t+ dt. Such an outcome can lead

to a learning trap on the platform, and contrasts the conventional wisdom that

Bayesian learning occurs quickly and within finite time in financial markets.

Because the token price Pt will be adapted to F ct , it is an Itô-semimartingale

with respect to F ct and we can write

dPt = µPtPtdt+ σPtPtdẐ
A
t , (6)

on the region for which there is positive participation.

B. Users

In this subsection, we describe users and the problem that each face. User

i for i ∈ [0, 1] is long-lived and has CARA preferences over her intermediate
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consumption, cit, such that u (c) = −e−γc, and subjective exponential discount

rate ρ > 0. She can invest in the platform’s token and adopt its services, as

well as invest in a riskless asset in elastic supply with instantaneous return

r. Because users are long-lived and have CARA preferences, they will hedge

against the impact that information revelation about the platform fundamental

has on future adoption and token prices.

We now describe how user i uses the platform’s services. The key friction is

a user can either be an adopter or a speculator, and makes this choice at each

instant. In both cases, user i will receive the capital gains of their holdings.

As an adopter, however, she receives the full service benefit from the platform

dDt; as a speculator, she receives only αdDt. To adopt the platform’s services

at time t, user i must pay an instantaneous flow cost, πtκi, where κi is innate to

her and πt is the fraction of adopters. These heterogeneous κi are drawn from

a CDF G (κ) with support [0,∞) and density g (κ). This approach succinctly

captures many types of users. Users whose κi is sufficiently close to 0 will

always adopt when πt > 0. In contrast, users whose κi is sufficiently large will

never adopt. In between these two extremes are potential marginal speculators

who may adopt depending on the state of the platform. The heterogeneity

in participation costs could reflect differences in reservation values, which is

often seen as a positive externality in the network literature (e.g., Easley and

Kleinberg (2010)). Without wealth effects, this heterogeneity ensures each

user will follow a cutoff strategy when deciding whether to adopt.15

An adopter incurs her flow participation cost at each instant. This is a

common approach in the context of digital assets (e.g., Biais et al. (2023),

Cong et al. (2021)), and is sometimes referred to as a per-period fixed cost.16

15Since CARA utility features second-order risk-aversion, no user would hold zero tokens
even when not using the platform’s services. As such, the choice between adopting and
speculating is without loss.

16An alternative cost structure would be to assume users pay a one-time fixed cost and can
adopt for free anytime afterward. This approach would strengthen our mechanism because
the initial choice to adopt is even riskier when the present-value of all per-period adoption
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The functional form of this cost is not qualitatively important as long as it

is invariant to token holdings. We conservatively model it as πtκi so that it

is increasing with the fraction of adopters. The scaling by πt could reflect

that transaction costs scale with the number of other adopters with whom she

interacts. It further biases toward more adoption on the platform compared

to a cost κi because πt ∈ [0, 1], and implies a near zero cost for all users near

zero adoption (i.e., when πt ≈ 0). Consequently, our core results on platform

instability are even more striking than if we modeled the cost as κi.
17

Let ωit be the fraction of wealth that user i invests in tokens, and ait the

indicator for whether the user adopts the platform’s services, with ait = 1

indicating adoption. The law of motion of user i′s wealth Wit is

dWit = (rWit − cit − πtκiait) dt+ ωitWit
(ait + α (1− ait)) dDt + dPt − rPt

Pt
,

(7)

User i chooses her consumption, investment, and adoption policies to max-

imize her expected lifetime utility according to the primal problem18

U i
0 = sup

ci,ωi,ai

E
[∫ ∞

0

e−ρtu (cit) dt

]
, (8)

s.t. : (7).

It will be convenient to express the primal problem as its convex dual.

This will allow us to formulate each user’s dynamic programming problem as

a HJB-dual variational inequality over the regions in which she is a speculator

and in which she is an adopter. For this approach, we solve for optimally

costs must effectively be paid up front (i.e., a fixed cost of κ
r ).

17One could also argue for a participation cost 1
πt
κi, so more users makes it easier to use

the platform’s services. This approach would further strengthen our channel.
18The service benefit here dDt represents a monetary gain. We could have alternatively

modeled the service benefit as a non-pecuniary utility benefit. This approach would intro-
duce wealth effects that would complicate our analysis without providing much additional
insight. Online Appendix B shows how this alternative approach leads to similar trade-offs.
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invested wealth, Wit = Fit, according to the martingale method of Cox and

Huang (1989). Because there is only one source of diffusion risk and two assets,

markets are complete. For CARA utility, we can express Fit as

Fit =
1

rγ

(
log γ +

r − ρ
r

)
− 1

rγ
log Λit + fi

(
Ât,Σt

)
, (9)

where Λit is user i’s state price deflator and fit is akin to risk-adjusted wealth.19

Suppressing time subscripts, let xi = ωiFi
P

be the number of tokens that user i

buys and

SR (ai) =
(α + (1− α) a) πÂ+ µPP − rP

(α + (1− α) a)σD + σPP
, (10)

the Sharpe Ratio for agent i, which depends on whether the user is an adopter

or speculator.

The following proposition characterizes the optimal policies of user i.

Proposition 1 User i : 1) chooses consumption

ci =
1

γ
log γ − 1

γ
log Λi; (11)

2) chooses token demand

xi =

1
rγ
SR (ai) + ∂Âfi

πΣ
σD

(α + (1− α) ai)σD + σPP
, (12)

where ai = 1 if she is an adopter and ai = 0 if she is a speculator, respectively,

and fi

(
Â,Σ

)
satisfies the dual HJB variational inequality

rfi = inf
ai

{
πκiai −

1

2rγ
SR (ai)

2 − ∂Âfi
πΣ

σD
SR (ai)

}
+

(
1

2
∂ÂÂfi − ∂Σfi

)(
πΣ

σD

)2

;

(13)

19See the proof of Proposition 1 in the Appendix.
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with appropriate boundary conditions,20 and 3) adopts the platform’s services

at time t if κi ≤ κ∗, i.e., ai = 1{κi≤κ∗}, where

κ∗ =

(
SR (1) + rγ∂Âf∗

πΣ
σD

)2

2πrγ
−

(
SR (0) + rγ∂Âf∗

πΣ
σD

)2

2πrγ
. (14)

Proposition 1 characterizes a user’s optimal consumption and token de-

mand. Because user i has CARA preferences, her demand for tokens is

composed of: 1) a mean-variance term, xMV
i = 1

rγ
SR(ai)

(ai+α(1−ai))σD+σPP
, with

effective risk aversion rγ because she is long-lived; and 2) a hedging term

xHi =
∂ÂfiπΣ/σD

(ai+α(1−ai))σD+σPP
that reflects the covariance between token returns

and innovations to public beliefs about the platform fundamental.

We can make equation (14) more interpretable by rewriting it as

κ∗ =
rγ

2π
(V ar [xa∗dr

∗
t | Adopt]− V ar [xs∗dr

∗
t | Do Not Adopt]) . (15)

Whether the marginal user adopts depends on the relative return volatility to

holding tokens while adopting, compared to speculating, for that user. When

the volatility is too high, then a user will not adopt. As we will see, this

outside option of speculating will be a source of rigidity on the platform that

can impact learning and exacerbate the fragility of network effects.

C. Equilibrium Definition and Market Clearing

We search for a Markov rational expectations equilibrium in the state vari-

ables
(
Â,Σ

)
in which all users choose their optimal policies according to

Proposition 1 and the market for tokens clear. We normalize the supply of

tokens to unity. Given the agents’ cutoff strategy, market clearing requires

∫ κ∗

0

xai dG (κi) +

∫ ∞
κ∗

xsidG (κi) = 1. (16)

20We provide a characterization of these boundary conditions in the Online Appendix.
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As this is an equilibrium model of a small platform, we do not impose market

clearing in the consumption or risk-free asset market.

Because diffusion processes have continuous sample paths, we characterize

separately the regions with positive and zero participation, and treat the equi-

librium with zero participation as a boundary condition.21 Finally, if there

exist multiple equilibria, we follow the standard practice of assuming the plat-

form coordinates users on the highest participation equilibrium.22

III. Equilibrium

In this section, we characterize the token price and the dynamics of adop-

tion on the platform. In what follows, we conjecture that the token price is a

function of the two state variables
(
Â,Σ

)
, such that by Itô’s Lemma

µPP =

(
1

2
∂ÂÂP − ∂ΣP

)(
πΣ

σD

)2

, (17)

σPP = ∂ÂP
πΣ

σD
. (18)

Imposing the optimal investment policies of adopters and speculators and mar-

ket clearing, we arrive at the following proposition for the token price.

Proposition 2 The token price satisfies

P =
1

r

1− (1− α) v
1− π(

ασD + ∂ÂP
πΣ
σD

)2

 πÂ+
1

r

(
1

2
∂ÂÂP − ∂ΣP

)(
πΣ

σD

)2

+γv

∫ ∞
0

(
1{κi≤κ∗}
σ2
D

πΣ
+ ∂ÂP

+
1{κi>κ∗}

ασ2
D

πΣ
+ ∂ÂP

)
∂ÂfidG (κi)− γv, (19)

21Although the token price will jump at the zero participation boundary, the value func-
tions and wealth of users will be continuous because they anticipate the potential collapse.

22Because a platform profits from seigniorage and transaction fees, the highest participa-
tion equilibrium will always maximize its revenue.
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where v is the harmonic mean of investors’ return variance

v−1 =
π(

σD + ∂ÂP
πΣ
σD

)2 +
1− π(

ασD + ∂ÂP
πΣ
σD

)2 . (20)

A necessary condition for an equilibrium with positive participation to exist

when there is uncertainty (Σt > 0) and α sufficiently small is

πÂ

σD
≥
∣∣∣∣µPP − rPσPP

∣∣∣∣ ; (21)

otherwise, πt = 0 and the price collapses to a constant

P = −γ (ασD)2 . (22)

Proposition 2 reveals that the token price reflects the motives of both

adopters and speculators, weighted by the sizes of the two populations in pro-

portion to the total return variance they bear. Adopters earn a higher expected

return from adopting the platform’s services but also face a higher risk by be-

ing exposed to transient fluctuations in the platform’s services. Speculators,

in contrast, receive a lower expected return but also bear less risk. The con-

venience yield (πÂ) and the hedging and market risk premium, the last two

terms in equation (19), will therefore be below that demanded by adopters

because speculators do not value the convenience yield and provide liquidity.

In addition, Proposition 2 characterizes a necessary condition for existence

on the token platform. We refer to the benefit-to-cost ratio of adoption, or

the expected transaction benefit divided by its volatility, πÂ
σD

, as the “adoption

information ratio”. This condition requires that the adoption information

ratio exceeds the risk-return trade-off (the Sharpe Ratio) for the capital gain,

20



∣∣∣µPP−rPσPP

∣∣∣ .23 Although both are endogenous objects, the necessary condition

is useful for highlighting the relevant trade-off and the key mechanism for

determining community participation. The token’s capital gain essentially

competes with the adoption information ratio, and a sufficient number of users

must adopt to induce other users to adopt it as well. If the relative volatility

of adoption is high, and consequently the information ratio is too low relative

to the Sharpe Ratio, then participation collapses and learning will cease.

A classical benchmark for our analysis is the case in which there are no

participation costs to adopt the platform’s services (i.e., κi = 0 for all i).

In this case, the token price and learning dynamics reduce to the canonical

case of a financial asset, such as a stock, that pays a noisy dividend with an

unobserved persistent component, A. There is always full participation (πt =

1) and learning occurs at the fastest possible rate because of the strong signal

from the instantaneous transaction benefit, dDt, when πt = 1. We characterize

this benchmark in the following proposition.

Proposition 3 In the absence of participation costs (i.e., κi = 0 for all i),

there is full participation (πt = 1) and the token price satisfies

P =
1

r
Â+ p (Σ)− γσ2

D, (23)

where p (Σ) is given by (with y = − rσ2
D

Σ
):

p (Σ) = γσ2
D exp

(
rσ2

D

Σ

)∫ − rσ2
D

Σ

−∞

(
2

y′
− 1

y′2

)
exp (y′) dy′, (24)

and uncertainty Σt =
(
σ−2
A + σ−2

D t
)−1

declines deterministically over time.

Proposition 3 reveals the token price without participation costs is linear

23We take the absolute value because speculators short tokens when the expected excess
return is negative.
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in the perceived fundamental, Â, and its risk premium, −γσ2
D, and a nonlinear

function of uncertainty, Σ. In this setting, uncertainty decreases determinis-

tically over time because there is no fluctuation in the fraction of adopters.

As is apparent from this benchmark, the nontrivial adoption problem faced

by users is essential for a nontrivial relation between the token price, learning

dynamics, and network effects on the platform.

In the next two subsections, we examine how this adoption problem im-

pacts platform stability and performance. We provide plots from a numerical

example of our model to illustrate our results.24

A. Platform Stability

In this subsection, we show that the platform only breaks down when

users have the option to speculate, not when speculators are either absent

or a distinct group of token holders. This potential for breakdown bifurcates

the state space of the posterior of the platform fundamental N
(
Ât,Σt

)
into

two regions: one in which there is adoption and the platform survives and

one in which the platform fails permanently. This failure boundary can be

represented by a critical conditional expectation of the fundamental, Âc (Σt),

that is decreasing in uncertainty about the fundamental, Σt, i.e., when there

is more uncertainty, users are less willing to adopt on a weaker platform.

An important limiting case that will help us characterize the equilibrium is

when there is no uncertainty about the platform fundamental. This case not

only helps highlight the impact of uncertainty and learning on the platform,

but also represents one of the two steady-state outcomes; the other is that the

platform fails and learning stalls. Proposition 4 characterizes the equilibrium.

Proposition 4 When there is no uncertainty about the platform fundamental,

24Online Appendix C provides details on the numerical procedure.
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A (i.e., Σt = 0): 1) if A ≥ Ac the token price is

P =
α

r

1− (1− α) π

1− (1− α2) π
πA− γα2σ2

D

1− (1− α2) π
, (25)

user i adopts the platform if

κi ≤ κ∗ =
1

2πrγ

1

σ2
D

(
1

α
− 1

)
rP

(
2πA−

(
1 +

1

α

)
rP

)
, (26)

and the fraction of users that adopt, π, is increasing in A in the high partici-

pation equilibrium;

and 2) if A < Ac, learning ceases and no equilibrium with positive partici-

pation exists.

Without uncertainty about the platform fundamental, A, there are three

possible outcomes: either there is zero participation or there are two equilibria

with positive participation, one with high and one with low participation. The

former occurs when A is below a critical cutoff Ac. When A is above this cutoff,

there is a constant population of users adopts at each instant, with the size of

this population increasing in A in the high participation equilibrium, which is

our focus. In the latter case, the token price capitalizes a transaction benefit

that is a weighted average of adopters and speculators who provide liquidity

to adopters. Not all users become adopters because the return to adopting is

below the per-period cost of the highest-cost (largest κi) users. Interestingly,

the platform resembles a “pay-as-you-go” platform in this limit in which the

total cost of services at each date is constant.

Such limiting behavior provides insight into how the platform behaves un-

der uncertainty. When there is arbitrarily small uncertainty about the plat-

form fundamental A, then it is clear that far away from the breakdown thresh-

old, Ac, uncertainty has no impact on whether users adopt the platform. Near

Ac, however, the additional risk gives rise to a risk premium for the same ex-
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pected transaction benefit πÂ that makes adoption the less attractive option.

As such, the breakdown boundary is above Ac. We can repeat these arguments

by backward induction because uncertainty only (weakly) falls over time to es-

tablish the following corollary.

Corollary 1: There exists an adapted process Âc (Σt) that is increasing in

Σt such that the platform survives if Ât ≥ Âc (Σt) and breaks down (i.e., no

adoption) otherwise. As Ât and πt increase, speculators take less positive /

more negative token positions.

Corollary 1 reveals the behavior of the platform over time is determined

by users’ expected value of A, Ât. When it is high (i.e., higher than Âc (Σt)),

then there is adoption of the platform’s services, and learning continues until

all users learn A and the platform converges to its steady-state. If instead Ât

falls below the platform’s critical threshold at some time t, then there is no

adoption and learning stalls. As the conditions on the platform are the same

at t + dt as at t, the platform also fails at t + dt and consequently all future

t. In such a situation, there is a learning trap and the platform breaks down

because of common pessimism about the quality of its services.

The second part of the corollary reveals that speculators take positions that

are decreasing in the platform fundamental and in how many users adopt. This

is because both raise the convenience yield for adopters, which pushes up the

token price. As a result, speculators who receive a smaller convenience yield

take a smaller long position and even a negative or short position in tokens for

Ât and πt sufficiently large, depending on uncertainty Σt. In the limit of no

uncertainty (Σt = 0), speculators are always shorting tokens and subsidizing

adopter participation because there is no capital gain from holding them.

We illustrate the relation between uncertainty and the boundary of posi-

tive participation in Figure 2. To the right of this boundary, the conditional

expectation of users about the platform fundamental, Ât, is sufficiently high

given the uncertainty about A, Σt, to sustain positive participation. To the
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left of this boundary, however, Ât is too low relative to Σt, and participation

collapses (i.e., πt = 0). This boundary, Âc(Σt), is increasing in uncertainty,

confirming that when Σt is high (i.e., on younger platforms), more optimistic

beliefs among users (i.e., a higher Ât) are required to sustain participation.

A key question in this paper is what role does the outside option to spec-

ulate play in platform behavior and in the speed of learning. An important

benchmark is the special case in which a user must adopt the platform to buy

tokens, i.e., she cannot speculate. This corresponds to the conventional ap-

proach to modeling users in the digital asset literature, in which there may be

a separate group of speculators who never adopt the platform. The following

proposition establishes the behavior of the platform in this special case.

Proposition 5 When users can only adopt the platform services: 1) when

there is no uncertainty about the platform fundamental, A, (i.e., Σt = 0), the

token price is

P =
1

r
πA− γ

π
σ2
D, (27)

the fraction of users that adopt, π, is positive and constant, and π and the

transaction benefit (πA) are ex ante more volatile with speculators;

2) with uncertainty (i.e., Σt > 0), there is always an equilibrium with

πt > 0 where users learn the true fundamental arbitrarily well in finite time.

3) There is positive participation even if there is a separate group of spec-

ulators on the platform.

Proposition 5 highlights several important observations. First, when users

cannot be speculators, there is always an equilibrium with positive participa-

tion. This is because the price can always fall enough to support a positive

mass of adopters by providing a positive excess return to the marginal adopter.

In contrast, when users can speculate the platform can collapse because being

a speculator acts as an outside option to adopting, which dampens participa-

tion. Therefore, it is not because of the complementarity of network effects
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alone the platform may fail, but because of the dual use of the token. Second,

because there is always an equilibrium with adoption, learning about the plat-

form fundamental occurs at each instant, and users consequently always learn

its true value in the long-run. Third, the presence of outside speculators who

are distinct from users does not compromise stability on the platform. This

highlights that it is the role of speculation as an outside option, and not as a

source of token demand, that destabilizes community asset platforms.

B. Platform Performance

In this subsection, we illustrate the performance of the platform using our

numerical example. Figure 3 illustrates how the rigidity introduced by the

option to be a speculator impacts platform performance and token price. It

relates the fraction of users that adopt the platform’s services π as a function

of their conditional expectation of the platform fundamental, Ât for different

levels of uncertainty, Σt. Higher uncertainty results in lower participation and

a larger region of conditional beliefs for which there is no participation.

Figure 4 plots simulations of our model starting from a common prior

belief, N (Â0,Σ0). Panel A plots the time-series of the conditional expectation

of A, Ât, Panel B the conditional uncertainty about A, Σt, and Panel C the

fraction of adopters πt over time. In simulations where Ât drifts higher, users

adopt at a higher rate and learn faster, resulting in a lower Σt over time. If

beliefs (Ât,Σt) fall to the boundary in Figure 2, Âc(Σt), then a bad shock to Ât

can push beliefs into the region of no participation where πt = 0 . This occurs

in the “flat-lined” sample learning paths. In this case, all future learning ceases

and there is no further updating of beliefs.

More generally, speculation enhances the performance on stronger plat-

forms (high Ât) and harms it on ex ante weaker platforms (low Ā). When

the expectation of the fundamental is relatively high, participation is high,

learning is fast, and speculators short tokens to provide liquidity to adopters.

The opposite happens when the perceived fundamental is relatively low.
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IV. Extensions

In this section, we consider several extensions of our baseline model that are

relevant for current platform design decisions. First, we consider the optimal

seigniorage policy of the platform. We then analyze how incentive schemes

targeted at speculators and adopters, respectively, impact adoption.

A. Platform Design

In this subsection, we explore the implications of the tension between

adopters and speculators for platform design. Our key insight is a platform

owner who internalizes this tension will want to issue enough tokens initially

to ensure there is positive adoption by dampening the returns to speculation.

We consider the problem of a token platform run by an owner who profits

from seigniorage and cannot commit to an inflation schedule. At a given

instant t, the supply of tokens on the platform is Mt, and the owner can issue or

buy tokens at the market-clearing token price. Issuing tokens causes inflation

on the platform, however, which dilutes the claims of users over time. To reflect

this, the noisy service benefit is divided over the total token supply, such that a

user with one token at time t receives dDt/Mt. With this specification, there is

money neutrality regarding real outcomes on the platform because seigniorage

does not, in itself, increase the total service benefit to users.

The owner chooses an initial supply M0 and the inflation schedule on the

platform. We consider a smooth (locally deterministic) issuance strategies mt

such that the token supply evolves according to

dMt = mtdt. (28)

The optimal smooth issuance policy will also imply that the owner will not

make discrete issuances, ∆Mt. The owner discounts profits at the riskless rate

r and chooses M0 and {mt}t≥0 to maximize the present value of its profits
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V0 = sup
M0,mt

P0M0 + Π0, (29)

where

Π
(
Ât,Σt,Mt

)
= E

[∫ ∞
t

e−r(s−t)Psmsds

]
, (30)

is the owner’s continuation profits and N (Ât,Σt) the posterior belief about A.

The following proposition characterizes the optimal seigniorage policy.25

Proposition 6 The platform owner: 1) chooses the initial token issuance M0

such that there is positive participation on the platform and

M0 = −
P0 + ∂MΠ

(
Ā, σ2

A,M0

)
∂MP0

; (31)

2) chooses a continuation issuance policy m such that

P = −∂MΠ; (32)

and 3) manipulates the token price such that expected excess return yield

(µP − r)P = 2rΠ∂Mπ/π. (33)

The platform owner chooses the initial token issuance to ensure positive

participation, and then continues to issue tokens to maintain it. She issues

tokens at each instant until the marginal benefit, the token price P , equals

the marginal cost, the marginal loss in future seigniorage revenue, which can

involve issuing or buying back tokens. She has this incentive because if partic-

ipation collapses, the token has zero (or even negative) value and she cannot

profit from future seigniorage without incurring the cost of issuing tokens at a

loss to restore participation. This optimal issuance policy further manipulates

the capital gains from holding tokens by linking their expected excess return,

(µP − r)P, to her continuation profits and the marginal impact of increasing

the token supply on the size of the adopting population, ∂Mπ/π. When the

25We use variational methods to solve for time-consistent optimal issuance policies.
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expected excess return is positive, she wants to increase π to increase the con-

ditional volatility of Ât,
(
πΣ
σD

)2

, to raise the token’s price. When it is negative,

she wants to lower this volatility to maintain a high token price.

Our analysis clarifies the differential impact of inflation on motives to adopt

and speculate on the platform. While inflation supports adoption, deflation

supports speculation. Further, we highlight a novel role for token inflation to

mitigate the tension between the two. Given such inflation is meant to ensure

adoption, this mechanism is pronounced on platforms with ex ante weaker

fundamentals (i.e., low Ā).26

B. Incentives for Speculators

In this subsection, we illustrate how incentives that differentially reward

speculators may have unintended consequences for participation and social

learning on token platforms. Although any friction that reduces the benefits

to joining the platform will hamper adoption (and consequently learning), such

as transaction fees levied by a platform owner, subsidies that primarily benefit

speculators introduce additional nuanced issues. In the context of passion

assets, this could reflect supply restrictions that raise the rarity of certain

collectibles or the ability to use such assets as collateral in lending. In the

context of digital asset platforms, this could reflect subsidies afforded to the

backing the token, such as staking with the Proof of Stake protocol.

We focus on the Proof of Stake example and show it can exacerbate the

negative externalities from speculation by allowing speculators to free-ride on

the transaction surplus of adopters and collect seigniorage revenue. In our

setting, it is natural for speculators to act as the validators because they

do not buy tokens for active use. Adopters, in contrast, use their tokens,

and cannot lock them in escrow to be validators.27 Suppose adopters pay a

fraction φ > 0 of their transaction benefit as a transaction fee to validators. In

26This insight is relevant as digital assets experiment with token supply schedules. While
Bitcoin is inflationary, both Ether and Tron switched to deflationary token schedules.

27We abstract from frictions in consensus protocols because it is not our focus.
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addition, validators receive a fraction ζ of the existing token base, Mt, as new

tokens. For simplicity, we assume a negative token position as a speculator

entails shorting these validation cash flows. With seigniorage, users receive a

service benefit dDt/Mt to reflect that inflation erodes token value. In what

follows, let Xs
t =

∫∞
κ∗
xsitdG (κi) be the number of tokens held by speculators,

and qt =
Mt−XS

t

XS
t

be the number of transactions validated by each speculator.

Proposition 7 characterizes the optimal policies of users.

Proposition 7 Under Proof of Stake, user i : 1) chooses the same consump-

tion, token demand, and adoption policies as in Proposition 1, except now the

Sharpe Ratio SR (ai) is

SR (ai) =
((qφ+ α) (1− ai) + (1− φ) ai) πÂ/M +

(
µP + 1−ai

XS
t
ζM
)
P − rP

((qφ+ α) (1− ai) + (1− φ) ai)σD/M + σPP
.

(34)

The key observation is validation services allow speculators to free-ride off

of adopters by giving them part of the adopters’ transaction benefit without

paying any participation costs. If 1 − φ ≤ qφ + α, or XS
t ≤

φ
1−αMt, then a

positive level of participation cannot be sustained because of the severity of

the free-rider problem. Similarly, the ability to stake tokens through DeFi

opportunities, such as by providing liquidity to an Automated Market Maker

(AMM), can exacerbate the tension raised by speculation by providing a return

to not using tokens. Intuitively, introducing a second-use for tokens introduce

a premium into their price, which crowds out adopters.

C. Incentives for Adopters

We now illustrate how platform arrangements that favor adopters can help

prioritize adoption over speculation. In the context of digital assets, this can

take the form of Play-to-Earn incentives that reward adopters with an addi-

tional capital gain from token seigniorage, and community tokens that provide

an additional convenience yield to adopters by fostering community-building
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and community-generated content.28 In the context of high-end watches, some

brands, like Omega, sponsor clubs to organize gatherings enthusiasts.

To illustrate how such schemes can impact adoption, letXa
t =

∫ κ∗
0
xaitdG (κi)

be adopter token holdings, ζMP the seigniorage , and πC > 0 the total mon-

etary value of the targeted at adopters. The Sharpe Ratio for users becomes

SR (ai) =
(α (1− ai) + ai)πÂ/M + aiπC/M +

(
µP + ai

Xa ζM
)
P − rP

(α (1− ai) + ai)σD/M + σPP
. (35)

Analogous to Proposition 2, one can show the key necessary condition for

an equilibrium with nontrivial participation for α sufficiently small is relaxed

relative to equation (21). There is consequently a role for subsidies for adopters

to maximize adoption of the platform’s services.

V. Conclusion

In this paper, we construct a model of a community platform with network

effects whose services are intermediated by a retradable asset. The key insight

is the ability to hold tokens as a speculator rather than use the platform’s ser-

vices acts as a friction that can hamper participation, slow down learning, and

lead to learning traps in which viable platforms fail prematurely. Our analysis

suggests dampening the impact of token retradability, such as through infla-

tion and differentially rewarding adopters, can improve platform performance

by limiting the incentives for speculation. This posits a positive aspect to the

dramatic decline in cryptocurrency prices since November 2021 in that it may

represent a catalyst for future adoption. Our theory can also explain housing

market phenomena, such as the under-utilization of “ghost cities” in China,

as well as inflation and the setup of local communities in collectibles markets.
28On Socios.com, sports fans can buy fan tokens issued by internationally recognized

sports teams to receive VIP offerings and engage in the voting process for the teams’ crowd-
sourced decisions. Interestingly, the CEO of Socios.com argued its fan tokens are to provide
fans with entertainment and genuine utility rather than an investment vehicle. See https:

//www.sportspromedia.com/news/socios-ceo-alexandre-dreyfus-fan-tokens/.

31

https://www.sportspromedia.com/news/socios-ceo-alexandre-dreyfus-fan-tokens/
https://www.sportspromedia.com/news/socios-ceo-alexandre-dreyfus-fan-tokens/


References

Almagro, Milena and Tomas Domınguez-Iino, “Location Sorting and
Endogenous Amenities: Evidence from Amsterdam,” Working Paper, 2021.
10

Athey, Susan, Ivo Parashkevov, Vishnu Sarukkai, and Jing Xia, “Bit-
coin Pricing, Adoption, and Usage: Theory and Evidence,” Working Paper,
2016. 6

Bayer, P., Geisslerm C., K Mangum, and J. W. Roberts, “Speculators
and Middlemen: The Strategy and Performance of Investors in the Housing
Market,” The Review of Financial Studies, 2020, 108, 5212–5247. 9

Benjaafar, Saif, Guangwen Kong, Xiang Li, and Costas Courcou-
betis, “Peer-to-peer Product Sharing: Implications for Ownership, Usage,
and Social Welfare in the Sharing Economy,” Management Science, 2019,
65, 477–493. 13

Biais, Bruno, Christophe Bisiere, Matthieu Bouvard, Catherine
Casamatta, and Albert Menkveld, “Equilibrium Bitcoin Pricing,”
Journal of Finance, 2023. 15

Bikhchandani, Sushil, David Hirshleifer, and Ivo Welch, “A Theory of
Fads, Fashion, Custom, and Cultural Change as Informational Cascades,”
Journal of Political Economy, 1992, 100, 992–1026. 4

BONY, “Institutional Investing 2.0: Migration to Digital Assets Accelerates,”
Bank of New York Mellon, 2022. 1

Bulow, Jeremy and Paul Klemperer, “Rational Frenzies and Crashes,”
Journal of Political Economy, 1994, 102, 1–23. 5

Burton, Benjamin J. and Joyce P. Jacobsen, “Measuring Returns on
Investments in Collectibles,” The Journal of Economic Perspectives, 1999,
13, 192–212. 4

Chamley, C. and D. Gale, “Information Revelation and Strategic Delay in
a Model of Investment,” Econometrica, 1994, pp. 1065–1085. 6

Cong, Lin William, Ye Li, and Neng Wang, “Tokenomics: Dynamic
Adoption and Valuation,” Review of Financial Studies, 2021, 34, 1105–1155.
5, 6, 12, 15

32



, Zhiheng He, and Ke Tang, “Crypto Carry and the Staking Economy,”
Working Paper, 2022. 7

Cox, John C. and Chi fu Huang, “Optimal Consumption and Portfolio
Policies when Asset Prices Follow a Diffusion Process,” Journal of Economic
Theory, 1989, 49, 33–83. 17

Credit Suisse, “Collectibles Amid Heightened Uncertainty and Inflation,”
Credit Suisse Research Institute Technical Report, 2022. 1

Danos, Vincent, Stefania Marcassa, Mathis Oliva, and Julien Prat,
“Fundamental Pricing of Utility Tokens,” Working Paper, 2018. 6

Easley, David and Jon Kleinberg, “Chapter 17: Network Effects,” in
“Networks, Crowds, and Markets: Reasoning about a Highly Connected
World,” Cambridge University Press, 2010. 6, 15

Foster, A. D. and M. R. Rosenzweig, “Learning by Doing and Learning
from Others: Human Capital and Technical Change in Agriculture,” Journal
of Political Economy, 1995, pp. 1176–1209. 6

Frick, Mira and Yuhta Ishii, “Innovation Adoption by Forward-Looking
Social Learners,” Working Paper, 2020. 6

Gao, Zhenyu, Michael Sockin, and Wei Xiong, “Economic Conse-
quences of Housing Speculation,” The Review of Financial Studies, 2020,
33, 5248–5287. 9

, , and , “Learning about the Neighborhood,” The Review of Financial
Studies, 2021, 34 (9), 4323–4372. 9

Goetzmann, William N, Christophe Spaenjers, and Stijn Van
Nieuwerburgh, “Real and Private-Value Assets,” The Review of Finan-
cial Studies, 2021, 34, 3497–3526. 4

Goldman, Michael, “Speculating on the Next World City,” in “Worlding
Cities: Asian Experiments and the Art of Being Global,” Blackwell Pub-
lishing Ltd., 2011. 10

Gryglewicz, Sebastian, Simon Mayer, and Erwan Morellec, “Optimal
Financing with Tokens,” Journal of Financial Economics, 2021. 6
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Figures

Figure 1: Internet Computer Protocol (ICP) market capitalization and number
of transactions since launch in May 2021. Panel A data comes from CoinMarket-
Cap.com. Panel B data on ICP and Ethereum blockchain transactions were down-
loaded from the ICP website dashboard and Ethereum blockchain API, respectively.
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Figure 2: Boundary of positive participation Âc, as a function of At and Σt. The
parameters for the plot are r = 0.10, γ = 1

r = 10, σD = 0.5, α = 1× 10−2, log κi ∼
N (0, 2).

Figure 3: Fraction of agents who adopt, πt, and token price pt for different condi-
tional beliefs Ât plotted for different values of uncertainty Σ. The parameters for
the plot are r = 0.10, γ = 1

r = 10, σD = 0.5, α = 1× 10−2, log κi ∼ N (0, 2).
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Figure 4: Simulated paths of the conditional expectation of A, Ât (Panel A), the
conditional uncertainty about A,Σt (Panel B), and the fraction of users that adopt,
πt, (Panel C) over time. The parameters for the plot are r = 0.10, γ = 1

r = 10, σD =
0.5, α = 1× 10−2, log κi ∼ N (0, 2).
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Appendix

Proof of Proposition 1:

Step 1: The Convex Dual Problem for User i

We first rewrite user i’s law of motion of wealth dWit from equation 7 based

on public information (i.e., under F ct ) as

dWit =
(
rWit + ωitWit

[
(ait + α (1− ait))πtÂt/Pt + µPt − r

]
− πtκiait

)
dt

−citdt+ ωitWit ((ait + α (1− ait))σD/Pt + σPt) dẐ
A
t . (A.1)

We can write the optimization problem of user i as the Lagrangian

U i
0 = sup

ci,ωi,ai

E
[∫ ∞

0

e−ρt (u (cit) dt− ΛitdWit − Λit (πtκiait + cit) dt)

]
(A.2)

+E
[∫ ∞

0

e−ρtΛitωitWit ((α + (1− α) ait)σD/Pt + σPt) dẐ
A
t

]
+E

[∫ ∞
0

e−ρtΛit

(
rWit + ωitWit

(
(α + (1− α) ait) πtÂt/Pt + µPt − r

))
dt

]
,

for Lagrange multiplier Λit ≥ 0. The constraint requires that the wealth of

user i (weakly) follows its law of motion. For ease of exposition, we ignore the

Lagrangian terms for the laws of motion of Ât and Σt, as they are immaterial

in this characterization.

Let us conjecture that the Lagrange multiplier Λit (which is the user’s

stochastic discount factor (SDF)) has the law of motion

dΛit/Λit = µΛtdt− σΛtdẐ
A
t . (A.3)

This is the relevant costate. Integration by parts yields a saddlepoint problem
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U i0 = supci,ωi,ai infΛit E
[∫ ∞

0
e−ρt (u (cit)− Λit (πtκiait + cit)) dt

]
+ Λi0Wi0 (A.4)

−E
[∫ ∞

0
e−ρtΛitWit (ωitσΛt ((α+ (1− α) ait)σD/Pt + σPt)) dt

]
+E

[∫ ∞
0

e−ρtΛitωitWit

(
(α+ (1− α) ait)πtÂt/Pt + µPt − r

)
dt

]
+E

[∫ ∞
0

e−ρtΛitWit (µΛt + r − ρ) dt

]
− lim
T→∞

E
[
e−ρTΛiTWiT

]
.

Applying complementary slackness to the problem (A.4) with respect to

wealth Wit, terminal wealth WiT , and user investment ωit impose

µΛ = − (r − ρ) , (A.5)

σΛ (ai) =
(α + (1− α) ai) πÂ+ µPP − rP

(α + (1− α) ai)σD + σPP
, (A.6)

and the transversality condition

lim
T→∞

E
[
e−ρTΛiTWiT

]
= 0. (A.7)

The optimal program, given (A.5), (A.6), and (A.7), reduces to

U i
0 = sup

ci,ai

inf
Λit

E
[∫ ∞

0

e−ρt (u (cit)− Λit (πtκiait + cit)) dt

]
+ Λi0Wi0. (A.8)

We next assume that the Minimax Theorem holds and that we can interchange

the supci,ωi,ai infΛit with infΛit supci,ωi,ai . We can then first maximize over the

user’s consumption to find that

cit = u′−1
(
Λi
t

)
=

1

γ
log γ − 1

γ
log Λit, (A.9)

for CARA utility. We will solve for the optimal adoption policy ai after solving
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for optimally adjusted wealth. This is because a change in the adoption policy

also changes the state price deflator, Λit, of optimally invested wealth.

Step 2: Optimally Invested Wealth and Investment Policy

Let us conjecture that optimally invested wealth, Fit, that finances con-

sumption and adoption costs

Fi0 = E
[∫ ∞

0

e−ρt
Λit

Λ0

(cit + πtκiait) dt

]
. (A.10)

is a Markov process in the three state variables
(

Λit, Ât,Σt

)
or Fit = Fi

(
Λit, Âit,Σt

)
.

Notice that

F̃it = E
[∫ t

0

e−ρsΛis (cis + πsκiais) ds+ e−ρtΛitFit

]
(A.11)

is a deflated gains process, and therefore a martingale

dF̃it = e−ρtΛit (cit + πtκiait) dt+ d
(
e−ρtΛitFit

)
(A.12)

= e−ρtΛit (cit + πtκiait) dt+ d
(
e−ρtΛit

)
Fit + e−ρtΛitdFit + d

〈
e−ρtΛit, Fit

〉
,

and taking expectations with µΛi = − (r − ρ) and suppressing t subscripts

ci + πκiai +
1

dt
E [dFi] = rFi + σΛiσFi , (A.13)

where σFi is the diffusion of Fi. Because Fi is Markov in
(

Λit, Ât,Σt

)
, by

Itô’s Lemma, Fi also has law of motion
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dFi =

(
∂ΛiFiΛiµΛi +

1

2
∂ΛiΛiFiΛ

2
iσ

2
Λi
− ∂ΣFi

(
πΣ

σD

)2

+
1

2
∂ÂÂFi

(
πΣ

σD

)2
)
dt

+

(
−Λi∂ΛiFi

(α + (1− α) ai) πÂ/P + µP
(α + (1− α) ai)σD/P + σP

+ ∂ÂFi
πΣ

σD

)
dẐA, (A.14)

so that

σFi = −Λi∂ΛiFiσΛi + ∂ÂFi
πΣ

σD
. (A.15)

Matching diffusion terms with the laws of motion of wealth (A.1) and optimal

invested wealth (A.14) to arrive at

ωitFi ((α + (1− α) ai)σD/P + σP ) dẐA =

(
−Λi∂ΛiFiσΛi + ∂ÂFi

πΣ

σD

)
dẐA,

(A.16)

from which follows given σΛi from (A.6) that

ωi = −Λi
∂ΛiFi
Fi

(α + (1− α) ai) πÂ+ µPP − rP
((α + (1− α) ai)σD + σPP )2 P+

∂ÂFi
Fi

πΣ
σD

(α + (1− α) ai)σD + σPP
P.

(A.17)

Matching the drift terms of (A.13), (A.14), (A.15), and substituting with (A.9)

and µΛi = − (r − ρ) , we arrive at the dual HJB variational inequality

0 =
1

γ
log γ − 1

γ
log Λi + πκiai − ∂ΛiFiΛi (r − ρ)− ∂ΣFi

(
πΣ

σD

)2

+
1

2
∂ΛiΛiFiΛ

2
iσ

2
Λi

+
1

2
∂ÂÂFi

(
πΣ

σD

)2

− σΛi

(
−Λi∂ΛiFiσΛi + ∂ÂFi

πΣ

σD

)
− rFi. (A.18)

Let us conjecture that

Fi = f0 + fΛi log Λi + fi (A,Σ) . (A.19)
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Because prices do not depend on the Λi of any one user, it follows by

substituting equation (A.19) into equation (A.18) that

fΛi = − 1

rγ
, (A.20)

f0 =
1

rγ

(
log γ +

r − ρ
r

)
. (A.21)

and that fi (A,Σ) satisfies

0 = inf
ai

{
πκiai −

1

2

1

rγ
σ2

Λi − ∂ÂfiσΛi

πΣ

σD

}
− ∂Σfi

(
πΣ

σD

)2

+
1

2
∂ÂÂfi

(
πΣ

σD

)2

− rfi.

(A.22)

Since this relation holds for optimally invested wealth, fi is strictly a sub-

martingale under any suboptimal adoption policy because the cost being fi-

nanced is increasing over time. We recognize the decision to adopt is reversible

at any instant, and consequently the derivatives of fi do not instantaneously

“jump” with changes in the adoption decision.

Let xi = ωiFi
P

be the number tokens that user i′ purchases, then substituting

our conjecture for Fi into (A.17), we arrive at

xi =
1

rγ

(α+ (1− α) ai)πÂ+ µPP − rP
((α+ (1− α) ai)σD + σPP )2 +∂Âfi

πΣ
σD

(α+ (1− α) ai)σD + σPP
. (A.23)

Let us distinguish xai and xsi to be the demand of adopters and speculators

xai =
1

rγ

πÂ+ µPP − rP
(σD + σPP )2 + ∂Âfi

πΣ
σD

σD + σPP
, (A.24)

xsi =
1

rγ

απÂ+ µPP − rP
(ασD + σPP )2 + ∂Âfi

πΣ
σD

ασD + σPP
. (A.25)
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Since adopters earn a convenience yield and an expected excess payoff, then

they have a higher demand than speculators for token. As such, xai ≥ 0.

Step 3: Optimal Adoption Policy

The optimal policy from (A.22) then reduces to adopt if κi ≤ κ∗ where

κ∗ =
σΛi (1)2 − σΛi (0)2

2πrγ
+ ∂Âfi

Σ

σD
(σΛi (1)− σΛi (0))

=
SR (1)2 − SR (0)2

2πrγ
+ ∂Âfi

Σ

σD
(SR (1)− SR (0)) , (A.26)

because σΛi is the Sharpe Ratio SR (ai) . A subtlety is that, for the marginal

adopter, ∂Âfi is the same whether the marginal user adopts or speculates

by continuity and smooth-pasting because adopting represents exercising a

(reversible) option. For adopters for whom κi 6= κ∗, we recognize that

∂Âfit
πtΣt

σD
= − 1

2rγ
E
[∫ ∞

t
e−r(s−t)∂Â (SRis)

2DtÂsds
]

︸ ︷︷ ︸
Expected Impulse to Future Squared Sharpe Ratios

+κiE
[∫ ∞

t
e−r(s−t)∂Â

(
πt1{κi=κ∗s}

)
DtÂsds

]
︸ ︷︷ ︸

Expected Impulse to Future Adoption Costs

, (A.27)

where DtÂs > 0. These two terms are increasing in κi for adopters because the

higher the participation cost, the more likely the user is to be a speculator. As

a result, higher κi adopters have a lower expected discounted future adoption

costs if Â falls as well as less sensitivity to the decrease in the adopter Sharpe

Ratio. Intuitively, the wealth of adopters closest to the κ∗ threshold is most

sensitive to changes in the perceived platform fundamental. Rewriting the

adoption decision of a user with participation cost κi who adopts as
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κi < κ∗ + (∂Âfi − ∂Âf∗)
Σ

σD
(SR (1)− SR (0)) < κ∗, (A.28)

It follows that a user adopts if κi ≤ κ∗.

Notice that by completing the square

SR (ai)
2

2πrγ
+ ∂Âfi

Σ

σD
SR (ai) =

(
SR (1) + rγ∂Âfi

πΣ
σD

)2

2πrγ
− 1

2πrγ

(
rγ∂Âfi

πΣ

σD

)2

,

(A.29)

from which follows that the optimal adoption decision with speculators from

equation (A.26) satisfies

κ∗ =

(
SR (1) + rγ∂Âf∗

πΣ
σD

)2

2πrγ
−

(
SR (0) + rγ∂Âf∗

πΣ
σD

)2

2πrγ
, (A.30)

since rγ∂Âf∗
πΣ
σD

is the same whether the user adopts or speculates because

of smooth-pasting. Notice that no adopter would pay the fixed adoption flow

cost and hold tokens to just speculate in the token.

For speculators, ∂Âfi is negative if speculators are long tokens and positive

if speculators are short tokens. This derivative is also increasing in κi for

speculators because the higher the κi, the lower the likelihood that the first

term switches to that of an adopter, in which case we know that the Sharpe

Ratio is higher with adoption, otherwise no adopter would adopt. The second

term is also increasing in κi for some range of κi > κ∗, the flow adoption cost

must be increasing in κi. For κi beyond this range, the κi must be sufficiently

high that user i would never adopt, otherwise the κj just below would adopt

and then we can repeat the previous argument. As such, speculators for whom
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κi > κ∗ choose to speculate.

Because this is independent of Λi it confirms our conjecture about the

functional form of Fi. ai can then be expressed as

ai = 1{κi≤κ∗}. (A.31)

We relegate establishing the transversality condition holds and sufficiency

to the Online Appendix.

Proof of Proposition 2:

Substituting with xai and xsi from Proposition 1 and equations (17) and

(18) into equation (16), we arrive at the equation (19).

Notice now that if speculators take a positive position in tokens, then

equation (A.30) implies it is necessary for an equilibrium to exist that

SR (1) ≥ SR (0) . (A.32)

Consequently, this is the necessary condition for existence of an equilibrium

at time t. Notice that when there is uncertainty (Σt > 0), this can be rewritten

πÂ

σD
≥ µPP − rP

σPP
, (A.33)

when P > 0 because yπÂ+µPP−rP
yσD+σPP

is larger when y = 1 than 0 if P > 0.

In contrast, if speculators take a negative position in the token, then ∂Âf∗ =

0 for the critical κ∗ because the hedging demand of the user switches sign

depending on whether it is an adopter (and long the asset) or a speculator

(and short the asset). At the switching point then, by continuity of the first

derivative, it must be the case that ∂Âf∗ = 0. In this situation, the necessary

condition for the existence of an equilibrium is now

SR (1) ≥ −SR (0) , (A.34)
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because SR (1) ≥ 0 and shorting implies a negative Sharpe Ratio. This

implies a condition (because µPP − rP < 0 for speculators to short) of

πÂ

σD
≥ 1 + α + 2σPP/σD

1 + α + 2ασD/σPP

∣∣∣∣µPP − rPσPP

∣∣∣∣ . (A.35)

As α→ 0, this condition becomes

πÂ

σD
≥
(

1 +
2σPP

σD

) ∣∣∣∣µPP − rPσPP

∣∣∣∣ > ∣∣∣∣µPP − rPσPP

∣∣∣∣ . (A.36)

because σPP ≥ 0. Thus, for α sufficiently small, this condition is necessary.

If this condition is not satisfied, then πt = 0 and price collapses to a constant

P = −γ (ασD)2 . (A.37)

Proof of Proposition 3:

In the absence of participation fees, all users adopt the platform’s services.

In this case, optimally invested risk-adjusted wealth is independent of fluctu-

ations in A, and the token price is

P =
1

r
Â+ p (Σ)− γσ2

D, (A.38)

where p (Σ) satisfies

rσ2
D

1

Σ2
p (Σ) + p′ (Σ) = −2γσ2

D

1

Σ
− γ

r
. (A.39)

By the method of integrating factors, we can rewrite equation (A.39) as

[
exp

(
−rσ2

D

1

Σ

)
p (Σ)

]′
= −γ

(
2σ2

D

1

Σ
+

1

r

)
exp

(
−rσ2

D

1

Σ

)
. (A.40)

Defining y = − rσ2
D

Σ
, then equation (A.40) has the solution because p (0) = 0 of

p (Σ) = γσ2
D exp

(
rσ2

D

Σ

)∫ − rσ2
D

Σ

−∞

(
2

y′
− 1

y′2

)
exp (y′) dy′. (A.41)
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In this situation, πt = 1 for all t and Σt/σ
2
A =

(
1 +

(
σA
σD

)2

t

)−1

.

Proof of Proposition 4:

When there is no uncertainty and Σ = 0, then prices are constant (i.e.,

µPP = σPP = 0) and there is no hedging demand (i.e., ∂Âfi ≡ 0). It is then

straightforward to see that the token price from Proposition 2 collapses to

P =
α

r

1− (1− α) π

1− (1− α2) π
πA− α2γσ2

D

1− (1− α2) π
, (A.42)

It is straightforward to see that the coefficient on A, α
r

1−(1−α)π
1−(1−α2)π

π, is in-

creasing in π, while the second term, − γα2σ2
D

1−(1−α2)π
, is decreasing in π.

From equation (14), with some manipulation one can see that the optimal

adoption threshold is now given by

πκ∗ =
1

2rγσ2
D

1− α
α

rP

(
(1− α)

1− (1 + α)π

1− (1− α2)π
πA+

(1 + α)αrγσ2
D

1− (1− α2)π

)
, (A.43)

as all uncertainty about A has resolved. It is clear that users again adopt

a cutoff strategy in deciding whether to adopt.

In what follows, suppose π ≤ (1 + α)−1 . It is then clear for κ∗ ≥ 0 that

P ≥ 0 if an equilibrium exists. Define y = rγσ2
D and Ã = A/y. Given

π = G (κ∗), it follows substituting for equation (A.43) that a solution solves:

(1− α)
(1− α)

(
1− 2π +

(
1− α2

)
π2
) (
πÃ
)2

+ 2α2πÃ− α2 (1 + α)

(1− (1− α2)π)2 = πG−1 (π) .

(A.44)

The right-hand side of equation (A.44) is strictly increasing in π from 0

to 1
1+α

G−1
(

1
1+α

)
as π increases from 0 to 1

1+α
, where 1

1+α
G−1

(
1

1+α

)
is ar-

bitrarily large because G has a support on [0,∞). This is because by the
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Implicit Function Theorem, d
dπ
G−1 (π) = G (G−1 (π))

−1
> 0. Let the left-hand

side of equation (A.44) be H. It has a bound of −α2 (1− α2) for π = 0 and

(1− α2)
(

2Ã
(1+α)2 − 1

)
< ∞ for π = 1

1+α
. Consequently, the two curves must

intersect an even number of times.

We next establish there are only two equilibria when equilibria exist. At

the first equilibrium, H > 0 for equation (A.44) to be satisfied and ∂πH > 0.

At the second equilibrium, H > 0 but now ∂πH < 0. Notice now that:

1−
(
1− α2

)
π

2 (1− α)
∂πH = (1 + α)H +

(1− α)
(
1− 3π + 2

(
1− α2

)
π2
)
πÃ2 + α2Ã

1− (1− α2)π
.

(A.45)

The second term of equation (A.45) determines the shape of the distri-

bution H. Notice when there is an equilibrium, then there are at least two

equilibria. This implies that the second term has to be downward-sloping in π

on
[
0, 1

1+α

]
(at least initially) from positive to negative. The second term, in

this case, is either downward-sloping or U-shaped. If it is downward-sloping,

then ∂πH cannot be become positive again for a third equilibrium. If it is U-

shaped and becomes positive again, then ∂πH could become positive for a third

equilibrium, but it would not be possible for the second term then to become

more negative for ∂πH < 0 for a fourth equilibrium. Thus, there are either

zero or two equilibria for each A. Our focus is on the higher π equilibrium.

Next, we recognize that we can rewrite equation (A.44) in equilibrium as

B = πG−1 (π)−H ≡ 0. (A.46)

Applying the Implicit Function Theorem to equation A.46, then
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dπ

dÃ
=

∂ÃH

G−1 (π) + π/G (G−1 (π))− ∂πH
. (A.47)

Notice from equation A.44 for π ≤ 1
1+α

,

∂ÃH =
2π (1− α)(

1− (1− α)2 π
)2

(
α2 + (1− α) π

(
(1− π)2 − α2π2

)
Ã
)
> 0. (A.48)

Notice, when an equilibrium exists, it must be the case that ∂πH > 0

for odd equilibria and ∂πH < 0 for even equilibria by the above arguments.

In even equilibria, we consequently have that ∂Ãπ > 0, and consequently

∂Aπ > 0. As ∂Aπ > 0 is the natural comparative static (i.e., a better platform

has more participants), it follows even equilibria are stable, and consequently

odd equilibria (as the alternating equilibria) are unstable.

Finally, notice if there is not a high participation (high π) equilibrium, then

there are zero equilibria. In the high participation equilibrium, π is increasing

in A. Since the equilibrium is continuous, it follows when A is low, then π is

low and network effects become fragile. From equation (A.45) then, when Ã

is sufficiently low that ∂πH < 0 at π = 0, it is impossible for there to be an

equilibrium (which requires ∂πH > 0). Consequently, there exists a cutoff Ac

such that if A ≤ Ac, then no equilibrium on the platform exists.

Proof of Proposition 5:

In the absence of speculators, when Σt = 0, the critical type κ∗ is given by

κ∗ =
1

2πrγ

(
πA− rP

σD

)2

=
rγ

2π

(σD
π

)2

. (A.49)

From Proposition 4, π is (weakly) increasing in A with speculators and it
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is a constant without. As such, for A less than some A∗, adoption is lower

with speculators while if A (weakly) exceeds A∗, then adoption is higher. In

addition, π and πA are ex ante more volatile with speculators because π is a

constant without speculators and positively comoves with A with speculators.

Consider the case when Σt > 0. In this case, those that do not adopt hold

only the risk-free asset. This implies that their optimally invested wealth has

no diffusion process, or by Itô’s Lemma

dFit − E [dFit | Ft] =

(
∂ÂFit

πtΣt

σD
− ∂ΛFitΛitσΛit

)
dẐA

t ≡ 0, (A.50)

in the no adoption region of
(
Â,Σ

)
. Given Ft from equation (A.19), σΛi =

−rγ∂Âfi πΣ
σD

and the dual HJB equation in the no adoption region is

0 =
1

2

1

rγ
σ2

Λi
− ∂Σfi

(
πΣ

σD

)2

+
1

2
∂ÂÂfi

(
πΣ

σD

)2

− rfi. (A.51)

A non-adopting user’s wealth is dragged down by the volatility of her SDF and

is not compensated for by a risk premium from holding tokens. This is because

she may invest in tokens in the future, in which case there is uncertainty in

her consumption. This volatility differs across non-adopting users because

markets are effectively incomplete for them since they cannot trade Ât risk.

Defining SRi (0) = σΛi = −rγ∂Âf∗ πΣ
σD

to be the Sharpe Ratio for the

marginal user if she does not adopt, then the threshold from Proposition 1 is

κ∗ =
1

π

(
SR (1)2

2rγ
+ ∂Âf∗

πΣ

σD
SR (1) +

1

2rγ
SR (0)2

)
=

(
SR (1) + rγ∂Âf∗

πΣ
σD

)2

2πrγ
> 0.

(A.52)

Since κ∗ > 0, π > 0 and learning occurs on the platform in finite time.

50



Online Appendix for A Theory of Speculation
in Community Assets

Kevin Mei and Michael Sockin

Online Appendix A: Additional Proofs

Continuation of Proof of Proposition 1:

Step 4: Transversality

The transversality condition (A.7) then becomes

lim
T→∞

E
[
e−ρTΛiTFiT

]
= 0. (IA.1)

Notice that the Sharpe Ratio SR (ai) is finite a.s. because A is finite a.s. and

the Sharpe Ratio is 0 if σPP = 0. As such, e−ρTΛiT = e−rT Λ̃iT , where Λ̃iT

has expectation Λi0 and is finite a.s. Substituting for FiT , the transversality

condition (IA.1) becomes

lim
T→∞

E
[
e−ρTΛiTFiT

]
= lim

T→∞

1

rγ

(
log γ +

r − ρ
r

)
e−rT − ρ− r

rγ
Λi0e

−rTT(IA.2)

− 1

rγ
E
[
e−rT Λ̃iT log Λ̃iT

]
+ E

[
e−ρTΛiTfi

(
ÂT ,ΣT

)]
= lim

T→∞
E
[
e−ρTΛiTfi

(
ÂT ,ΣT

)]
,

As such, the transversality condition (IA.1) reduces to

lim
T→∞

E
[
e−ρTΛiTfi

(
ÂT ,ΣT

)]
= 0. (IA.3)

Step 5: Sufficiency

As is standard, a solution to (13) that satisfies the transversality condition

(IA.3) and the appropriate boundary conditions is a solution to the continua-
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tion convex dual portfolio choice problem

J i0 = inf
Λit

E
[∫ ∞

0

e−ρt
(
u (ct)− Λit

(
ci (Λit) + πtκi1{κi≤κ∗t }

))
dt

]
, (IA.4)

and Λi0 is chosen such that1

V i
0 = inf

Λi0
J i0 + Λi0Wi0. (IA.5)

It is also standard that under standard regularity conditions, the solution

to the convex dual problem is a solution to the saddle-point problem and a

solution to the primal problem (8) according to

U i
0 = V i

0 + Λi0Fi0. (IA.6)

As adoption is effectively a stopping time problem, optimality of the adoption

region imposes both continuity (value-matching) and smoothness (smooth-

pasting) at the boundary Â∗ (Σ) (equivalently Σ∗
(
Â
)

) at which the user

transitions from speculator to adopter. Otherwise, the user is not indiffer-

ent between policies at the boundary. This imposes

lim
Â→Â∗(Σ)−

∂j
Â
fi

(
Â,Σ

)
= lim

Â→Â∗(Σ)+
∂j
Â
fi

(
Â,Σ

)
, j ∈ {0, 1}

lim
Σ→Σ∗(Â)

−
∂jΣfi

(
Â,Σ

)
= lim

Σ→Σ∗(Â)
+
∂jΣfi

(
Â,Σ

)
, j ∈ {0, 1} (IA.7)

which pin down the boundary and the value of fi

(
Â,Σ

)
at the speculator-

adopter transition boundary.

An additional important boundary condition is when Σ = 0. In this case,

1Because there are no wealth effects with CARA utility, this initial optimization is not
material for our characterization.
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aggregate uncertainty has dissipated and the token price converges to a con-

stant and

fi (A, 0) =
1

r

(
κi −

1

2rγ

(
πA

σD

)2
)

1{κi≤κ∗}. (IA.8)

This is one of the two limiting condition as T → ∞. The other is that the

platform collapses at some time t < T and fi (A,Σt) = 0. It is then immediate

that the transversality condition (IA.3) is satisfied.

Proof of Corollary 1:

Suppose ΣTε = ε > 0 but close to 0. By continuity near the steady-state

limit when Σ = 0 from Proposition 4, if the perceived platform fundamental,

Â, is sufficiently below Âc, then the platform must also fail at time Tε.

Similarly, if Â is sufficiently above Âc, then there must also be a positive

mass of adopters at time Tε (i.e., πTε > 0). In this case, the platform survives

and users eventually learn the true A.

Suppose now that Â is in a neighborhood of Âc, Then, there must be a

critical Â∗Tε such that there is positive participation (πTε > 0) if Â is above

this threshold and the platform fails below this threshold. We now argue

that Â∗Tε > Ac. For ΣTε sufficiently close to 0, there is a small risk premium

embedded in the token’s total return to compensate the marginal adopter for

the residual fundamental risk. As the convenience yield is πA when the token

price is 0 at Σ = 0, it follows the additional risk premia is from an embedded

capital gain µPP − rP. As existence requires πÂ
σD
≥
∣∣∣µPP−rPσPP

∣∣∣ from Proposition

2, it follows that no equilibrium exists locally for Â ≤ Ac (as participation π

is also lower). As such, the region of existence is smaller, and Â∗Tε > Ac.

We can repeat these local arguments backward in time over infinitesimal ε

increments for ΣT2ε = 2ε and ΣT3ε = 3ε and so on to establish that uncertainty

about A narrows the continuation region for Â for which there is a positive

mass of adopters (πt > 0). Consequently, there exists an adapted process

Âc (Σt) that is increasing in Σt such that an equilibrium with positive adoption

3



exists if Ât ≥ Âc (Σt) and does not exist otherwise.

Further, when Â (and consequently participation, π) is high, so is the

expected convenience yield πÂ. Since speculators earn a smaller convenience

yield than adopters, they take a shorter token position when Â is high. By

continuity, speculators take more positive (less negative) positions when Â is

low and more negative positions when Â is high.

Proof of Proposition 6:

Step 1: Optimal Issuance Policy for t > 0

To abstract from time consistency issues in the platform owner’s incentives,

we solve for the optimal seigniorage using stochastic variational (Malliavin)

calculus tools. Suppose the owner follows an issuance strategy {m+ ηεt}t≥0

for some perturbation εt. Then, the law of motion of the platform profits by

Itô’s Lemma is

dΠ =

(
∂MΠ (m+ ηε) +

(
∂ΣΠ− 1

2
∂ÂÂΠ

)(
πΣ

σD

)2
)
dt+ ∂ÂΠ

πΣ

σD
dẐA

=

(
∂MΠm+

(
∂ΣΠ− 1

2
∂ÂÂΠ

)(
πΣ

σD

)2
)
dt+ ∂ÂΠ

πΣ

σD
dZ̃A, (IA.9)

where

dZ̃A = dZ̃A +
∂MΠ

∂ÂΠπΣ
σD

ηεdt, (IA.10)

is a standard Wiener process under a twisted measure P̃ by applying Gir-

sanov’s Theorem to a change of measure Et

Et = exp

−∫ t

0

∂MΠs

∂ÂΠs
πΣ
σD

ηεsdZ̃
A
s −

1

2

∫ t

0

(
∂MΠs

∂ÂΠs
πΣ
σD

ηεs

)2

ds

 . (IA.11)
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Under this variation for t > 0, platform profit is given by

V0 = P0M0+Ẽ
[∫ ∞

0

e−rtPt (mt + ηεt) dt

]
= P0M0+E

[∫ ∞
0

e−rtEtPt (mt + ηεt) dt

]
,

(IA.12)

yields the first-order condition at a stationary point (i.e., η = 0 and Et ≡ 1)

E

[∫ ∞
0

e−rt

(
Ptmt

(
−
∫ t

0

∂MΠs

∂ÂΠs
πΣ
σD

εsdZ̃
A
s

)
+ Ptεt

)
dt

]
= 0, (IA.13)

where Πt is the continuation value

Πt = E
[∫ ∞

t

e−r(s−t)Psmsds

]
. (IA.14)

Applying Malliavin Integration-by-Parts to equation (IA.13), we arrive at

E

[∫ ∞
0

(∫ t

0

Ds
(
e−rtPtmt

)
ds

∂MΠt

∂ÂΠt
πΣ
σD

+ e−rtPt

)
εtdt

]
= 0, (IA.15)

where D is the Malliavin derivative operator. We can rewrite equation (IA.15)

because of the linearity of D by rewriting the summation as

0 = E

[∫ ∞
0

e−rt

(
∂MΠt

∂ÂΠt
πΣ
σD

Dt
(∫ ∞

t

e−r(t−t)Psmsds

)
+ Pt

)
εtdt

]

= E

[∫ ∞
0

e−rt

(
∂MΠt

∂ÂΠt
πΣ
σD

DtΠt + Pt

)
εtdt

]
. (IA.16)

Since this must hold a.a.t., it follows that the necessary condition for the

optimal seigniorage policy from (IA.16) is

∂MΠt

∂ÂΠt
πΣ
σD

DtΠt + Pt = 0. (IA.17)
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Given that

DtΠt = ∂AΠt
πΣ

σD
, (IA.18)

when Πt is a Markov process by the Clark-Ocone Martingale Representation

Theorem, we arrive from (IA.17) at

Pt = −∂MΠt. (IA.19)

Step 2: Optimal Continuation Value for t > 0

Notice that the law of motion of Πt under the optimal issuance policy

equation (IA.19) implies that

dΠ =

(
Pm+ ∂MΠm+

(
1

2
∂ÂÂΠ− ∂ΣΠ

)(
πΣ

σD

)2
)
dt+ ∂ÂΠ

πΣ

σD
dẐA

=

(
1

2
∂ÂÂΠ− ∂ΣΠ

)(
πΣ

σD

)2

dt+ ∂ÂΠ
πΣ

σD
dẐA. (IA.20)

Since the deflated gains process for Πt, Π̃t

Π̃t =

∫ t

0

Psmsds+ e−rtΠt, (IA.21)

must be a martingale under the optimal issuance policy, it follows that Π

satisfies

rΠ =

(
1

2
∂ÂÂΠ− ∂ΣΠ

)(
πΣ

σD

)2

, (IA.22)

which along with equation (IA.19) and the appropriate boundary conditions,

including transversality

lim
T→∞

E
[
e−rTΠT

]
= 0. (IA.23)
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identifies Π = Π
(
Â,Σ,M

)
.

Step 3: Optimal Initial Token Issuance at t = 0

Given the definition of Π
(
Â,Σ,M

)
, the initial token issuance problem at

t = 0 now solves

V0 = sup
M0

P0M0 + Π
(
Ā, σ2

A,M0

)
, (IA.24)

it follows that the FOC for the optimal M0 satisfies

M0 = −
P0 + ∂MΠ

(
Ā, σ2

A,M0

)
∂MP0

. (IA.25)

Notice that since P = −∂MΠ for t > 0 for the optimal m, equation (IA.25)

would be 0 for a continuation discrete issuance ∆Mt = Mt+∆t −Mt, i.e.,

∆Mt = −Pt + ∂MΠt (Mt + ∆Mt)

∂MPt
= 0. (IA.26)

Step 4: User Participation and Token Excess Returns for t > 0

Differentiating equation (IA.22) with respect to M, and imposing P =

−∂MΠ from equation (IA.19), we find that

rP =

(
1

2
∂ÂÂP − ∂ΣP

)(
πΣ

σD

)2

−
(

1

2
∂ÂÂΠ− ∂ΣΠ

)
∂M

(
πΣ

σD

)2

, (IA.27)

and imposing µPP =
(

1
2
∂ÂÂP − ∂ΣP

) (
πΣ
σD

)2

and equation (IA.22), we arrive

at

(µP − r)P = 2rΠ
∂Mπ

π
. (IA.28)

Consequently, the risk premium on the token price is related to the whether

issuing more tokens raises or lowers the volatility of beliefs about A.

This expression also implies that if participation collapses (π = 0), then

there is no risk premium. As the service benefit has zero expectation and is
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noisy without any participation, it follows no users will hold tokens if π = 0.

Consequently, the platform breaks down if participation collapses.

By similar arguments to those in the proof of Proposition 1, the Sharpe

Ratio for users with seigniorage is now

SR (ai) =
(ai + α (1− ai))πÂ/M + (µP − r)P

(ai + α (1− ai))σD/M + σPP
=

(ai + α (1− ai))πÂ/M + 2rΠ∂Mπ
π

(ai + α (1− ai))σD/M + σPP
.

(IA.29)

By similar arguments to those in the proof of Proposition 2, the necessary

condition for positive adoption when α is sufficiently small is now

πÂ

σD
≥
∣∣∣∣(µP − r)PσPP

∣∣∣∣ = 2r

∣∣∣∣Π∂Mπ/πσPP

∣∣∣∣ . (IA.30)

Consequently, the owner can control platform participation by affecting con-

temporaneous participation π and the token’s capital gain through the slope

of this relation, ∂Mπ/π.

Step 5: Optimal Platform Operation

Since the token platform collapses if there is zero participation, in which

case the token price is zero (or negative to still attract buyers), the owner will

not want to allow participation to collapse. Consequently, the optimal policy

is to choose M0 optimally such that there is positive participation, and then

to follow an optimal issuance policy m that maintains it.

Consider the extreme case in which M0 is arbitrarily large. Then, tokens

will have little price appreciation, which suggests that ∂Mπ
π

must be approach

zero or be negative. This debasement, however, does not detract from the

fundamental expected value of the service benefit, πÂ. As such, even if the to-

ken price has minimal price appreciation, there is positive value in collectively

adopting it. As such, π > 0. Consequently, there exist values of M0 (which

may be large) such that there is positive adoption.

8



Therefore, the platform owner will chooseM0 large enough to foster positive

adoption, the exact choice of which is governed by equation (IA.25). At that

point, the platform operates with more tokens being issued over time, and is

well-defined if M0 is large enough such that ∂MΠ < 0, i.e., the token price is

falling over time. For this to be the case, issuance must be such that ∂Mπ < 0.

Proof of Proposition 7:

Let qt =
Mt−XS

t

XS
t

be the number of transactions validated by each specu-

lator. The total transaction fees that accrue to a validator are then qtφdDt.

In addition, each validator receives ζMt

XS
t

tokens as seigniorage for each token

locked in escrow, xsi .

The analysis then proceeds as in the proof of Proposition 1 except now the

volatility of user i′s state price deflator is now

σΛi (ai) =
((qφ+ α) (1− ai) + (1− φ) ai) πÂ/M +

(
µP + 1−ai

XS
t
ζM
)
P − rP

((qφ+ α) (1− ai) + (1− φ) ai)σD/M + σPP
,

(IA.31)

which is again user i′s Sharpe Ratio. This reflects that an adopter receives an

expected benefit of (1− φ) πÂ and faces a conditional volatility of (1− φ)σD.

In contrast, speculators who also act as validators receive expected transaction

fees φqπÂ/M and face a conditional volatility of φqσD. Validators also receive

seigniorage ζ per token. We implicitly assume that shorting as a speculator

also shorts a validator’s cash flows.

Although seigniorage adds another state variable to the analysis, the total

supply of tokens Mt, the growth rate of tokens is deterministic and conse-

quently does not introduce an additional source of risk onto the platform.
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The analogue of equation (A.18) for the dual HJB equation for Fi is

0 =
1

γ
log γ − 1

γ
log Λi + πκiai − ∂ΛiFiΛi (r − ρ)− ∂ΣFi

(
πΣ

σD

)2

+
1

2
∂ΛiΛiFiΛ

2
iσ

2
Λi

+
1

2
∂ÂÂFi

(
πΣ

σD

)2

− σΛi

(
−Λi∂ΛiFiσΛi + ∂ÂFi

πΣ

σD

)
+ ∂MFζM − rFi.(IA.32)

Conjecturing

Fi = f0 + fΛi log Λi + fi (A,Σ,M) , (IA.33)

we arrive at

fΛi = − 1

rγ
,

f0 =
1

rγ

(
log γ +

r − ρ
r

)
, (IA.34)

where fi now solves

0 = πκiai−
1

2

1

rγ
σ2

Λi
−∂ÂfiσΛi

πΣ

σD
+∂MfiζM−∂Σfi

(
πΣ

σD

)2

+
1

2
∂ÂÂfi

(
πΣ

σD

)2

−rfi.

(IA.35)

Consequently, the optimal policies are the same as in Proposition 1 except for

the modified Sharpe Ratio for validators.

Online Appendix B: Alternative Convenience
Yield

In this Appendix, we consider an alternative specification for the conve-

nience yield. Instead of representing a monetary gain for users, the convenience

yield provides a mean-variance flow utility benefit to a user e−ρtdv
(
ωitWit

Pt
, Dt, ai

)
,
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where

dv

(
ωitWit

Pt
, Dt, ai

)
= (ai + α (1− ai))

ωitWit

Pt
dDt −

1

2

(
(ai + α (1− ai))

ωitWit

Pt

)2

d 〈D〉t

= (ai + α (1− ai))
ωitWit

Pt
dDt −

σ2
D

2

(
(ai + α (1− ai))

ωitWit

Pt

)2

dt,(IA.36)

ωitWit

Pt
is the number of tokens user i purchases and d 〈D〉t is the quadratic vari-

ation of Dt. Although user preferences are no longer generically time-consistent

because of the mean-variance specification, our convex dual approach using to

characterizing optimal consumption, investment, and adoption policies do not

require it.

Under this specification, the analogue of problem (A.4) in the proof of

Proposition 1 is

U i
0 = supci,ωi,ai infΛit E

[∫ ∞
0

e−ρt
(
u (cit) dt+ dv

(
ωitWit

Pt
, Dt, ai

))]
+ Λi0Wi0

− lim
T→∞

E
[
e−ρTΛiTWiT

]
+ E

[∫ ∞
0

e−ρtΛitWit (µΛt + r − ρ) dt

]
+E

[∫ ∞
0

e−ρtΛitWit (ωit (µPt − r − σΛtσPt) + πtκiait + cit) dt

]
.

(IA.37)

Assuming the Minimax Theorem holds, the FOCs for ωit and Wit imply with

some manipulation that again

µΛ = − (r − ρ) , (IA.38)
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and now

(ai + α (1− ai))πÂ−ωi
Wi

P
(ai + α (1− ai))2 σ2

D−ΛiσΛσPP+Λi (µPP − rP ) = 0.

(IA.39)

Matching the diffusion terms between optimally invested wealth Fit by apply-

ing Itô’s Lemma and the actual law of motion of wealth Wit given user i’s

trading behavior, it follows that

ωiWiσP = −∂ΛFΛiσΛ + ∂AF
πΣ

σD
. (IA.40)

Matching equations (IA.39) and (IA.40), and defining xi = ωi
Wi

P
, we arrive at

σΛ =
(ai + α (1− ai))πÂ+ Λi (µPP − rP )− ∂AF πΣ

σD
(ai + α (1− ai))2 σ2

D

−∂ΛFΛi (ai + α (1− ai))2 σ2
D + ΛiσPP

,

(IA.41)

and

xi = −∂ΛF
1

σPP

(ai + α (1− ai))πÂ+ Λi (µPP − rP )

−∂ΛF (ai + α (1− ai))2 σ2
D + σPP

+
∂AF

πΣ
σD

−∂ΛF (ai + α (1− ai))2 σ2
D + σPP

.

(IA.42)

Notice that the expected convenience yield, πÂ, still governs the return from

adoption while the local variance σ2
D governs the risk. In the absence of un-

certainty about A (i.e., Σ = 0), optimal token demand reduces to

xi =
(ai + α (1− ai))πÂ− ΛirP

(ai + α (1− ai))2 σ2
D

. (IA.43)

Since the state price deflator of user i, Λi, does not cancel in its diffusion, σΛ,

or in the optimal token demand, xi, there are now wealth effects in user i’s

problem because Λi is inversely related (as the costate) to wealth Wi. As a

result, characterization of the optimal adoption policy, ai, and the equilibrium

12



price is significantly less tractable and requires keeping track of the whole dual

wealth distribution.

Online Appendix C: Numerical Appendix

In this Appendix, we provide additional details regarding the numerical

solution. We can find a numerical solution to characterize this equilibrium from

Proposition 2 by solving the system of partial differential equations presented

by equations (13), (14) and (19). We use a finite difference method to solve

for the functions fi(Â,Σ), P (Â,Σ) and κ∗(Â,Σ) on a uniformly spaced, two-

dimensional grid of (Â,Σ). A grid of log-normal distributed κi from [0, κ̄] is

used for numerical integration and as a tool for solving κ∗, as described below.

The number of points in the κi grid also dictates the number of fi(Â,Σ)

functions in the system (i.e., each user κi has a fi(Â,Σ)).

We first make an initial guess (P 0, κ∗0, f 0
i ), then iteratively update (P n, κ∗n, fni )

until the difference between iterations is sufficiently small. The steady-state

solution, as described by Proposition 4, is provided to the program as an initial

guess. We then update P 1(Â,Σ) using the “implicit” method, as referred to by

other heterogeneous user models like Achdou et al. (2022). In this approach,

the next P n+1(Â,Σ) is such that:

P n+1 − P n

∆
+ rP n+1 = u+

(
1

2
∂AAP

n+1 − ∂ΣP
n+1

)(
πΣ

σD

)2

where ∆ is the step size parameter, π is calculated as G(κ∗), the cumula-

tive distribution function of κ, and u =

(
1− (1− α) v 1−π(

ασD+∂ÂP
πΣ
σD

)2

)
πÂ +

rγv
∫ κ̄

0

(
1{κi≤κ∗}
σ2
D
πΣ

+∂ÂP
+

1{κi>κ∗}
ασ2
D

πΣ
+∂ÂP

)
∂ÂfidG (κi)− rγv.

This is rearranged into the linear system:

1

∆
(Pn+1 −Pn) + rPn+1 = un + AnPn+1

13



⇒
((

r +
1

∆

)
I−An

)
Pn+1 = un +

1

∆
Pn

where An is a sparse matrix that takes finite differences. This yields a

solution P n+1. Each iteration n also uses a similar method to update fn+1
i for

each κi user.

Given a system of P (Â,Σ) and fi(Â,Σ), we can find the cutoff user κ∗.

Our method is to: guess each κi within our grid as the candidate κ∗, calculate

the corresponding πi, and evaluate equation (14). To rule out multiple equi-

libria, we pick the highest κ∗ that still satisfies equation (14). Each candidate

κi implies a candidate κ∗. Within each iteration, n, nests another iterative

process that updates κ∗ until equation (14) yields a fixed point and takes that

solution as κ∗n+1. Each iteration n updates (P n, κ∗n, fni ) until the difference

between iterations is sufficiently small, and the system of equations converges.
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