The mink industry is problematic beyond its potential to spread disease. Animal welfare practices fall short, with minks showing signs of fearfulness, self-mutilation, infanticide, and breeding difficulties (10). Mink production also leads to high NO emissions, eutrophication, and water consumption (11); the climate footprint of producing 1 kg of mink fur is 5 times as high as the footprint of producing 1 kg of wool (11). The unsustainable use of natural resources by the mink industry impedes our response and recovery from the pandemic, puts animals in harmful conditions, and jeopardizes our ability to achieve the United Nations’ Sustainable Development Goals (12). It is urgent to monitor, restrict, and—where possible—ban mink production.

Minks harbor zoonotic infectious diseases such as leptospirosis, which leads to kidney failure in humans (4), and coronavirus disease 2019 (COVID-19), the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been found in minks in the Netherlands, Denmark, Spain, and the United States (5, 6). In October, the spread of COVID-19 in Danish mink farms spun out of control, threatening the country’s disease control and public health and resulting in the culling of millions of minks (7). Similar cases are likely in China, which harbors a multispecies fur industry (8). A recent study of the SARS-CoV-2 genome and mutations suggests that the virus might be able to spread from minks to humans (9).

The mink industry is associated with human disease, animal cruelty, and environmental pollution.

Support U.S. research during COVID-19

Colleges and universities are critical components of the U.S. innovation ecosystem. These institutions are called upon to play ever-evolving roles in building talent for a changing workforce; achieving scientific breakthroughs; creating new technologies, products, and companies; and contributing to local economic development. Yet, as the pace of change accelerates across our economy, federal and state budget constraints have made meeting these expectations increasingly challenging. The federal commitment to research and development stands at a multidecadal low as a percentage of GDP (1). Now, the coronavirus disease...
2019 (COVID-19) pandemic has disrupted almost all aspects of higher education, including the ability to keep laboratories open, conduct research in a timely manner, collect and process data, and collaborate with colleagues and students. As colleges and universities across the nation make difficult decisions to advance their vital missions this fall, the $55 billion in federal support for university-performed R&D (i.e., on-campus research) is at risk (2). Maintaining the strength of the U.S. research enterprise—the same research enterprise that has enabled the rapid sequencing of the COVID-19 genome and launched numerous treatment and vaccine studies—must be a national priority. Laboratories must remain open, and researchers must be allowed to continue data collection and analysis, with all the necessary health protocols in place.

We cannot afford to shut down critical projects with long-term national benefits or to postpone projects that provide the hands-on graduate and undergraduate student research experiences necessary to train the next generation of scientists and engineers. In these difficult times, we call upon the federal government to provide the leadership, critical funding, and programmatic flexibility necessary to enable the nation’s colleges and universities to continue the U.S. commitment to research, exploration, and new knowledge creation that will power our economy and provide opportunity for all.

1University Vice-Chair, Council on Competitiveness, Washington, DC 20006, USA. 2President, Arizona State University, Tempe, AZ 85281, USA. 3President, James Madison University, Harrisonburg, VA 22807, USA. 4President, University of Illinois at Chicago, Chicago, IL 60607, USA. 5President, University of Delaware, Newark, DE 19716, USA. 6President, Pennsylvania State University, University Park, PA 16802, USA. 7President, Georgia State University, Atlanta, GA 30302, USA. 8Chancellor, University of Wisconsin—Madison, Madison, WI 53706, USA. 9Chancellor, University of California, Los Angeles, Los Angeles, CA 90095, USA. 10President, Columbia University, New York, NY 10027, USA. 11President, Boston University, Boston, MA 02215, USA. 12President, American University, Washington, DC 20016, USA. 13Director, Emory Biomedical Catalyst, Emory University, Atlanta, GA 30322, USA. 14President, Clemson University, Clemson, SC 29634, USA. 15President, University of South Florida, Tampa, FL 33620, USA. 16President, Georgetown University, Washington, DC 20057, USA. 17President, University of Miami, Miami, FL 33123, USA. 18President, University of Florida, Gainesville, FL 32611, USA. 19President, University of Minnesota, Minneapolis, MN 55455, USA. 20Chancellor, University of Pittsburgh, Pittsburgh, PA 15213, USA. 21President, West Virginia University, Morgantown, WV 26506, USA. 22President, Carnegie Institute for Science, Washington, DC 20005, USA. 23Former President, University of Toledo, Toledo, OH 43606, USA. 24President, Carnegie-Mellon University, Pittsburgh, PA 15213, USA. 25President, University of Notre Dame, Notre Dame, IN 46464, USA. 26President, The Ohio State University, Columbus, OH 43210, USA. 27Executive Director, College Promise Campaign, Washington, DC 20006, USA. 28Laboratory Director, Argonne National Laboratory, Lemont, IL 60439, USA. 29President, University of Colorado, Boulder, CO 80309, USA. 30Chancellor, University of California, San Diego, La Jolla, CA 92093, USA. 31President, Worcester Polytechnic Institute, Worcester, MA 01609, USA. 32President, Marquette University, Milwaukee, WI 53233, USA. 33Chancellor, University of California, Davis, Davis, CA 95616, USA. 34President, University of Georgia, Athens, GA 30602, USA. 35President, Kansas State University, Manhattan, KS 66506, USA. 36President, Emeritus, The University of Akron, Akron, OH 44325, USA. 37President, Bowdoin College, Brunswick, ME 04011, USA. 38President, University of Memphis, Memphis, TN 38152, USA. 39President, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. 40President, University of Michigan, Ann Arbor, MI 48109, USA. 41President, Academy of Art University, San Francisco, CA 94115, USA. 42Chancellor, Webster University, St. Louis, MO 63119, USA. 43Chancellor, University of Massachusetts, Amherst, Amherst, MA 01003, USA. 44President, University at Buffalo, Buffalo, NY 14260, USA. 45President, University of Utah, Salt Lake City, UT 84112, USA. 46President, Denison University, Granville, OH 43023, USA. 47Chancellor, University of California, Riverside, Riverside, CA 92521, USA. 48President & CEO, Council on Competitiveness, Washington, DC 20006, USA. 49President, Iowa State University, Ames, IA 50011, USA. 50Chancellor, North Carolina State University, Raleigh, NC 27607, USA. 51President, The University of Chicago, Chicago, IL 60637, USA.

*Corresponding author.
Email: deborahh@s.COMPete.org

All authors are members of the Council on Competitiveness.

REFERENCES AND NOTES

10.1126/science.abf0489

Hainan peacock-pearasant needs focused protection

The Hainan peacock (Polyleptodon katsumatae), a distinct species endemic to Hainan island (1, 2), requires protection. Since the 1950s (3), the Hainan peacock-pearasant population has dispersed into small, partially isolated subpopulations. As their habitat of tropical and seasonal rainforests suffered from overexploitation and deforestation (2, 4), the peacock-pearasant population declined from about 2700 in 1990 (4) to only about 300 individuals in 2000 (3). With such small numbers, Hainan peacock-pearasants could lose their ability to maintain a self-sustaining population (5).

The Hainan peacock-pearasant has been categorized as Endangered on the International Union for Conservation of Nature (IUCN) Red List since 2016 (6) and is classified as Category I in China’s list of nationally protected animals (3). Despite this recognition, current conservation efforts are insufficient (7). The Chinese government should continue to strengthen the protection of mountain rainforest vegetation and prohibit recreational hunting, especially at the altitudes the peacock-pearasants inhabit (up to about 1500 meters (8)). Fortunately, Hainan Tropical Rainforest National Park, now under construction, could provide the peacock-pearasant with a more stable habitat (9, 10). If the peacock-pearasant’s original habitat can no longer meet the needs of survival and reproduction, rescue measures should be taken, including breeding bases, gene banks, germplasm resource banks, and relocation to protected areas where they are more likely to thrive.
Support U.S. research during COVID-19

Science 370 (6516), 539-540.
DOI: 10.1126/science.abf1225