Delaware Field and Vegetable Crop Insect Pest Management Trials 2019

David Owens

Entomology Extension Specialist Carvel Research and Education Center 16483 County Seat Highway Georgetown, DE 19947 (302) 856-2585 ext 574; E-mail owensd@udel.edu (302) 698-7125 (cell)

Joseph Deidesheimer
Carvel Research and Education Center
16483 County Seat Highway
Georgetown, DE 19947
E-mail carvelent@gmail.com

Technical Support: Nicholas Bounds, Samantha Cotton, Richard Monaco, Cody Stubbs

The purpose of this book is to disseminate insecticide, miticide, and molluscicide efficacy trial results for information only. These data are not meant to be used for marketing purposes. Inclusion or exclusion of a product from a trial is not meant as an endorsement of one or discrimination against another. Please note that not all products evaluated might be labeled for use on the crop in which they were tested on. If you have questions or concerns, feel free to contact David Owens.

Acknowledgements

This research could not have been possible without the support from numerous individuals, farmers, and organizations, many of whom are listed below:

Carvel REC faculty and staff, especially:

Dr. Mark Isaacs (Director) Brian Hearn (Farm Manager)

James Atkins Ward Harris Vic Green

Dr. Gordon Johnson

UMD Lower Eastern Shore Research and Education faculty and staff, especially:

David Armentrout (Farm Manager)

UMD Wye Research and Education Center faculty and staff, especially:

Dr. Nicole Fiorellino John Draper

Sussex County Council

Competitive Grants:

Mar-Del Watermelon Association

CENFOODS

DDA Specialty Crop Block Grant Program

PVGA

Industry Support:

Corteva

Marrone BioInovations

Bayer

Arysta LifeScience Nichino America

FMC

Valent USA

Syngenta

Crites Seed, Inc.

BASF IR-4

Seminis

University Collaborators:

Dr. Ivan Hiltpold, University of Delaware Dr. Kelly Hamby, University of Maryland Dr. Sally Taylor, Virginia Tech Tidewater

AREC

Dr. Dominic Reisig, NCSU Vernon James

REC

Dr. Galen Dively, University of Maryland

Farmers and Consultants:

Mark Collins

Travis Hastings

Ray and Steve Vincent

Gary Conaway

Kevin Evans

Grier Stayton

Will Betts

Dennis Wyatt

Guy and Dale Phillips

Cory LeCates

Mel and Chris Wyatt

Keith and Will Carlisle

Doug Corey Gary Calloway

Trapwoods Consulting

Table of Contents

Vegetables	
Brussel Sprouts Harlequin Bug4	
Cabbage Leps5 - 11	
Peas Seed Corn Maggot12 - 13	,
Corn Earworm Vial Tests14	
Sweet Corn CEW Sentinel Plots	
Sweet Corn CEW	
Cucurbit Cyflumetofen Crop Safety22 - 27	,
Watermelon Spider Mite Survey28	
Watermelon Spider Mites	
Watermelon Cucumber Beetles Efficacy32-40	
Watermelon Cucumber Beetle Behavior41-45	
Watermelon Aphids	
watermeion Apinus	
Field Crops	
Early Season Pest Moth Survey48	
·	
Wheat Aphids	
Barley Aphids52-53	
Sorghum Sugarcane Aphid54-55	
Sorghum CEW56-57	
0 1 01 50	
Soybean Slugs58	
Soybean CEW59-64	
Soybean Dectes65	
Sunflower Dectes66-69	
Miscellaneous Observations70	
Sovbean Pest Loss Survey71	
DO YOCUII I CSI LOSS DUI YOY 1	

Brussels Sprouts 2019 Harlequin Bug

Location: Carvel REC, Field 31 East

Variety: See Table Planting Date: See Table

Experimental Design: Randomized complete block design with 4 treatments and 4 replicates **Treatment Method:** CO₂-pressurized backpack sprayer fitted with 3 D4 nozzles and #45 cores

delivering 45 GPA at 62 PSI. Outer two nozzles were on 1' drops and oriented to

spray the sides of the plant.

Treatment Date: 25 September 1 row x 18'

Row Spacing:36"Plant Spacing:18"Sample Size:5 plants

Data Analysis: Data Log transformed. ANOVA; Dunnett's means separation

Notes: Treatment variability due to variety was extremely high. There may be varietal differences, but could not be determined based on the limited number of each variety assessed for harlequin bug. Sivanto Prime is not labeled for harlequin bug.

TRT	Material	Rate
1	UTC	
2	Actara	5 oz/A
3	Carbaryl	0.75 qt/A
4	Sivanto Prime	14 fl oz/A

TRT	1 d (PRE)	2 DAT
1	22.7	21.3 a
2	80.5	0.3 b
3	70.0	30.5 a
4	22.0	4.6 ab
ANOVA	NS	P = 0.051

Variety	Planting Date	n	1 d (Pre)
Aurelius	6 March	1	34
Capitola	6 March, 23 April	3	50.7
Confidante	15 March	2	11.0
Dagan	6 March	1	41.0
Gustus	6 March, 23 April	3	11.0
Hestia	6 March, 23 April	3	127.7
Igor	23 April	1	76.0
Jade Cross	6 March	1	23.0
Marte	6 March	1	16.0

Cabbage 2019 a

Location: Carvel REC, Field 1 **Variety:** 'Early Round Dutch'

Transplant Date: 15 August

Experimental Design: Randomized complete block design with 6 treatments and 4 replicates

Plot size: 1 row x 18', 60" between plots

Plant Spacing: 1.5'

Treatment Method: CO₂-pressurized backpack sprayer with single-row boom equipped with

3 D4 tips and #45 cores delivering 45 GPA at 62 PSI. Outside nozzles

were on drop tubes for sprays 2 and 3 with nozzles oriented perpendicular to the ground to achieve maximum side-coverage.

Harvest Date: 23 October

Sample Size: 5 plants/plot; 15 leaves/plot for aphids and whiteflies, 10 heads

harvest/plot. Cabbage was graded on a 0-4 scale, where 0 = clean, 1 = frame leaf damage, 2 = slight wrapper leaf damage, 3 = significant wrapper leaf damage, 3.5 = slight head damage, 4 = significant head damage. Cabbage receiving a grade of 2 or less was considered

marketable.

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Application Rates and Dates:

TRT	Material	Rate	Application Dates
1	Coragen	4.25 fl oz/A	9/17, 9/25, 10/11
2	Movento	5 fl oz/A	9/17, 9/25, 10/11
3	Orthene	1 lb/A	9/17, 9/25, 10/11
4	Harvanta	13 fl oz/A	9/17, 9/25, 10/11
5	Avaunt eVo	3 oz/A	9/17, 9/25, 10/11
6	UTC		

Induce was added to all treatments at a rate of 2 pints/100 gal

Season Total

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies	Damage	%
							Rating	Marketable
1	2.3	0.5	0.8	3.5 ab	13.3	3.5	1.2 b	80.0 a
2	4.8	6.8	4.0	15.5 ab	0.8	1.0	2.7 a	17.5 b
3	1.3	1.0	0.8	3.0 ab	50.0	2.3	1.3 b	82.5 a
4	0.3	0.3	0.3	0.8 b	6.0	1.3	1.1 b	82.9 a
5	1.3	1.0	1.3	3.5 ab	9.8	2.0	1.0 b	87.2 a
6	9.5	11.8	4.5	25.8 a	15.8	3.8	2.8 a	20.0 b
ANOVA	P < 0.001	NS	NS	P = 0.017	NS	NS	P < 0.001	P < 0.001

ICW – Imported cabbageworm

DBM – Diamondback moth

16 Sept (1 d PRE)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.8	1.5	0	2.3	10.8	2.0
2	0.5	1.0	0.5	2.0	0.5	2.0
3	1.0	0.7	0.3	2.0	3.0	9.0
4	1.5	0	0	1.5	6.0	1.5
5	1.0	0.3	0	1.3	0.8	1.3
6	1.0	0.5	0	1.5	24.8	3.5
ANOVA	NS	NS	NS	NS	NS*	NS

^{*}Welch's Test

19 Sept (2 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	1.8	0	0 b	1.8	3.8	0.8
2	1.8	0	0 b	1.8	0	0.5
3	0.0	0	0 b	0	43.5	0.3
4	0.3	0.3	0 b	0.5	1.5	0.3
5	0.8	0	0 b	0.8	1.0	0.8
6	1.0	0	0.5 a	1.5	4.5	2.0
ANOVA	NS	NS	P = 0.038	NS	NS	NS

Sept 24 (7 DAT, 1 PRE)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.3 b	0.3	0	0.5 b	4.5	1.5
2	1.8 ab	1.3	0	3.0 ab	0.3	0
3	0.3 b	0	0.3	0.5 b	6.0	0
4	0 b	0	0	0 b	1.8	0.3
5	0.3 b	0	0	0.3 b	1.3	0.5
6	3.8 a	1.3	0.5	5.5 a	0.8	0.3
ANOVA	P < 0.001	NS	NS	P = 0.002	NS	NS

Sept 27 (2 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0	0	0.3	0.3	0.5	0.5
2	0.5	0.8	0	1.3	0	0.5
3	0.3	0	0.3	0.5	0	1.5
4	0	0	0	0	0	0.3
5	0	0.3	1.3	1.5	2.0	0
6	1.0	3.3	0.5	4.8	1.8	0.5
ANOVA	NS	NS	NS	NS	NS	NS

Oct 1 (6 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.3	0	0.3	0.5 ab	0.3	0.5
2	0.3	1.0	0.8	2.0 ab	0	0
3	0	0	0	0 b	0	0.5
4	0	0	0.3	0.3 b	0.5	0
5	0.3	0	0	0.3 b	2.3	0
6	0.5	2.3	0	2.8 a	2.3	0
ANOVA	NS	P = 0.027	NS	P = 0.006	NS	NS

Oct 7 (13 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0	0	0	0	0	0
2	0	0.3	0.5	0.8	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0.5	0.3
6	0.5	2.8	0.8	4.0	4.5	0
ANOVA	NS	NS	NS	NS	NS	NS

Oct 11 (0 PRE)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0 b	0.3	0	0.3	3.3	0.3
2	0 b	2.8	1.5	4.3	0.3	0
3	0.5 ab	1.0	0.3	1.8	0.5	0
4	0 b	0	0	0	0.8	0.5
5	0 b	0.8	0	0.8	2.3	0.3
6	0.8 a	1.8	2.0	4.5	1.8	0.8
ANOVA	P = 0.007	NS	NS	NS	NS	NS

Oct 14 (3 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0 b	0	0.3	0.3 ab	0.8	0
2	0 b	0.3	0.3	0.5 ab	0	0
3	0 b	0	0	0 b	0	0
4	0 b	0	0	0 b	0.3	0
5	0 b	0	0	0 b	0.3	0.3
6	1.3 a	0	0	1.3 a	0.3	0.3
ANOVA	P = 0.001	NS	NS	P = 0.015	NS	NS

Oct 21 (10 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0	0	0	0	0.3	0
2	0.5	0.5	1.0	2.0	0.3	0
3	0.3	0	0	0.3	0	0
4	0	0	0	0	1.3	0
5	0	0	0	0	0.3	0
6	0.8	0.5	0.3	1.5	0	0
ANOVA	NS	NS	NS	NS	NS	NS

Cabbage 2019 b

Location: Carvel REC, Field 1

Variety: 'Savoy Ace' Transplant Date: 15 August

Experimental Design: Randomized complete block design with 6 treatments and 4 replicates

Plot size: 2 rows x 18', 60" between plots

Row Spacing: 30" Plant Spacing: 1.5'

Treatment Method: CO₂-pressurized backpack sprayer with single-row boom equipped with

3 D4 tips and #45 cores delivering 45 GPA at 62 PSI. Outside tips were

oriented sideways off of a drop arm.

Harvest Date: 6 November

Sample Size: 5 plants/plot; 15 leaves/plot for aphids and whiteflies, 10 heads

harvest/plot. Cabbage was graded on a 0-4 scale, where 0 = clean, 1 = frame leaf damage, 2 = slight wrapper leaf damage, 3 = significant wrapper leaf damage, 3.5 = slight head damage, 4 = significant head damage. Cabbage receiving a grade of 2 or less was considered

marketable.

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Application Rates and Dates:

TRT	Material	Rate	Application Dates	
1	UTC			
2	Movento	5 fl oz/A	9/17, 9/25, 10/3, 10/30	
3	Voliam Xpress	7.5 fl oz/A	9/17, 9/25, 10/3, 10/30	

Induce was added to all treatments at a rate of 2 pints/100 gal

Season Totals

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies	Damage	%
							Rating	Marketable
1	9.0	8.0 a	0.5	17.5 a	33.3	10.0	2.0 a	70.0 b
2	1.5	3.0 b	0.5	5.0 b	7.0	4.8	1.0 b	97.5 a
3	0	0 b	0	0 b	15.3	12.3	0.6 c	97.5 a
ANOVA	P =	P =		P =			P	P = 0.002
	0.052	0.003		0.007			< 0.001	

ICW – Imported cabbageworm

DBM – Diamondback moth

Total season data excludes first pre-treatment data (Sept. 16). 'Other' worms include various armyworm species, cross striped cabbaged worm, corn earworm, cabbage loopers, and unidentified larvae.

Sept 16 (1 PRE)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.8	0	0	0.8	2.0	8.0
2	0.3	0	0	0.3	1.5	3.3
3	0.5	0.3	0	0.8	0.5	8.3
ANOVA	NS	NS	NS	NS	NS	NS

Sept 19 (2 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.8	0	0	0.8	1.5	5.0
2	0	0	0	0	2.5	0.3
3	0	0	0	0	0.3	2.3
ANOVA	NS	NS	NS	NS	NS	NS

Sept 24 (7 DAT, 1 PRE)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	1.0	0.8	0	1.8 a	3.0	0.5
2	0.3	0.5	0	0.8 ab	0.5	2.8
3	0	0	0	0 b	0.8	1.5
ANOVA	NS	NS	NS	P = 0.034	NS	NS

Sept 27 (2 DAT)

ocpt 27 (2 D	1 1 1 <i>1</i>					
TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0	0.8	0	0.8	0.5	1.8
2	0	0.5	0	0.5	0	0.5
3	0	0	0	0	0	2.0
ANOVA	NS	NS	NS	NS	NS	NS

Oct 1 (6 DAT, 2 PRE)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.3	2.0	0	2.3	8.0	0.3
2	0.3	1.5	0	1.8	0	0.3
3	0	0	0	0	0.5	1.5
ANOVA	NS	NS	NS	NS	NS	NS

Oct. 7 (4 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.3	1.8	0	2.0	0	0
2	0.5	0	0	0.5	0	0.3
3	0	0	0	0	0	0.3
ANOVA	NS	NS	NS	NS	NS	NS

Oct 11 (7 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	1.8 a	1.5 a	0.3	3.5 a	0 b	1.3
2	0.3 b	0.3 b	0.3	0.8 b	0 b	0.3
3	0 b	0 b	0	0 b	1.0 a	0.3
ANOVA	P = 0.007	P = 0.002	NS	P < 0.001	P = 0.022	NS

Oct 14 (14 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.3	0.3	0	0.5	5.3	0.8
2	0	0.3	0.3	0.5	0.3	0
3	0	0	0	0	1.5	0
ANOVA	NS	NS	NS	NS	NS	NS

Oct 21 (21 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	1.8	0.3	0.3	2.3 a	0	0
2	0	0	0	0 b	0	0.3
3	0	0	0	0 b	0	0
ANOVA	NS	NS	NS	P = 0.015	NS	NS

Oct 29 (28 DAT, 1 PRE)

OCC => (=0 E	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	1.0	0.5	0	1.5	10.5	0
2	0.3	0	0	0.3	2.3	0.3
3	0	0	0	0	4.8	0
ANOVA	NS	NS	NS	P = 0.056	NS	NS

Nov 1 (2 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	1.5	0.3	0	1.8	3.0	0.5
2	0	0	0	0	1.5	0
3	0	0	0	0	2.5	4.0
ANOVA	P = 0.007	NS	NS	P = 0.028	NS	NS

Nov 5 (6 DAT)

TRT	ICW	DBM	Other	Total	Aphids	Whiteflies
1	0.5	0	0	0.5	1.5 ab	0
2	0	0	0	0	0 b	0
3	0	0	0	0	4.0 a	0
ANOVA	NS	NS	NS	NS	P = 0.039	NS

Peas 2019 Seedcorn Maggot 1

Location: Carvel REC, Dill Farm

Variety: 'Knight'
Planting Date: 9 April

Experimental Design: Randomized complete block design with 5 treatments, 4 replicates; **Treatment Method:** Monosem planter with in-furrow application via fertilizer drops

delivering 9.2 GPA.

Plot size: 2 row x 15'

Row Spacing: 30"

Plant Spacing: 70,000 seeds/acre Sample Size: 3 row-ft per row

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Notes: Moistened 'Ol Roy' dog food and dried blood meal was spread over plots after planting at rates of 256 g per row each. Chicken manure spread ~1 week before planting at a rate of 6 tons/acre.

TRT	Material	Rate
1	UTC	
2	Verimark	13.5 fl oz/A
3	Radiant	6.0 fl oz/A
4	Orthene	8.0 oz/A
5	Capture LFR	8.5 fl oz/A
6	Admire Pro	7.0 fl oz/A

TRT	April 17	Apr	il 23	April 30				
	Stand/ft	Stand/ft	%Runts	Stand/ft	%Runts	%Cotyledon	%Cotyledon	
						damage	+ Stem	
1	3.88	4.47	11.6	3.38 ab	35.8 ab	55.5 a	19.3	
2	3.38	4.56	11.0	4.10 ab	29.2 ab	31.8 bc	21.3	
3	3.71	4.71	9.8	4.05 ab	30.3 ab	47.2 abc	12.3	
4	4.19	5.07	5.3	3.84 ab	37.7 ab	50.5 ab	14.8	
5	3.79	4.69	10.4	2.84 b	58.0 a	30.0 c	12.5	
6	3.78	4.86	6.5	4.80 a 18.8 b 58.2 a 19.0				
ANOVA	NS	NS	NS	P = 0.016	P = 0.014	P = 0.036	NS	

Peas 2019 Seedcorn Maggot 2

Location: Carvel REC, Dill Farm

Variety: 'Hudson' Planting Date: 9 April

Experimental Design: Randomized complete block design with 5 treatments, 4 replicates; **Treatment Method:** Monosem planter with in-furrow application via fertilizer drops

delivering 9.2 GPA.

Plot size: 2 row x 15'

Row Spacing: 30"

Plant Spacing: 70,000 seeds/acre

Sample Size: 14 row-ft stand counts, 6 row-ft maggot injury
Data Analysis: ANOVA; Tukey-Kramer HSD means separation

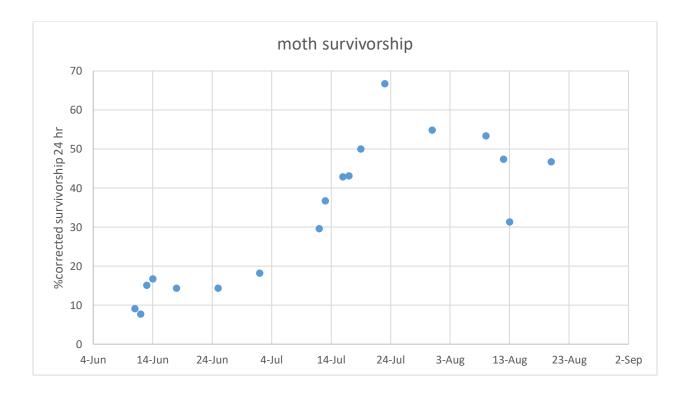
Notes: Moistened 'Old Roy' dog food was spread over plots after planting at rates of 256 g per row each

TRT	Material	Rate
1	UTC	
2	Verimark	13.5 fl oz/A
3	Radiant	6.0 fl oz/A
4	Orthene	8.0 oz/A
5	Capture LFR	8.5 fl oz/A
6	Admire Pro	7.0 fl oz/A
7	Cruiser	Seed Trt

TRT	May 6		May 14		May 17			
	Stand	Runts	Stand	Runts	Stand	Runts	%Cotyledon	%Cotyledon
							damage	+ Stem
1	50.5 bc	3.0	52.3	2.8	52.5	3.3	57.4	28.7
2	49.5 c	1.5	53.3	1.8	53.3	3.8	56.8	20.5
3	48.5 c	3.5	53.8	1.5	54.0	4.5	64.1	5.9
4	52.5	3.3	55.5	1.8	57.0	4.3	69.9	9.3
	abc							
5	54.8 ab	2.8	56.3	2.8	55.8	4.3	62.3	15.8
6	55.5 a	1.0	55.5	0.8	56.0	3.8	44.0	18.6
7	50.3 bc	2.0	54.0	0.5	53.0	3.3	41.2	11.8
ANOVA	P =	NS	NS	P =	P =	P =	P = 0.036	NS
	0.026			0.042	0.016	0.014		

Corn Earworm Cypermethrin Adult Vial Tests 2019

Purpose: Determine CEW susceptibility to cypermethrin as a proxy for pyrethroid susceptibility


Method: Adult Vial Test

Procedure: Male CEW moths collected daily from Hartstack pheromone traps baited with Zealure pheromone strips. Moths placed in glass scintillation vials treated with 5 µg technical grade cypermethrin dissolved in acetone. Vials were treated by Virginia Tech's Tidewater Agricultural Research and Education Center. Vials were replaced 4 weeks post-preparation. Control vials were treated with acetone only. Moths were placed in vials for 24 hours. Vials were loosely capped and kept tilted at a 45° angle.

Evaluation Criteria: After 24 hours, moths were removed from vials. Moths that flew at least 3 feet were counted as alive, and moths that could not fly or were dead were counted as dead.

Data Analysis: Treated moth mortality was corrected for mortality in the untreated vials using Abbott's formula: Corrected mortality = (Treated mortality - Control mortality)/ 1 - Control mortality.

Overall, 76 moths were treated in June, 97 in July, and 80 in August for a season total of 253 treated moths. Control moths numbered 76 in June, 118 in July, and 80 in August for a season total of 274.

Sweet Corn 2019 Sentinel Plot CEW Bt Susceptibility

Location: Carvel REC, Field 31 East

Variety: See Table Planting Date: 24 June

Experimental Design: Randomized complete block design with 5 varieties, 4 replicates

Plot size: 4 rows x 25'; minimum 5' alley between plots

Row Spacing: 30"

Seeding Rate: 24,000 seeds/A

Harvest Date: 30 August

Sample Size: 25 ears/plot from rows 2 and 3

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Variety	Type	Protein	% Clean	%	%	% Sap	Area
			Ears	Clean +	Damage	Beetle	Damaged
				Tip			(cm^2)
Obsession	Sh2		0.0 b	36.0 b	64.0 a	15.0 ab	10.8 ab
Obsession II	Sh2	Cry1A.105	2.1 b	70.1 a	29.9 b	7.0 b	4.9 c
		+ Cry2Ab2					
Providence	SE, Sh2		0.0 b	12.0 bc	88.0 a	27.0 a	14.6 a
BC0805	SE, Sh2	Cry1Ab	0.0 b	22.2 bc	77.8 a	23.3 a	9.6 bc
Attribute							
Remedy	SE, Sh2	Cry1Ab +	100 a	0.0 c	0.0 c	2.0 b	0.0 d
Attribute II		Vip3A					
ANOVA			P < 0.001	P <	P <	P <	P < 0.001
				0.001	0.001	0.001	

Variety	Protein	Total no. worms						
		2^{nd}	3 rd	4 th	5 th	6 th	Exits	Median
		instar	instar	instar	instar	instar		
Obsession		7	16	20	35	29	42	5 th instar
Obsession II	Cry1A.105 +	29	50	37	19	11	8	3 rd instar
	Cry2Ab2							
Providence		7	24	47	42	48	51	5 th instar
BC0805	Cry1Ab	16	61	53	36	23	26	4 th instar
Attribute	-							
Remedy	Cry1Ab +	0	0	0	0	0	0	
Attribute II	Vip3A							

Notes: Fall armyworm consisted of 2.5% of worm complex. No European corn borer were detected in ears or stalks.

Sweet Corn 2019 CEW 1

Location: Carvel REC, Field 1

Variety: 'Obsession' Planting Date: 31 May

Experimental Design: Randomized complete block design with 12 treatments and 4 replicates

Plot size: 2 rows x 25', 60" between plots cut in at tassel push by removing a

guard row

Row Spacing: 30"

Seeding Rate: 24,000 seeds/A

Treatment Method: Directed ear spray; CO₂-pressurized backpack sprayer with single-row

boom equipped with 2 D2 tips and and #25 cores delivering 40 GPA at

38 PSI.

Harvest Date: 5 August

Sample Size: 25 ears/plot from rows 2 and 3

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Application Rates and Dates:

TRT	Material	Rate	Application Dates	App. No.
1	UTC			
2	Prevathon	14 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
3	Besiege	10 fl oz/A	7/16, 7/24, 8/1	1, 3, 5
	Warrior II	1.92 fl oz/A	7/19, 7/28	2, 4
4	Baythroid XL	2.8 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
5	Asana XL	9.6 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
6	Warrior II	1.92 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
7	Mustang Maxx	4.0 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
8	Radiant	6.0 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
	Warrior II	1.92 fl oz/A		
9	Intrepid	16 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5
	Warrior II	1.92 fl oz/A		
10	Brigade	6.4 fl oz/A	7/16, 7/19, 7/24, 7/28, 8/1	1-5

Penetrator Plus was added to treatments 2 and 3 at a 0.5% v/v rate. Induce was added to treatments 4-10 at a rate of 1 pint/100 gallons spray volume.

TRT	Worms per 25 ears						
	Small CEW	Med CEW	Large CEW	FAW	Total*		
1	0.8	0.3	0.5	1.3	2.8		
2	0.3	0	0.3	0	0.8		
3	0	0	0	0.5	0.5		
4	0.3	0	0	0.3	0.5		
5	0.5	0	0	0.5	1.0		
6	0.5	0	0	0.3	0.8		
7	0	0	0	0	0		
8	0	0.3	0	0.5	0.8		
9	0.3	0.3	0	0.3	1.0		
10	0.3	0	0	0	0.3		
ANOVA	NS	NS	NS	NS	NS		

^{*}includes exit holes; FAW comprised 45.5% worm complex

TRT	% Clean	% Clean	% Damaged	# sap beetle	# stink bug	% sap
	ears	+ tip ears	ears	damaged	damaged	beetle
				kernels	kernels	ears
1	79.0 b	94.0	6.0	108.5 a	105.5 a	45.0 a
2	96.0 a	99.0	1.0	97.5 a	38.3 b	36.0 ab
3	98.0 a	99.0	1.0	18.5 b	16.0 b	10.0 c
4	98.0 a	98.0	2.0	9.0 b	17.0 b	14.0 bc
5	96.1 a	99.0	1.0	19.5 b	27.3 b	14.8 bc
6	92.0 ab	97.0	3.0	10.3 b	12.5 b	14.0 bc
7	99.0 a	100	0	8.5 b	13.3 b	9.0 bc
8	94.0 a	97.0	3.0	30.0 b	27.3 b	27.0 abc
9	94.0 a	98.0	2.0	7.8 b	29.8 b	11.0 bc
10	96.0 a	98.0	2.0	3.8 b	2.8 b	6.0 c
ANOVA	P = 0.002	NS	NS	P < 0.001	P < 0.001	P<0.001

Wire mesh pheromone trap captures for the block. Overall worm pressure was light and with two exceptions, indicated a 4 day spray schedule for the duration of the experiment.

Date	Average nightly CEW	ECB	Date	Average nightly CEW	ЕСВ
7/15	16	1	7/24	0	0
7/16	5	0	7/25	0	0
7/17	22	0	7/26	0	0
7/18	6	0	7/29	4	0
7/19	5	0	7/30	4	0
7/22	2.3	0	7/31	2	0
7/23	5	0	8/1	7	0

Sweet Corn 2019 CEW 2a

Location: Carvel REC, Field 31 East

Variety: 'Obsession' Planting Date: 24 June

Experimental Design: Randomized complete block design with 12 treatments and 4 replicates

Plot size: 2 rows x 25', 60" between plots

Row Spacing: 30"

Seeding Rate: 24,000 seeds/A

Treatment Method: Directed ear spray; CO₂-pressurized backpack sprayer with single-row

boom equipped with 2 D2 tips and #25 cores delivering 40 GPA at 38

PSI.

Harvest Date: 28 August

Sample Size: 25 ears/plot from rows 2 and 3

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Application Rates and Dates:

TRT	Material	Rate	Application Dates	App. No.
1	UTC			
2	Prevathon*	14 fl oz/A	8/8, 8/11, 8/14, 8/17, 8/20, 8/23	1-6
3	Besiege	10 fl oz/A	8/8, 8/14, 8/20	1,3,5
	Warrior II	1.92 fl oz/A	8/11, 8/17, 8/23	2,4,6
4	Baythroid XL	2.8 fl oz/A	8/8, 8/11, 8/14, 8/17, 8/20, 8/23	1-6
5	Asana XL	9.6 fl oz/A	8/8, 8/11, 8/14, 8/17, 8/20, 8/23	1-6
6	Avaunt eVo	3.5 oz/A	8/8, 8/11, 8/14, 8/17, 8/20, 8/23	1-6
7	Mustang Maxx	4 fl oz/A	8/8, 8/11, 8/14, 8/17, 8/20, 8/23	1-6
8	Coragen	5.0 fl oz/A	8/8, 8/11, 8/14	1,2,3
	Radiant	6.0 fl oz/A	8/17	4
	Warrior II	1.92 fl oz/A	8/20, 8/23	5,6

Penetrator Plus was added to treatments 2,3 at a 0.5% v/v rate. Induce was added to treatments 4-8 at a rate of 1 pint/100 gallons spray volume.

^{*}Not labeled for sweet corn

TRT	Small CEW	Medium CEW	Large CEW	Total/ 25 ears*
1	5.3 a	14.3 a	10.3 a	41.3 a
2	3.0 ab	3.5 bc	2.0 b	9.8 c
3	0.5 b	1.5 c	1.0 b	4.0 c
4	0.5 b	2.0 c	1.0 b	5.3 c
5	2.0 ab	2.8 c	1.8 b	11.3 c
6	3.8 ab	9.3 ab	3.8 b	21.5 b
7	2.0 ab	4.5 bc	2.3 b	11.3 c
8	0.8 b	2.5 c	2.0 b	7.0 c
ANOVA	P = 0.002	P < 0.001	P < 0.001	P < 0.001

^{*}includes exit holes; no FAW

TRT	% Clean	% Clean	% Damaged	# sap beetle	# stink bug	% sap
	ears	+ tip ears	ears	damaged	damaged	beetle
				kernels	kernels	ears
1	0 d	13.9 с	86.1 a	8.3	3.3	6.8
2	38.0 bc	83.0 a	17.0 c	5.8	50.5	8.0
3	63.0 a	88.0 a	12.0 c	0.3	1.5	1.0
4	64.0 a	85.0 a	15.0 c	0.3	0	1.0
5	34.0 bc	69.0 ab	31.0 bc	3.3	11.3	3.0
6	7.0 d	54.0 b	46.0 b	6.3	0.8	3.0
7	30.0 c	73.0 ab	27.0 bc	1.0	2.0	1.0
8	48.0 ab	81.0 abc	19.0 c	5.0	2.8	2.0
ANOVA	P < 0.001	P < 0.001	P < 0.001	NS	NS	NS

Wire mesh pheromone traps adjacent to sweet corn

Date	Average nightly CEW	ECB
8/8	10	0
8/9	70	0
8/11	64.5	0
8/12	108	0
8/13	46	0
8/20		0
8/22	4	0

Sweet Corn 2019 CEW 2b + AgrowSil

Location: Carvel REC, Field 31 East

Variety: 'Obsession' Planting Date: 24 June

Experimental Design: Strip plot design with 2 main un-replicated main factors (Obsession and

Obsession II) and 3 subplot treatments

AgrowSil was applied at ~1.25 tons/acre on 7 May

Plot size: 2 rows x 25', 60" between plots

Row Spacing: 30"

Seeding Rate: 24,000 seeds/A

Treatment Method: Directed ear spray; CO₂-pressurized backpack sprayer with single-row

boom equipped with 2 D2 tips and and #25 cores delivering 40 GPA at

38 PSI.

Harvest Date: 29 August

Sample Size: 25 ears/plot from rows 2 and 3

Data Analysis: Split plot analysis in SAS JMP; LS Means separation

T-test by treatment to compare TRT 1 and TRT 3 from Obsession with

and without AgrowSil

Purpose: There is some indication sweet corn will uptake silicon and incorporate

into cell walls. Does AgrowSil impact CEW infestation? Does a weak Bt trait affect spray performance? UTC and treatment 3 in Obsession block

compared with UTC and treatment 6 in trial sweet corn 2.

Summary: Obsession II did not provide any improved control on the treatment

program. AgrowSil did not impact earworm injury or total earworm numbers. Total earworm includes small, medium, large, and exits where

worms completed development.

Application Rates and Dates:

TRT	Material	Rate	Application Dates
1	UTC		
2	Warrior II	1.92 fl oz/A	8/8, 8/11, 8/14, 8/17, 8/21, 8/23
3	Besiege	10 fl oz/A	8/8, 8/14, 8/21
	Warrior II	1.92 fl oz/A	8/11, 8/17, 8/23

Induce was added to treatments at a rate of 1 pint/100 gallons spray volume.

Obsession II vs Obsession

Variety	TRT	Total worms	%Clean	%Clean + Tip	%Damage
Obsession	1	41.0	0	9.0	91
Obsession	2	12.5	36.0	76.0	24
Obsession	3	5.0	60.0	88.0	12
Obsession II	1	32	2.0	29.0	71.0
Obsession II	2	16.8	29.0	64.0	36.0
Obsession II	3	6.5	55.0	87.0	13.0
	ANOVA	NS	NS	NS	NS
	Variety				
	ANOVA TRT	P = 0.001	P = 0.002	P < 0.001	P < 0.001
	ANOVA	NS	NS	NS	NS
	Vareity*TRT				

AgrowSil

Effect	TRT	Small	Medium	Large	Total Worms	%Clean	%Clean+Tip	%Damage
Agrowsil	1	3.0	7.5 b	7.5	41.0	0	9.0	91.0
No Agrowsil	1	5.3	14.3 a	10.3	41.3	0	13.9	86.1
-	T-test	NS	P <0.001	NS	NS	NS	NS	NS
Agrowsil	3	1.3	1.3	1.0	5.0	60.0	88.0	12.0
No Agrowsil	3	0.5	1.5	1.0	4.0	63.0	88.0	12.0
	T-test	NS	NS	NS	NS	NS	NS	NS

Warrior vs Baythroid. Do not read too much in these data. Warrior treatment from AgroSil block and Baythroid data from Sweet Corn 2a block. Blocks planted adjacent to each other, but no blank guard row in the AgroSil plots. **One application date differed by a day.**

TRT	Total worms	%Clean	%Clean + Tip	%Damage
Warrior	12.5	36.0	76.0	24.0
Baythroid	5.3	64.0	85.0	15.0
T-test	P = 0.013	P = 0.013	NS	NS

Summer Squash IR4 Crop Safety, Cyflumetofen

Location: Carvel REC, Field 1 **Variety:** 'Paycheck' zucchini

'Conqueror III' yellow squash

Planting Date: 20 June

Experimental Design: Randomized complete block design with 5 treatments and 4 replicates

Plot size: 2 rows (1 of each variety) x 15'

Row spacing: 30"

60" between plots

Treatment Method: CO₂- pressurized backpack sprayer with a 6.6' boom equipped with 4

D4 tips and #45 cores delivering 50 GPA at 70 PSI.

Treatment Dates: July 30, August 13

Harvest Dates: 1 Aug, 8 Aug, 12 Aug, 16 Aug, 23 Aug

Notes: No phytotoxicity was observed on foliage or fruit following treatments. Visual observations conducted on August 1, August 8, August 12, August 16, August 20, and August 27. Yield and quality did not appear to be affected by any treatment.

TRT	Stand count	Material	Rate
1	40	UTC	
2	37	Nealta	13.7 fl oz/A
3	40	Nealta	27.4 fl oz/A
4	39	Nealta + Kinetic	13.7 fl oz/A x2
5	37	Nealta + Induce	13.7 fl oz/A x2

Kinetic was applied at a rate of 38 fl oz/100 gal., Induce was applied at a rate of 28 fl oz/100 gal.

'Conqueror III' Yellow Squash

TRT	No. 1	No. 2	Oversize (good;	Cull
	(kg)/plant	(kg)/plant	kg)/plant	(kg)/plant
		Augu	st 1	•
1	0.076	0.010	0.121	0.078
2	0.049	0.031	0.053	0.032
3	0.028	0.017	0.112	0.087
4	0.041	0.020	0.042	0.066
5	0.050	0.018	0.016	0.027
		Augu	st 8	
1	0.023	0.029	0.099	0.030
2	0.008	0.030	0.339	0.030
3	0.033	0.022	0.256	0.080
4	0.014	0.017	0.174	0.046
5	0.036	0.053	0.087	0.034
		Augus	t 12	
1			0.317	
2			0.328	
3			0.367	
4 5			0.322	
5			0.061	
		Augus	t 16	
1	0.005	0.042	0.092	0.041
2	0.021	0.027	0.067	0.041
3	0.016	0.040	0.025	0.042
4	0.016	0.041	0.073	0.016
5	0.013	0.028	0.031	0.047
		Augus	t 23	
1		0.013	0.038	0.052
2		0.021	0.053	0.022
3		0	0.073	0.018
4		0.015	0.078	0.020
5		0.011	0.034	0.046
		Tota		
1	0.105	0.094	0.666	0.201
2	0.078	0.109	0.840	0.125
3	0.078	0.078	0.834	0.227
4	0.071	0.093	0.689	0.148
5	0.099	0.110	0.228	0.153

There were no significant treatment differences (ANOVA; P < 0.05)

'Paycheck' Zucchini

TRT	No. 1 (kg)/plant	No. 2 (kg)/plant	Oversize (good; kg)/plant	Cull
				(kg)/plant
		Augu	est 1	
1	0.137	0.031	0.331	0.095
2	0.058	0.048	0.231	0.083
3	0.050	0.011	0.295	0.083
4	0.052	0	0.315	0.081
5	0.048	0.040	0.161	0.080
		Augu	est 8	
1	0.011	0.015	0.258	0.070
2	0.006	0.026	0.531	0.042
3	0.041	0.021	0.559	0.044
4	0.030	0.015	0.472	0.060
5	0.013	0.008	0.350	0.046
		Augus	st 12	
1			0.605	
2			0.403	
3			0.424	
4			0.498	
5			0.555	
	•	Augus	st 16	
1	0.042 ab	0.025	0.194	0.023
2	0.014 ab	0.034	0.108	0.054
3	0.007 b	0.039	0.295	0.026
4	0.024 ab	0.028	0.148	0.029
5	0.094 a	0.009	0.153	0.047
	F = 3.61, df = 4,			
	15, P = 0.030			
		Augus		
1	0	0.017	0.099	0
2	0.013	0	0.684	0.060
3	0	0.026	0.408	0.175
4	0.001	0.040	0.200	0.164
5	0	0.026	0.297	0.066
1	0.117	Total Control of the		0.100
1	0.116	0.087	1.486	0.188
2	0.092	0.108	1.957	0.239
3	0.115	0.097	1.981	0.327
4	0.155	0.083	1.633	0.333
5	0.155	0.084	1.516	0.239

Cucumber IR4 Crop Safety, Cyflumetofen

Location: Carvel REC Field 1

Variety: 'Bristol'

'Vlaspik'

Planting Date: 5 June

Experimental Design: Randomized complete block design with 5 treatments and 4 replicates

Plot size: 2 rows (1 of each variety) x 15'

Row spacing: 30"

60" between plots

Treatment Method: CO₂- pressurized backpack sprayer with a 6.6' boom equipped with 4 D4

tips and #45 cores delivering 50 GPA at 70 PSI.

Treatment Dates: 16 July, 30 July

Harvest Dates: 19 July, 25 July, 1 August, 8 August

Notes: No phytotoxicity was observed on foliage or fruit following treatments. Visual observations conducted on 19 July, 25 July, 30 July, 1 August, 8 August, and 12 August. 'Bristol' cucumber were graded according to USDA standards for fresh market cucumbers, and 'Vlaspik' cucumbers were graded according to pickling cucumber size standards. Yield and quality did not appear to be affected by any treatment.

TRT	Stand count	Material	Rate
1	40	UTC	
2	37	Nealta	13.7 fl oz/A
3	40	Nealta	27.4 fl oz/A
4	39	Nealta + Kinetic	13.7 fl oz/A x2
5	37	Nealta + Induce	13.7 fl oz/A x2

Kinetic was applied at a rate of 38 fl oz/100 gal., Induce was applied at a rate of 28 fl oz/100 gal.

'Bristol' cucumber harvest data

TRT	Fancy (kg)	No. 1 (kg)	No. 2 (kg)	Oversize (kg)	Cull (kg)
	-	19 J	July	. 3	•
1	0.493	0.180	1.365		0.805
2	0.110	0.858	0.565		0.223
3	0.670	0.953	1.360		0.650
4	0.663	0.453	0.998		1.208
5	0.900	0.668	1.045		0.735
		25 J	July		
1	0.368	0.143 b	0.395		0.875
2	0.655	0.810 a	1.365		1.253
3	0.208	0.360 ab	0.555		1.240
4	0.145	0.153 b	0.998		0.725
5	0	0.353 ab	0.173		1.165
		F = 3.52, df = 4, 15, P = 0.032			
	·	1 Au	gust		
1	0	0.565	1.435		1.335
2	0.145	0.280	1.280		0.940
3	0.130	0.388	1.045		1.318
4	0.123	0	0.891		0.843
5	0.293	0.390	1.313		1.423
		8 Au	gust		
1	0.148	0	0	0.550	0.890
2	0.113	0.195	0.388	0.550	1.123
3	0	0	0.300	0.365	1.438
4	0	0.068	0.125	0.630	0.970
5	0.080	0.085	0.230	1.650	1.360
		To	tal		
1	1.008	0.888	3.195	0.550	3.905
2	1.023	2.143	3.598	0.550	3.538
3	1.008	1.700	3.260	0.365	4.645
4	0.930	0.673	3.011	0.630	3.745
5	1.273	1.496	2.760	1.650	4.683

'Vlaspik' cucumber harvest data.

TRT	No. 1 (kg)	No. 2 (kg)	No. 3 (kg)	Oversize cull (kg)	Culls (kg)					
19 July										
1	0	0.728	1.750	0.240	0.490					
2	0	0.540	1.795	0.660	0.315					
3	0	0.325	1.975	0.608	0.278					
4	0	0.703	2.513	0.898	0.250					
5	0	0.522	1.640	0.598	0.310					
	- 1		July	1						
1	0	0.358	0.245	0.063	1.208					
2	0	0.340	0.448	0.378	1.418					
3	0	0.338	0.688	0.555	1.788					
4	0	0.598	0.573	0.613	1.235					
5	0	0.360	0.480	0.573	0.988					
		1 Aı	igust	<u>.</u>						
1	0	0.200	0.840	0.618	1.298					
2	0	0.370	0.630	0.518	1.333					
3	0	0.343	0.463	0.108	0.858					
4	0.008	0.395	0.980	0.670	0.438					
5	0.008	0.260	0.763	0.918	1.070					
		8 Aı	igust							
1	0	0.275	0.228	0.403	0.523					
2	0.008	0.235	0.200	0.080	0.608					
3	0.008	0.053	0.115	0	0.648					
4	0	0.363	0.268	0.373	0.448					
5	0.008	0.053	0.063	0.638	0.493					
			tal							
1	0	1.560	3.063	1.323	3.518					
2	0.008	1.485	3.073	1.635	3.673					
3	0.008	1.058	3.240	1.270	3.570					
4	0.008	2.058	4.333	2.553	2.370					
5	0.015	1.200	2.945	2.725	2.860					

Watermelon 2019 Spider Mite Survey

Procedure: 5 crown leaves in 8 to 16 stops per field examined for spider mites

Rye strips were sampled by removing 3 row-ft in 6 to 10 locations per field and washing plant material with soapy water. Rinsate was filtered and filter papers examined for mites under a stereo microscope.

Watermelon Spider Mite Survey

Location	Date mites first	Location in field	Notes
	detected		
Laurel Ellis Grove 2	June 24	Edge and field interior	A few located in
			interior
Sharptown	June 24	Edge	
Airport Rd	June 4	Interior and woodline	
Georgetown Rt 404	June 18	Weeds/pokeweed in an	Mites not detected
		uncultivated area near field edge	again until July 1 on
			woodline
Laurel Susan Beach Rd	July 15	Woodline	
Seaford	June 18	Edge	Mite hotspots in
			interior of field July
			22
Laurel Hitch Pond Rd	June 17	Woodline and road margin ditch	
Georgetown Governor	June 12	Edge	Mite populations
Stockley Rd			never established
Laurel Ellis Grove 1	July 1	Edge, woodline	
Georgetown Tyndall Rd	June 17	Interior	Large hotspots, few
			on edge

Rve Samples

Farm Location	Date Sampled	Thrips	Spider Mites
Tyndall Rd	7 May	11	0
Airport Rd	15 May	4	0
Ellis Grove Rd 2	7 May	9	0
Ellis Grove Rd 3	7 May	8	0
Rt 404	3 May	7	0
Elk Rd	15 May	0	0
Susan Beach Rd	7 May	19	0
Old Sharptown Rd	17 May	16	0
Hitch Pond Rd	17 May	25	0

Watermelon 2019 Spider Mite Threshold Study

Location: Carvel REC, Field 2

Variety: 'Road Trip'

'Wingman' pollinizer

Planting Date: 8 May

Experimental Design: Randomized complete block design with 9 treatments and 4 replicates

Plot size: 3 rows x 21'

Treatment Method: Foliar treatments delivered using a CO₂- pressurized backpack sprayer

with a 6.6' boom equipped with 4 D4 tips and #45 cores delivering 50

GPA at 70 PSI.

Sample Size: 10 leaf samples/plot. All harvestable melons/ plot.

Harvest Dates: August 5, August 16, September 4

Notes: Field infested 30 May

Mites/leaf

TRT Goal	6	11	18	25	1 July	8 July	15	22	29 July	16	CMD
(mites/leaf)	June	June	June	June	_		July	July		Aug	
0 mites	0.1	0.9	2.4	0.8	0.1	0	0	0.2	0.5	0.5	41.3 a
0.6 mites	0.4	0.9	3.8	3.6	2.9	10.2	4.4	3.1	11.2	0.4	283.9
											b
3 mites	0.1	0.2	2.4	4.7	7.0	12.4	8.7	1.3	9.0	1.8	346.1
											b
30 mites	0.2	0.6	7.6	4.9	6.6	12.6	6.1	3.7	13.8	1.4	409.3
											b
ANOVA		NS			P	P =		P =	P<0.001		P =
					< 0.001	0.001		0.006			0.002

TRT Goal (mites/ leaf)	Harvest 1			Harvest	vest 2 Harvest 3				Total			
	# melons	Avg wght (kg)	Brix	No. melons	Avg wght (kg)	Brix	No. melons	Avg wght (kg)	Brix	No. melons	Avg. wght (kg)	Brix
0 mites	90	6.7	11.0	11.0	6.1	10.9	13.0	6.3	10.3	46.8	6.4	10.7
0.6 mites	71	6.5	11.0	17.3	6.4	10.9	11.3	6.5	10.1	460	6.4	10.7
3 mites	91	6.9	11.0	12.8	6.2	10.8	15.3	6.4	10.1	50.8	6.6	10.6
30 mites	92	6.9	11.0	16.3	6.2	10.7	12.3	6.5	10.4	51.5	6.6	10.7
ANOVA		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Watermelon 2019 Two Spotted Spider Mite Efficacy

Location: Carvel REC, Field 38

Variety: 'Road Trip'

'Wingman' pollinizer

Planting Date: 10 May

Experimental Design: Randomized complete block design with 9 treatments and 5 replicates

Plot size: 1 row x 24'

Row Spacing: 7' Plant Spacing: 3'

Treatment Method: CO₂- pressurized backpack sprayer with a 6.6' boom equipped with 4 D4 tips and

#45 cores delivering 50 GPA at 70 PSI.

Plots infested: 30 May

Mite Source: colony initiated from overwintering mites collected from clover in and around a

rain Shelter in April and from pokeweed growing adjacent to a melon field off of

Rt 404 in May.

Treatment Dates: 27 June

Sample Size: 7 leaves; **Vigor rating** on a 0-10 scale, with a 0 representing dead plants and a

10 representing a fully closed canopy with no disease.

TRT	Material	Rate
1	UTC	
2	Portal	2.0 pt/A
3	Oberon	8.5 fl oz/A
4	Radiant	6.0 fl oz/A
5	Minecto Pro	10.0 fl oz/A
6	Kanemite	31.0 fl oz/A
7	Zeal	6.0 fl oz/A
8	Brigade	6.4 fl oz/A
9	Grandevo	3.0 lbs/A

TRT	Spider mites/ leaf							
							August 6	
	3 d PRE	4 DAT	7 DAT	15 DAT	19 DAT	29 DAT		
1	1.3	11.9	4.5	6.8 b	7.9 ab	29.7 ab	4 bc	
2	2.3	0.7	0.8	3.8 b	1.2 b	8.9 b	5.6 ab	
3	2.2	4.9	3.8	8.1 b	12.2 ab	24.3 ab	5 ab	
4	3.3	7.1	5.9	42.7 a	32.9 ab	53.0 a	2.8 c	
5	2.3	3.3	3.7	1.3 b	7.6 ab	23.7 ab	5.8 ab	
6	2.1	2.9	7.2	5.3 b	16.5	45.0 a	4.8 abc	
7	1.6	2.7	1.2	0.5 b	0.7 b	9.6 b	6.5 a	
8	3.7	8.0	11.0	24.6 ab	42.5 a	52.6 a	4 bc	
9	1.4	6.0	9.0	2.4 b	13.3 ab	32.0 ab	4.4 abc	
ANOVA	NS	NS	NS	P = 0.001	P = 0.005	P = 0.040	P < 0.001	

TRT	Eggs/ leaf									
	3 d PRE	4 DAT	7 DAT	15 DAT	19 DAT	29 DAT				
1		16.9	5.2	2.6 b	9.8 a	15.1				
2		0.7	0.6	1.4 b	2.5 b	2.9				
3		7.3	2.3	8.1 ab	15.4 ab	19.5				
4		6.4	7.1	9.9 ab	18.1 ab	21.9				
5		1.7	5.0	0 b	6.2 b	10.6				
6		1.9	7.8	0.9 b	14.6 ab	16.5				
7		6.5	2.3	3.8 ab	4.9 b	8.6				
8		1.3	11.8	22.8 a	33.1 a	32.7				
9	•	5.6	8.2	0.6 b	14.2 ab	11.8				
ANOVA	•	NS	NS	P = 0.011	P = 0.021	NS				

Watermelon 2019 Cucumber Beetle Efficacy Trial

Location: Carvel REC, Georgetown, DE Field 2

Variety: 'Road Trip'

'Wingman' pollinizer

Planting Date: 8 May

Experimental Design: Randomized complete block design with 9 treatments and 4 replicates

Plot size: 3 rows x 21'

Treatment Method: Drip treatments delivered by injecting 2,000 mL water into a 25' dripline to

prime, followed by 2,000 mL treatment solution, and flushed with 2,000 mL water. Foliar treatments delivered using a CO₂- pressurized backpack sprayer with a 6.6' boom equipped with 4 D4 tips and #45 cores delivering 50 GPA at 70

PSI.

Treatment Dates: May 30 (foliar, trt 2 drip), May 31 (trt 3, 5, 8, 9, 10 drip), July 4, July 26

Sample Size: No. beetles on middle row, No. beetles emerging in cages, Seedless fruit per

middle row, Brix on 2 melons per plot.

Harvest Dates: July 30, August 14

Notes: Induce was added to all foliar treatments at the rate of 0.5 pints per 100 gallons water 13.1% of beetles observed were spotted cucumber beetles. Rind feeding considered unacceptable if greater than 2.5 cm diameter, assuming a tight market.

Summary: Foliar applications of Assail had the greatest impact on cucumber beetles observed in plots. Sivanto and Experimental appeared to have a numeric effect on cucumber beetles, but not significantly different from the untreated check. Low numbers of dead beetles were observed in these plots but also in plots that were not treated with a foliar insecticide, most likely the result of beetles that were intoxicated from other plots or from adjacent treated cucurbits.

While there were significant treatment differences in terms of flower feeding following the July 4 application, the untreated check did not have flower feeding while the three nematode-treated plots (foliarly unprotected) did. 8DAT, the only plot to have significantly less flower feeding was Sivanto. Flower feeding following the July 26 application were numerically lower in Assail, Sivanto, and Experimental plots, but did not differ significantly from the untreated check.

The only harvest data metric that resulted in significant treatment differences was season total rind feeding. However, the lowest and the greatest rind feeding occurred in nematode treated plots that did not receive any foliar insecticide.

Nematodes are hypothesized to help reduce first generation beetle emergence. Emergence cage data did not indicate any treatment differences in terms of beetles emerging from the soil. Cages were constructed of row cover material that may have interacted negatively with applied fungicides; row covers broke down 3-4 weeks after cages were deployed.

Live Beetles/plot

TRT	Material	Rate	May 30 (Pre)	June 5 (6	June 13 (14 DAT)	June 19 (20 DAT)	July 3 (Pre 1)	July 8 (4	July 12 (8	July 25 (PRE 1)	July 29 (3
				DAT)				DAT)	DAT)		DAT)
1	UTC		12.3	9.3	3.3	0.5	0.8	5.3 ab	3.8 ab	3.3	2.8 cd
2	Admire Pro (drip) Assail + Induce (foliar)	5.3 oz	11.3	7.8	2.3	0.5	1.5	0 b	1.5 b	3.0	0.3 d
3	Sivanto (drip) Sivanto (foliar)	28 fl oz/A 14 fl oz/A	9.8	13.8	5.8	1.5	3.8	1.5 ab	0.8 b	3.3	1 cd
4	Beleaf (foliar)	4.28 fl oz/A	11	4.8	2.8	1.3	2.3	6.5 a	2.3 b	4.3	3.8 bcd
5	Experimental		7.8	10.3	4.3	0.5	3.5	0.3 b	1.5 b	2.5	0.5 d
7	Grandevo (foliar)	3 lbs/A	9.8	11	2.3	0.5	4.3	5.5 ab	5 ab	7.8	6.3 abc
8	Nemasys (<i>Steinernema</i> <i>feltiae</i> , drip)	50 million IJ/1,100 ft ²	12.3	9.3	4.3	0.5	3.0	4.8 ab	7 a	5.3	3.8 bcd
9	Larvanem (Heterorhabditis bacteriophora, drip)	50 million IJ/1,100 ft ²	16.8	8.5	3.5	0.8	1.5	7.0 a	6.8 a	3.0	9.3 ab
10	Nemasys + Larvanem	25 + 25 million IJ/1,100 ft ²	9.5	2	3.3	1.0	2.5	5.3 ab	5 ab	2.8	10.3 a
	ANOVA		NS	NS	NS	NS	NS	F = 4.46, df = 8,27, P = 0.002	F = 2.53, df = 8, 27, P = 0.034	NS	F = 9.87, df = 8, 27, P < 0.001

Induce was added to all foliar applications at a rate of 0.5 pints/100 gallons water.

Dead Beetles

TRT	Material	Rate	May 30	June 5	June 13	June 19	July 2	Turby O	July 12	Inly 25	July 29
IKI	Materiai	Kate			Julie 13	Julie 19	July 3	July 8	-	July 25	
			(Pre)	(6 DAT)			(Pre 1)	(4	(8	(PRE 1)	(3 DAT)
								DAT)	DAT)		
1	UTC				0	0	0.5	0	3.5	1	0
2	Admire Pro				1	0.3	0.5	0	0.8	2.3	0.8
	(drip)	5.3 oz									
	Assail + Induce										
	(foliar)										
3	Sivanto (drip)	28 fl oz/A			1	0	0	0	0.5	2.3	0.8
	Sivanto (foliar)	14 fl oz/A			1	O	Ü		0.5	2.3	0.0
4	Beleaf (foliar)	4.28 fl			0	0.5	0	2	1	2	0
		oz/A									
5	Experimental				0.3	0.3	0.3	1	1.3	1.5	0
7	Grandevo (foliar)	3 lbs/A			0.3	0	0.5	3	6.3	4	0.3
8	Nemasys (drip)	50 million			0	0	0	1.8	5	1.5	0
		$IJ/1,100 ft^2$									
9	Larvanem (drip)	50 million			0	0.3	0	5.3	4	2.3	0.3
		$IJ/1,100 ft^2$									
10	Nemasys +	25 + 25			0.3	0	0.5	2.8	4.3	1.3	0
	Larvanem	million									
		$IJ/1,100 ft^2$									
	ANOVA				F = 2.91,	NS	NS	F =	F =	NS	NS
					df = 8, 27,			5.17, df	2.85, df		
					P = 0.018			= 8,27,	= 8,27,		
								P =	P =		
								0.001	0.020		

Flower Feeding

TRT	Material	Rate	June 13	July 3 (Pre	July 8 (4DAT	12 July (8DAT)	25 July (Pre 1)	July 29 (3 DAT)
1	UTC		3.8	0.8	0 b	3.5 ab	1.0	2.3 ab
2	Admire Pro (drip) Assail (foliar)	5.3 oz	2.3	0.3	0 b	0.8 ab	2.3	0.3 b
3	Sivanto (drip) Sivanto (foliar)	28 fl oz/A 14 fl oz/A	6.5	0.3	0 b	0.5 b	2.3	0.8 b
4	Beleaf (foliar)	4.28 fl oz/A	5.8	0.3	2.0 ab	1.0 ab	2.0	2.3 ab
5	Experimental		4.5	1.3	1.0 b	1.3 ab	1.5	0.3 b
7	Grandevo (foliar)	3 lbs/A	10	0.5	3.0 ab	6.3 a	4.0	3.8 ab
8	Nemasys (drip)	50 million IJ/1,100 ft ²	1.8	0.5	1.8 ab	5.0 ab	1.5	3.3 ab
9	Larvanem (drip)	50 million IJ/1,100 ft ²	1.3	0.5	5.3 a	4.0 ab	2.3	5.3 a
10	Nemasys + Larvanem	25 + 25 million IJ/1,100 ft ²	3.3	2.3	2.8 ab	4.3 ab	1.3	б а
	ANOVA		NS	NS	F = 5.17, df = 8, 27, P = 0.001	F* = 3.78, df = 8, 27, P = 0.004	NS	F = 6.1, df = 8,27, P < 0.001

^{*}Data were $\log x + 0.1$ transformed. Presented are backtransformed means.

Harvest Data

Melons were harvested from middle row of each plot on 30 July and 14 August, graded for cosmetic insect injury (rind feeding greater than 2.5 cm diameter considered unacceptable), and Brix measured from 1-3 melons per plot. Data analyzed with ANOVA.

July 30

TRT	Material	n melons	Weight (kg)	Average Weight (kg)	% Rind feeding	% Ground feeding	% Acceptable	Brix
1	UTC	6.3	38.6	6.1	14.1	18.9	81.1	10.5
2	Admire Pro (drip) Assail (foliar)	5.0	32.5	6.5	8.1	34.3	85.5	10.9
3	Sivanto (drip) Sivanto (foliar)	7.0	46.4	6.6	17.1	28.4	93.7	11.4
4	Beleaf (foliar)	5.5	37.2	6.8	14.6	18.8	87.5	11.1
5	Experimental	5.7	35.9	6.3	0	31.4	95.3	11.1
7	Grandevo (foliar)	7.0	45.1	6.5	16.9	23.2	85.9	11.1
8	Nemasys (drip)	6.0	37.8	6.4	3.7	15.7	96.3	10.9
9	Larvanem (drip)	5.8	37.3	6.7	0	31.0	96.4	11.1
10	Nemasys + Larvanem	5.0	32.8	6.6	27.3	25.9	70.5	11.4
	ANOVA	NS	NS	NS	NS	NS	NS	NS

14 August

TRT	Material	n melons	Weight (kg)	Average Weight (kg)	% Rind feeding	% Ground feeding	% Acceptable	Brix
1	UTC	4.3	26.5	6.2	19.6	20.5	96.4	10.8
2	Admire Pro (drip) Assail (foliar)	5.5	37.2	6.8	12.1	3.6	95.0	10.3
3	Sivanto (drip) Sivanto (foliar)	4.5	30.0	6.4	14.2	27.5	86.7	10.3
4	Beleaf (foliar)	6.0	43.3	7.6	9.4	44.8		10.9
5	Experimental	6.3	41.3	6.4	7.8	12.1	100	10.7
7	Grandevo (foliar)	5.5	41.5	7.5	23.6	20.0	90.0	10.2
8	Nemasys (drip)	5.3	40.8	7.8	9.2	20.0	95.0	10.6
9	Larvanem (drip)	4.3	27.6	6.6	8.3	15.0	100	10.4
10	Nemasys + Larvanem	3.8	26.6	7.2	41.1	22.3	87.5	10.3
	ANOVA	NS	NS	NS	NS	NS	NS	NS

Season Total

TRT	Material	n melons	Weight (kg)	Average Weight (kg)	% Rind feeding	% Ground feeding	% Acceptable
1	UTC	10.5	65.1	6.2	18.5 ab	22.8	85.7
2	Admire Pro (drip) Assail (foliar)	10.5	69.7	6.7	10.9 ab	15.8	91.8
3	Sivanto (drip) Sivanto (foliar)	11.5	76.4	6.7	15.9 ab	30.0	89.8
4	Beleaf (foliar)	11.5	80.5	7.1	11.3 ab	26.5	98.5
5	Experimental	11.3	74.6	6.5	5.2 b	21.8	97.2
7	Grandevo (foliar)	12.5	86.7	6.9	20.5 ab	20.9	87.2
8	Nemasys (drip)	11.3	78.7	7.0	7.8 ab	22.2	94.1
9	Larvanem (drip)	10.0	64.9	6.7	4.2 b	22.9	97.9
10	Nemasys + Larvanem	8.8	59.4	6.8	29.5 a	25.4	73.6
_	ANOVA	NS	NS	NS	P = 0.008	NS	NS

Emergence cages were placed over 3 plants per plot in treatments 1, 2, 3, 5, 8, 9, 10 on 14 June. First generation beetles observed in field on 26 June. Traps were checked on June 28, July 3, July 8, July 15, and July 25. Trap condition deteriorated rapidly after July 15. Below are sum totals per treatment. No significant differences were observed among treatments.

515111110						
TRT	Total emerged beetles/					
	treatment plot					
1	2.5					
2	0.5					
3	3.5					
5	2.5					
8	4.5					
9	3.3					
10	3.0					

Watermelon 2019 Cucumber Beetle Efficacy Trial 2

Location: LESREC, Salisbury, MD

Variety: 'Road Trip'

'Wingman' pollinizer

Planting Date: 9 May

Experimental Design: Randomized complete block design with 8 treatments and 4 replicates

Plot size: 3 rows x 18'

Treatment Method: Drip treatments delivered by opening plastic and gently pouring 2,000 mL insecticide solution over 1.5' of the center of

the bed on either side of the watermelon plant. Foliar treatments delivered using a CO₂- pressurized backpack sprayer with

a 6.6' boom equipped with 4 D4 tips and #45 cores delivering 50 GPA at 70 PSI.

Treatment Dates: 31 May, 15 June, July 4, 26 July

Harvest Date: July 29

Number of beetles/ length of row 2.

TRT	13 DA	T1	5 DAT	Γ1	2 DAT	Γ2	6 DA	Γ2	12 DA	T2	17 DA	T2	4 DAT	Г3	8 DA	Γ3	3 DAT	4
	Live	Dead	Live	Dead	Live	Dead	Live	Dead	Live	Dead	Live	Dead	Live	Dead	Live	Dead	Live	Dead
UTC	12.8	0.5 b	4.5	0	5.8	0.3 b	0.4	0.2	8.3	0.3	2.5	0.8	10.0	1.3	0.3	0	4.5 a	1.8
Conv.	16.3	7.3 a	0.8	0.5	2.0	34.3 a	0	0	6.2	2.6	8.5	1.5	5.4	1.0	0.3	0	1.3 b	5.0
Harvanta	15.3	1.8 b	2.8	2.5	1.3	6.8 b	0	0	6.0	2.3	2.0	0.5	3.0	0.7	0.5	0	3.8 ab	2.8
ANOVA	NS	P =	NS	NS	NS	P =	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	P =	NS
		0.001				0.001											0.019	

Conventional = Assail (5.3 oz/a), Assail (5.3 oz/a), Assail (5.3 oz/a), Mustang Maxx (4.0 fl oz/a).

Harvanta applied at 16.4 fl oz/a. Please note only 3 applications are allowed by label.

Beetles averaged 0.6/ft on 29 May

Harvested melons taken from row 2.

TRT	Harvest melon weight	N	% Ground Scar	% Rind Scar	Acceptable?
UTC	7.4	26	26.9	26.9 b	88.5 ab
Conventional	6.8	38	34.2	63.2 a	65.8 b
Harvanta	7.9	26	44.0	52.0 ab	92.0 a
ANOVA	P = 0.058		NS	P = 0.016	P = 0.016

Watermelon 2019 Cucumber Beetle Behavior 1

Location: Carvel REC, Field 38

Variety: 'Road Trip'

'Wingman' pollinizer

'Blue Hubbard' winter squash on outermost rows

Planting Date: 9 May

Plot size: 12 rows x 190' with a center drive row. 10 rows of melons, 2 rows of Hubbard

Row Spacing: 7' Plant Spacing: 3'

Treatment Method: Squash was treated with 8 oz of an Admire Pro solution, 4.5 mls per 3 gallons of water at transplanting. A foliar Assail application (5.3 oz/A) was applied by CO₂ pressurized backpack sprayer fitted with 2 D2 nozzles and #25 cores calibrated to deliver 40 GPA at 41 PSI on 6 June and 21 June.

Trap location: row 1 and 12, ends of rows 2-10

Trap Deploy date: 10 May **Trap spacing:** 15'

Trap notes: every 4th trap was a 'ghost trap' consisting of insecticide-treated netting

(1.5' x 3') designed to kill beetles that landed on it (6 ghost traps total).

Lures replaced: 31 May, 27 June

Study Description: The purpose was to examine 'Blue Hubbard' as a trap crop for striped cucumber beetles and cucumber beetle traps constructed out of milk jugs to further intercept beetles before they moved into the watermelon. Watermelons in field 2 (mite threshold study; additional melons planted behind) served as a 'check' plot. Melons examined on August 7.

Sampling: Number of alive and dead striped cucumber beetles on 20 'Blue Hubbard' and on various numbers of watermelon plants inside the block and on various numbers of watermelon plants in Field 2. Reported are number of beetles per plant.

Study notes: 'Blue Hubbard' were far more attractive to striped cucumber beetles than watermelon, and it was possible to kill large numbers of beetles by only treated the squash early. However, first generation beetles (present in July) were much less active on 'Hubbard.' Relative to the number of beetles on the plants, jug traps were slightly better on first generation beetles than overwintering beetles. Beetle arrival in Field 38 was 2 weeks behind Field 38. At harvest, 46 melons were examined for rind feeding in this block. 12 had rind feeding (26.1%); 10 had ground-spot scarring (21.7%); and 10 were considered unacceptable (21.7%). Melons from the mite threshold study, Field 2, were harvested on August 5. Of 234 melons, 29 had rind feeding (12.4%), 60 had ground spot scarring (25.6%), and 12 were considered unacceptable (5.1%).

Date	No. jug traps	Striped Cucumber	Beetles/ ghost trap	Striped cucumber beetles/ Hubbard		Striped cucumber beetles/ watermelon		Field 2 dates	Striped cucumber beetles/
		Beetles/ jug		Alive	Dead	Alive	Dead		watermelon
		trap							
20 May	28	0	0	0	0	0	0	20 May	1.81
29-May	28	0	0	0	0	0	0	30 May	1.53
6-Jun				1.76	0.41				
13-Jun	20	0.75	0.666667	1.45	4.65	0.6	0	13 June	0.41
19-Jun	22	0.86	0.333333	3.75	0.95	0.26	0	19 June	0.06
27-Jun			1.833333	0.4	0.2	0.2	0		
3-Jul	18	0.55	0.67	0	0.45	0.24	0	3 July	0.1
12-Jul	22	0.18	0.166667	0.5	0.7	0.25	0.05	12 July	0.48
25-Jul	22	1.04	0.166667	0.35	0.1	0.55	0	25 July	0.41
6 Aug	18	0.5	0						

Watermelon 2019 Cucumber Beetle Behavior 2

Location: Georgetown Rt 404

Variety: 'Joyride' and '7187', pollinizer 'Stargazer' and 'Premium'

Planting Date: May 2-5, May 12 - 18

Trap Deploy Date: 3 May Trap Spacing: 30' Lure Replaced: 31 May

'Casperita' Planting Date: 6 May, on end of row

'Casperita' Seeding Date: 4 April

Notes: Squash was treated with 8 oz of an Admire Pro solution, 4.5 mls per 3 gallons of water at transplanting. A foliar Assail application (5.3 oz/A) was applied by CO₂ pressurized backpack sprayer fitted with 2 D2 nozzles and #25 cores calibrated to deliver 40 GPA at 41 PSI on 6 June.

Sampling Method: Each squash plant and 5 adjacent watermelon plants were visually examined for live and dead striped cucumber beetles. On the opposite end of the watermelon field, 5 plants at the end of the rows were examined for cucumber beetles.

Date	# Traps	Striped Cucumber Beetles/ Trap	Spotted Cucumber Beetles/ Trap
14 May	40	0	0.05
23 May	40	0.1	0
31 May	39	0.78	0.18
12 June	40	0.48	0.025
26 June	40	0	0.025

Date	'Casperita'		Adjacent wate	rmelon	Far watermelon		
	Striped cucumber		Striped cucumb	er beetle	Striped cucumber beetle		
	bee	etle					
	Alive	Dead	Alive	Dead	Alive	Dead	
23 May	0.09	3.35	0.2	0.01	1.99	0	
31 May	14.83	0	1.12	0	2.61	0	
12 June	2.29	6.34	0.86	0.29	0.15	0	
26 June	1.60	1.38	0.79	0.06	0.6	0.18	

Notes: Experiment terminated June 26 due to rapid senescence/death of 'Casperita' squash. Cause was never conclusively determined, but appeared to be partially environmental.

Watermelon 2019 Cucumber Beetle Behavior 3

Field: Georgetown, Tyndall Rd Variety: Captivation and Fascination

Pollenizer: Stargazer
Planting Date: 5 May
Trap Deploy Date: 9 May
Trap spacing: 28'

Lure Replaced: May 31, June 27

'Casperita' Planting Date: 9 May

Notes: Squash was treated with 8 oz of an Admire Pro solution, 4.5 mls per 3 gallons of water at transplanting. A foliar Assail application (5.3 oz/A) was applied by CO₂ pressurized backpack sprayer fitted with 2 D2 nozzles and #25 cores calibrated to deliver 40 GPA at 41 PSI on 6, 13, and 27 June.

An independent consultant felt that the squash helped disrupt early season migration but had no effect on later populations or distribution.

Sampling Method: Each squash plant and 7 adjacent watermelon plants were visually examined for live and dead striped cucumber beetles. On the opposite end of the watermelon field, 5 plants were examined for cucumber beetles.

Date	# Traps	Striped Cucumber	Spotted Cucumber
		Beetles/ Trap	Beetles/ Trap
17 May	33	0.12	0.03
22 May	40	0.025	0.05
31 May	40	0.1	0
12 June	39	0.025	0.03
26 June	40	0.025	0.05
29 July	40	0.025	0.05

Date	Per 'Casperita'		Per Adjacer	nt watermelon	Per Far watermelon		
	Alive	Dead	Alive	Dead	Alive	Dead	
22 May	2.80	0.01	0.32	0	0.38	0	
31 May	0.69	0	0.02	0			
12 June	0.25	0.67	0.04	0.02	0.015	0.01	
26 June	0.60	0.51	0.02	0.03	0.05	0.02	

A rind feeding assessment was conducted on 29 July. Near the 'Casperita' 5 out of 15 (33.3%) had rind feeding. Interior, away from the squash, 3 out of 15 had rind feeding (20%). On the far side of the field, interior, 2 out of 15 (13.3%) had rind feeding, and on the far edge of the field

away from 'Casperita' squash, 3 out of 15 (20%) had rind feeding. Winter squash did not appear to impact rind feeding.

Beetle distribution was very localized. For example, on May 22, all 268 striped cucumber beetles observed on the far watermelon plants were on 7 of the 100 rows examined. Very few beetles were ever observed on squash planted on the open edge of the field; most were present on squash planted next to a small strip of woods.

Watermelon 2019 Aphid 1

Location: Carvel REC, Field 38

Variety: 'Road Trip'

'Wingman' pollinizer

Planting Date: 10 May

Experimental Design: 3 treatments and 3 replicates

Plot size: 1 row x 15'

Row Spacing: 7' Plant Spacing: 3'

Treatment Method: CO₂- pressurized backpack sprayer with a 6.6' boom equipped with 4 D4 tips and

#45 cores delivering 50 GPA at 70 PSI.

Treatment Dates: 21 August **Sample Size:** 10 leaves

Analysis: Data $\log x + 0.1$ transformed, ANOVA; Tukey-Kramer HSD means separation

TRT	Material	Rate	Aphids/ 10 leaves				
			0d PRE	2 DAT	7 DAT	14 DAT	
1	UTC		16.3	14.7	30.3 a	6.0 a	
2	Sivanto HL	7 fl oz/A	16.0	1.0	0 b	7.7 a	
	+ Induce	1 pt/100 gal					
3	Sefina	3 fl oz/A	22.3	10.3	0.3 b	0 b	
ANOVA			NS	NS	P = 0.001	P = 0.001	

Watermelon 2019 Aphid Trial 2

Location: LESREC, Salisbury, MD

Variety: 'Road Trip'

'Wingman' pollinizer

Planting Date: 9 May

Experimental Design: Randomized complete block design with 8 treatments and 4 replicates

Plot size: 1 row x 18'

Treatment Method: Soil treatments delivered by opening plastic and slowly pouring 2,000

mL insecticide solution over 1.5' of the center of the bed on either side of the watermelon plant. Foliar treatments delivered using a CO₂-

pressurized backpack sprayer with a 6.6' boom equipped with 4 D4 tips

and #45 cores delivering 50 GPA at 70 PSI.

Treatment Dates: 30 August **Sample Size:** 10 leaves

Aphid species: All melon aphids

TRT	Material	Rate
1	UTC	
2	Sivanto Prime (soil)	28 fl oz/A (2.3 mL/plant)
3	Sivanto HL (soil)	14 fl oz/A (1.14 mL/plant)
4	Sivanto Prime (foliar)	14 fl oz/A
5	Sivanto HL (foliar)*	7 fl oz/A
6	Beleaf	2 oz/A
7	Sefina	3 fl oz/A
8	Harvanta	10.9 fl oz/A

^{*}Induce was added at a rate of 0.5 pint/100 gal

Aphids per 10 leaves

TRT	1 d (Pre)	4 DAT	10 DAT	14 DAT
1	59.5	49.5 a	24.8 a	0.5
2	36.0	24.0 ab	23.8 a	5.3
3	66.5	35.3 a	13.5 ab	0.8
4	51.0	2.8 ab	10.0 ab	1.8
5	35.0	0.5 b	9.0 ab	2.0
6	61.8	1.0 ab	2.3 b	2.0
7	38.3	0.5 b	0 b	0
8	56.3	22.5 ab	6.8 ab	4.0
ANOVA	NS	P = 0.004*	P = 0.004	NS

^{*}Aphid data log transformed prior to analysis. Presented are backtransformed means.

Early Season and Mid-Season Moth Trapping

True Armyworm and Black Cutworm. Pheromone traps (universal moth bucket traps) were deployed throughout the season to monitor true armyworm, black cutworm, and western bean cutworm flight activity. True armyworm is a potential small grain and seedling corn pest, especially when corn is planted green or into a weedy field. Black cutworm is a potential corn and soybean pest,

especially when planted into a weedy field.

Location	10 A	pril	17 A	pril	24 A	pril	1 N	I ay	7 N	I ay	14 N	May	22 I	May	29 N	May
	TA W	BC W	TA W	BC W	TA W	BC W	TA W	BC W	TA W	BC W	TA W	BC W	TA W	BC W	TA W	BC W
Willards, MD	8	18	1	5	3	5	3	7	2	5	0	12	1	1	0	4
Salisbury, MD	1	2	1	5	0	10	0	37	0	9	1	14	0	3	0	16
Laurel	14	22	6	19	2	16	0	44	1	17	1	48	0	23	0	54
Seaford	8	37	52	49		34	17	54	7	7	5	9	3	3	0	16
Bridgeville	14	3	34	12	19	26	1	21	0	5	0		0		0	1
Sudlersville , MD			0	1	2	2	1	5	0	36	0	2	0	5		
Harrington	2	0	6	7			3	39	0	22	1	12	1	5	0	18
Pearson's Corner	0	0	1	3	4	3	3	7	1	22	0	11	1	0	0	3
Kenton	14	1	23	3	24	7	17	17	2	10	1	18	0	2	0	3
Little Creek	50	3	61	31		38	3	39	1	66	2	93	2	16	5	16

Dates are approximate for when most of the traps were checked in that week. Individual trap check dates may differ by one or two days at most.

Western Bean Cutworm. Western bean cutworm is a significant corn pest in the eastern corn belt and arrived in PA in the mid-2000's. Its status in Delaware will be periodically assessed using pheromone traps. Localities which have economic populations of WBC report hundreds of moths per week in pheromone traps. WBC pheromone traps (Universal Moth Bucket Trap type) deployed June 18 in Lewes, Milton, Georgetown, Seaford, Greenwood, Harrington, Felton, Wyoming. Pheromone replaced July 11. Only 1 moth was trapped in Lewes on 15 July. Traps ran until July 26, checked weekly.

Wheat 2019 BYDV

Location: Carvel REC, Field 11 (Georgetown)

Wye Mills REC, Field H-05 (Wye)

Variety: 'Dyna-Gro 9750'

Planting Date: October 10 (Georgetown)

October 23 (Wye)

Experimental Design: Split plot design with 2 main plot factors and 2 subplot factors, 8

replicates (Georgetown, aphid data-Wye); 4 subplot factors and 4 reps

each (Wye, yield data).

Plot size: 10' x 23' Georgetown

9.75' x 18' Wye

Row Spacing: 7.5"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: Fall treatments: November 29 (Wye), November 30 (Georgetown)

Spring treatments May 10 (Wye); Georgetown was not treated in spring.

Harvest Area: 9' x 23'

Harvest Date: 22 June Georgetown

24 June Wye

Samples: 3 1-row-ft sections per plot; number of symptomatic flag leaves per

center 5 rows of each plot; BYDV ratings taken on May 22

(Georgetown) and May 10 (Wye)

Data Analysis: Split plot ANOVA, SAS

Notes: Foliar Warrior treatments were applied at the 1.92 fl oz/A rate. Seed treated with Virock 5 oz/cwt + Foothold or just Foothold. Warrior was applied on November

Georgetown

Seed TRT	Foliar	24	31	8	14	20	29	7 Dec	8 Feb	13	2	12	19	26	Test	Yield	Leaves/
	App.	Oct	Oct	Nov	Nov	Nov	Nov			March	April	April	April	April	Weight		5 rows
F, IST		0	0.1	0.8	2.0	2.4	0.5	3.9	3.8 b	1.3 b	1.6	20.6 b	98.5	56.9	55.7	16.0	1.3
F, IST	Fall	0.3	0.3	1.3	1.1	1.9	1.0	0	0.1 c	0 b	1.0	9.6 b	43.1	34.8	55.5	16.1	0.9
F		1.1	0.1	2.1	3.3	7.1	1.9	3	15.5 a	10.1 a	18.5	167.5	289.1	78.4	56.0	15.4	3.6
												a					
F	Fall	1.0	0.8	3.0	4.8	5.3	2.3	0	0.1 c	0.6 b	2.1	25.3 b	96.4	69.1	55.8	15.7	3.4
Seed Trt		NS	NS	P =	P =	P =	NS	NS	P =	P =	NS	P =	P =	NS	P =	NS	P =
				0.034	0.006	0.007			0.036	0.014		0.036	0.045		0.038		0.027
Foliar App		NS	NS	NS	NS	NS	NS	P	P	P =	P =	P =	P =	NS	P =	NS	NS
								< 0.001	< 0.001	0.001	0.046	0.029	0.026		0.009		
Seed*Foliar		NS	NS	NS	NS	NS	NS	NS	P =	P =	NS	P =	NS	NS	NS	NS	NS
									0.022	0.008		0.056					

Wye

Seed TRT	Foliar App.	Nov	Dec	Feb	March	March	April	April	April	April	May	May	Test	Yield	Leaves/
		29	6	8	15	27	5	12	19	26	2	10	Wght		5 rows
F, IST		0.5	0.3	0.1	1.1	0.3	1.9	16.9	72.9	83.9	8.3	1.5	56.8	10.6	3.1
F, IST	Fall	0.8	0	0	0.5	0	1.9	11.3	37.8	43.3	8.4	1.5	57.4	10.6	3.3
F, IST	Spring												56.3	11.0	
F, IST	Fall												57.0	10.7	
	Spring														
F		2.4	1.8	1.8	1.8	1.4	11.6	50.8	271.3	248.1	17.6	1.1	56.3	9.8	1.8
F	Fall	1.5	0	0	0	0.4	3.8	16.6	84.4	162.8	8.6	0.8	55.7	10.1	1.1
F	Spring												56.2	10.2	
F	Fall												56.5	10.7	
	Spring														
Seed Trt			NS	NS	NS	NS	<i>P</i> =	NS	NS	<i>P</i> =	NS	NS	NS	NS	<i>P</i> =
Seca 171			145	110	145	110	0.039	145	145	0.016	145	145	145	145	0.048
Foliar App			P =	NS	P =	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
			0.015		0.021										
Seed*Foliar			NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Wheat 2019 Aphids

Location: Harrington, DE Variety: 'Agrimax 363' Planting Date: 22 October 2018

Experimental Design: Randomized complete block design with 2 treatments and 4 replicates

Plot size: 20' x 20'

Row Spacing: 7"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6 XR

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 22 April
Sample Size: 1 row ft
Harvest Date: 17 June
Harvest Method: Hand-harvest
Harvest Area: 14 rows x 20'

Data Analysis: T-test

TRT	Ap	April 22 (PRE)			ril 25 (3 D	AT)	Ma	y 2 (10 D	AT)	Test	Yield
	EGA	BCOA	Total	EGA	BCOA	Total	EGA	BCOA	Total	Wght	(lbs)
Warrior	326.5	90.8	417.3	50.5	14.0	64.5	1.0	0.8	1.8	57.5	6.5 b
II 1.92 fl											
oz/a											
UTC	252.5	62.8	315.3	354.3	103.8	458.0	9.0	0.5	9.5	56.5	7.7 a
T-test	NS	NS	NS	P =	NS	P =	NS	NS	NS		P =
				0.002		0.007					0.045

Barley 2019 Aphids

Location: Greenwood, DE

Variety: 'Violetta'

Planting Date: 4 October 2018

Experimental Design: Randomized complete block design with 5 treatments and 4 replicates

Plot size: 10' x 20'

Row Spacing: 7"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6 XR

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 11 April **Sample Size:** 1 row ft

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

T-test for quality analysis between TRT 1 and TRT 5

Notes: 1 pound samples analyzed by MSU's Malting Barley Quality Lab. DON was less than 0.3 for all but one sample (II-1, 0.5).

TRT	Material	Rate
1	UTC	
2	Baythroid XL	2.1 fl oz/A
3	Endigo	3.5 fl oz/A
4	Sivanto Prime	7.0 fl oz/A
5	Warrior II	1.92 fl oz/A

TRT	0 d	PRE	4 D	AT	7 D	AT	14 DAT		
	EGA	BCOA	EGA	BCOA	EGA	BCOA	EGA	BCOA	
1	66.6	179.6	218.5 a	98.5 a	410.0 a	100.3 a	14.8	171.8	
		ab							
2	116.3	298.6 a	23.3 b	25.8 ab	22.8 c	21.8 b	6.5	11.3	
3	69.4	245.8	6.0 b	1.0 b	11.5 c	0.3 b	0	4.8	
		ab							
4	106.8	98.8 b	142.8 a	21.5 ab	242.3 b	4.8 b	3.5	54.5	
5	84.8	146.6	2.8 b	27.8 ab	0.3 c	19.5 b	7.0	1.3	
		ab							
ANOVA	NS	P =	P	P =	P	P =	NS	NS	
		0.010	< 0.001	0.016	< 0.001	0.001			

TRT	Test	Adj.	%	Moistur	Plump	Thin	Energ	Energ	Capacit	RVA
	Weigh	Yiel	Protei	e	%	%	y 4ml	y 8 ml	y	
	t	d	n							
		(lbs)								
1	43.5	3.97	11.6	13.3	92.4	0.9	62.5	27.0	80.0	154.
										8
2	46.4	5.09								158.
										8
3	42.4	4.78								
4	44.7	4.73								
5	43.9	4.72	11.3	13.2	92.3	0.7	64.8	29.8	83.5	
ANOV	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
A										

Sorghum 2019 Sugarcane Aphid 1

Location: Georgetown, DE **Variety:** DeKalb '3816'

Planting Date: 1 June

Experimental Design: Randomized complete block design with 6 treatments and 4 replicates

Plot size: 10' x 20' Row Spacing: 30"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6 XR

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 11 September

Sample Size: 5 flag leaves and 5 lower canopy +2 leaves

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Notes: Plots experienced droughty conditions causing rapid leaf senescence, by 14 DAT, few green leaves were available for sampling. Drought conditions could have influenced Lorsban and Dimethoate activity. However, these two products have been inconsistent in numerous university trials from across the Southeast.

TRT	Material	Rate
1	UTC	
2	Sivanto Prime	3 fl oz/A
3	Sivanto Prime	5 fl oz/A
4	Sivanto Prime	7 fl oz/A
5	Lorsban 4E	1 pt/A
6	Dimethoate 400	1 pt/A

TRT	11 Sept ((0d PRE)	2 D	AT	7 D	AT	14 I	OAT
	Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper
1	471.8	327.3	349.5 a	483.0 a	692.5 a	1338.0 a	1.0 b	0 b
2	227.8	318.3	21.0 b	21.5 b	0.8 b	0.8 b	0 b	0 b
3	279.8	178.5	15.3 b	3.8 b	0.3 b	0.3 b	0 b	0 b
4	644.5	342.0	6.5 b	1.8 b	0.5 b	0.5 b	0 b	0 b
5	550.8	688.8	162.3 ab	143.8 ab	666.3 a	148.8 ab	1177.0 a	67.0 ab
6	447.8	493.5	83.8 b	40.3 b	223.0 ab	123.5 ab	394.3 ab	65.5 a
ANOVA	NS	NS	P =	P =	P =	P =	P =	P =
			0.001	0.018	0.004	0.023	0.016*	0.016*

Sorghum 2019 Sugarcane Aphid 2

Location: Georgetown, DE **Variety:** DeKalb '3816'

Planting Date: 1 June

Experimental Design: Randomized complete block design with 6 treatments and 4 replicates

Plot size: 10' x 20' Row Spacing: 30"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6 XR

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 18 September

Sample Size: 5 flag leaves and 5 lower canopy +2 leaves

Data Analysis: T-test

Notes: Induce was added to Transform spray based on recommendation from southern entomologists

TRT	Rate	0d PRE		2 D	AT	7 D	AT	14 DAT		
		Lower	Upper	Lower	Upper	Lower	Upper	Lower	Upper	
UTC		1202.3	791.0	2395.5	1292.0	1697.8	700.0	1052.3	352.5	
Transform	0.75 oz/a	1479.7	989.3	1221.3	264.7	2.0	0.3	0	0	
T-test		NS	NS	NS	NS	P = 0.008	P = 0.049	P = 0.029*	P = 0.029*	

^{*}Log(x + 0.1) transformed

Sorghum 2019 CEW

Location: Ellendale, DE

Variety: --Planting Date: 1 June

Experimental Design: Randomized complete block design with 10 treatments and 4 replicates

Plot size: 10' x 50' Row Spacing: 15"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

nozzles (see table for more details).

Treatment Date: 20 August

Sample Size: 25 heads beaten into a bucket per plot

Data Analysis: ANOVA; Tukey-Kramer HSD means separation; Treatments 2 and 3

compared using T-test, Treatments 2, 3, 4 compared using ANOVA

Notes: No significant differences among treatments 2, 3, and 4 total worm count (Application parameters differed, Warrior II low rate; ANOVA) at any sampling date. No significant differences between treatments 2 and 3 (Low volume vs High volume, Warrior II low rate; T-test), although numerically more worms were present in TRT 2 samples 2 DAT.

TRT	Material	Rate	Application		PRE			2 DA	T			6 D	OAT		
			Notes	Small	Med.	Large	Total	Small	Med.	Large	Total	Small	Med.	Large	Total
1	UTC			7.5	4.3	3.3	15	4.0	4.0a	3.3a	11.3a	0	0.3	0.5ab	0.8ab
2	Warrior	1.28	XR 8002,	6.8	6.0	1.8	14.5	2.8	4.3a	1.3ab	8.3ab	0	0.5	1.0a	1.5a
	II	fl	15 PSI, 9.5												
		oz/A	GPA												
3	Warrior	1.28	XR8002, 60	9.5	5.8	1.0	16.3	1.5	2.3ab	1.8ab	5.5ab	0.3	0.8	0	1.0ab
	II	fl	PSI, 22.4												
		oz/A	GPA												
4	Warrior	1.28	Banded,	6.8	5.3	1.5	13.5	2.3	2.3ab	2.0ab	6.5ab	0.5	0.3	0b	0.8ab
	II	fl	8002E, 72												
		oz/A	PSI, 20												
			GPA												
6	Warrior	1.92	XR11004,	5.0	4.3	3.0	12.3	1.3	1.8ab	1.3ab	4.3ab	0.3	0.8	0.5ab	1.5a
	II	fl	28 PSI, 20												
		oz/A	GPA												
7	Baythroid	2.8 fl	XR11004,	6.3	7.8	2.8	16.8	1.0	0.3b	0.3b	1.5b	0	0.3	0.3b	0.5ab
	XL	oz/A	28 PSI, 20												
			GPA												
8	Prevathon	17 fl	XR11004,	8.3	5.3	2.5	16.0	0.5	1.0b	0.3b	1.8b	0	0	0b	0.0b
		oz/A	28 PSI, 20												
_			GPA									_	_		
9	Besiege	8 fl	XR11004,	8.3	4.8	1.0	14.0	0.3	0.3b	0.0b	0.5b	0	0	0b	0.0b
		oz/A	28 PSI, 20												
	_		GPA				4.50		0.04			0.0	0.0	0.0.1	0.0.1
10	Lannate	1.1	XR11004,	9.3	5.5	1.3	16.0	3.3	0.8b	1.5ab	5.5ab	0.3	0.3	0.3ab	0.8ab
		pts/A	28 PSI, 20												
1.1	0 1 1	1.7	GPA VP11004	4.7	7.5	2.0	140	0.7	0.01	0.21	0.01		0.2	01	0.2.1
11	Carbaryl	1.5	XR11004,	4.5	7.5	2.0	14.0	0.5	0.0b	0.3b	0.8b	0	0.3	0b	0.3ab
		qts/A	28 PSI, 20												
	ANOUA		GPA	NC	NC	NC	NC	NC	D +0.001	D	D	NC	NC	D	D
	ANOVA			NS	NS	NS	NS	NS	P<0.001	P = 0.016	P = 0.001	NS	NS	P = 0.033	P = 0.005
					l				1	0.010	0.001			0.033	0.003

Soybean 2019 Slugs

Location: Harbeson, DE **Variety:** Asgrow '46x6'

Planting Date: 27 May

Experimental Design: Randomized complete block design with 4 treatments and 4 replicates

Plot size: 20' x 20' **Row Spacing:** 15"

Treatment Method: Scott's hand spreader

Treatment Date: 28 May

Sample Size: stand from 2 10-row-ft row sections

TRT	Rate (lbs/a)	Ju	ne 4	June 13
		Stand	Injured	Stand
UTC		38.8	19.0	49.5
Ferroxx	7.5	51.5	11.3	59.8
Ferroxx	10	47.5	8.0	53.5
Deadline	10	50.0	11.3	58.0
ANOVA		P = 0.004	NS	NS

Location: Carvel REC, Field 38 **Variety:** 'DG S43XS 27 RR2x/STS'

Planting Date: 27 June

Experimental Design: Randomized complete block design with 8 treatments and 4 replicates

Plot size: 10' x 50' Row Spacing: 15"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 22 August

Sample Size: 20 sweeps per plot

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Notes: Green cloverworm ranged from 10 to 17. 4 DAT, GCW ranged from 0 (trt 2,3,4) 0.3 (trt 5), 0.5 (trt 7), 0.8 (trt 6, 8), and 8.8 (trt 1). 7 DAT, GCW ranged from 0 (trt 2,3,4), 0.3 (trt 7,8), 0.8 (trt 5), 1.0 (trt 6), to 7.0 (trt 1).

When analyzed separately, total worm counts in Brigade, Baythroid XL, and Warrior II plots did not differ significantly from each other at any sampling date.

Virus-infected worms were present in the field.

Using NCSU's corn earworm threshold calculator, ballpark thresholds per 15 and 20 sweeps for different treatments, assuming 10.23 application cost and regional estimates of product cost, 8.50/bu price, and 7-14" rows are as follows:

Prevathon 5.40/ 7.2 Intrepid 6.23/ 8.31 Steward 5.58/ 7.44 Warrior II 2.38/ 3.17 Besiege 4.76/ 6.3 Hero 3.63/ 4.84 Baythroid XL 2.29/ 3.05

TRT	Material	Rate		0 d	PRE			4 I	OAT			7	DAT	
			Small	Med	Large	Total	Small	Med	Large	Total	Small	Med	Large	Total
1	UTC		3.5	3.5	2.3	9.3	3.3a	5.0a	2.0a	10.3a	0.3	0.8a	1.3a	2.3a
2	Brigade	6.4 fl	2.0	3.5	1.3	6.8	0.3b	0.3b	0b	0.5b	0	0	0b	0b
	_	oz/A												
3	Prevathon	14 fl	3.5	1.8	1.0	6.3	0b	0.5b	0.8ab	1.3b	0	0	0.3b	0.3b
		oz/A												
4	Steward	4.6 fl	0.8	2.0	0.5	3.3	0b	0.3b	0b	0.3b	0	0.3ab	0b	0.3b
		oz/A												
5	Besiege	5 fl	3.5	2.0	0	5.5	0b	0.0b	0.3ab	0.3b	0	0	0b	0b
	_	oz/A												
6	Baythroid	2.8 fl	2.5	2.3	0.5	5.3	0b	0.0b	0b	0b	0	0	0b	0b
	XL	oz/A												
7	Warrior II	1.92	4.3	4.3	1.5	10.0	0.3b	0.3b	0b	0.5b	0	0.3ab	0b	0.3b
		fl												
		oz/A												
8	Intrepid	6 fl	2.8	3.5	0.8	7.0	1.3ab	0.5b	0.3ab	2.0b	0.3	0.8a	0b	1.0ab
		oz/A												
	ANOVA		NS	NS	NS	NS	P =	P =	P =	P	NS	P =	P =	P<0.001
							0.005	0.002	0.015	< 0.001		0.011	0.001	

Location: Carvel REC, Field 38 **Variety:** 'DG S43XS 27 RR2x/STS'

Planting Date: 27 June

Experimental Design: Randomized complete block design with 8 treatments and 4 replicates

Plot size: 10' x 50' Row Spacing: 15"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 22 August

Sample Size: 20 sweeps per plot

Harvest Area: 9' x 22' Harvest Date: Oct 26

TRT	Material	Rate
1	UTC	
2	Hero	10.3 fl oz/A
3	Radiant	3 fl oz/A
4	Prevathon	20 fl oz/A
5	Steward	11.3 fl oz/A
6	Proclaim*	3.4 oz/A

^{*}Not labeled for soybean

TRT		0 d	PRE			4 D	AT			7	DAT			Yield
	Small	Med	Large	Total	Small	Med	Large	Total	Small	Med	Large	Total	Test Weight	Yield/ft
1	4.3	2.8	0.3	7.3	1.0	3.3 a	1.3 a	5.5 a	0	1.0	1.8 a	2.8 a	49.2	0.25
2	4.5	3.3	0.8	8.5	0	0 b	0 b	0 b	0	0.3	0 b	0.3 b	48.6	0.25
3	5.0	4.3	1.8	11.0	0.5	0.5 ab	0.5 ab	1.5 ab	0	0	0 b	0 b	55.7	0.33
4	3.8	2.0	0.3	6.0	0.3	0 b	0 b	0.3 b	0	0	0.3 ab	0.3 b	55.9	0.33
5	5.8	3.5	0.5	9.8	0	0 b	0 b	0 b	0	0	0 b	0 b	54.3	0.29
6	4.0	2.3	0.3	6.5	1.3	1.8 ab	0.5 ab	3.5 ab	0.8	1.0	1.5 ab	3.3 a	55.3	0.34
ANOVA	NS	NS	NS	NS	NS	P =	P =	P =	NS	P =	P =	P	P =	P = 0.072
						0.018	0.018	0.008		0.018	0.003	< 0.001	0.082	

Location: Carvel REC, Field 38 **Variety:** DG S43XS 27 RR2x/STS

Planting Date: 27 June

Experimental Design: Randomized complete block design with 8 treatments and 4 replicates

Plot size: 10' x 50' Row Spacing: 15"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 26 August

Sample Size: 20 sweeps per plot

TRT	Material	Rate (per A)
1	UTC	
2	Warrior II	0.96 fl oz
3	Warrior II	0.96 fl oz
	Lannate	0.4 pt
4	Warrior II	0.96 fl oz
	Exponent	1.2 fl oz

TRT			0 d PRE	C		2 DAT					
	Small	Med	Large	Total	GCW	Small	Med	Large	Total	GCW	
1	2.0	2.8	1.0	5.8	8.8	2.0	1.8	0.3	4.0	8.3	
2	2.3	2.8	1.8	6.8	17.3	1.5	1.0	0.8	3.3	6.5	
3	2.3	0	0	2.3	0.3	0	0.3	0	0.3	0.3	
4	3.5	2.3	0.3	6.0	14.0	1.3	1.0	0	2.3	1.3	
ANOVA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	

Location: Carvel REC, Field 38 **Variety:** DG S43XS 27 RR2x/STS

Planting Date: 27 June

Experimental Design: Randomized complete block design with 8 treatments and 4 replicates

Plot size: 10' x 50' Row Spacing: 15"

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6 8004 nozzles calibrated to deliver

20 GPA at 28 PSI.

Treatment Date: 26 August

Sample Size: 20 sweeps per plot

TRT	Material	Rate
1	UTC	
2	Denim	10 fl oz/A
3	Prevathon	14 fl oz/A

TRT		0 d PRE					2 DAT				4 DAT				
	Small	Med	Large	Total	GCW	Small	Med	Large	Total	GCW	Small	Med	Large	Total	GCW
1	2.3	3.0	3.0	8.3	3.0	1.8	2.8	3.5	8.0	4.5	0.5	0.5	1.8	2.8	2.3
2	2.5	3.8	2.0	8.3	2.0	3.0	3.5	0.5	7.0	0	0.3	2.0	0.5	2.8	0.3
3	3.0	5.0	1.0	9.0	2.3	2.0	2.8	1.5	6.3	0.5	0.3	0.8	0	1.0	0.3
ANOVA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Soybean Dectes Foliar

Location:Harbeson, DEVariety:CZ4308LLPlanting Date:2 May

Experimental Design: Randomized design with 5 treatments and 4 replicates

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 31 PSI.

Treatment Date: 10 July **Plot Size:** 4 rows x 25'

Row Spacing: 30"

Sample Size: 10 sweeps/plot; split 25 stems/plot

Stem Collection: 29 August

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

TRT	Material	Rate
1	UTC	
2	Prevathon	20 fl oz/A
3	Prevathon	20 fl oz/A
	Brigade	6.4 fl oz/A
4	Experimental	
5	Brigade	6.4 fl oz/A
6	Prevathon	14 fl oz/A
	Steward	6 oz/A

Treatments 2, 3, and 4 had Cidewinder 0.5% v/v

TRT	%Dectes	%Dectes	%Clean	N	No. Dectes p	er 10 sweep	S
	Signs	Found		1 PRE	1 DAT	7 DAT	14 DAT
1	56.0 a	44.0 a	44.0 b	0.5	0.5	0.75	0.5
2	25.0 ab	22.0 ab	75.0 ab	0.75	0.25	0	0.5
3	26.0 ab	18.0 ab	74.0 ab	1.5	0.75	0	0.5
4	10.3 b	8.2 b	89.7 a	0.75	0	0	0.5
5	27.0 ab	17.0 ab	73.0 ab	0.75	0.25	0.25	0.75
6	12.0 b	10.0 b	88.0 a	1.0	0.5	0.25	0.5
ANVOA	P = 0.005	P = 0.009	P =	NS	NS	NS	NS
			0.005				

Sunflower 2019 Dectes In-Furrow 1

Location: Carvel REC, Dill Farm

Variety: Game Plan CL

Planting Date: 23 May

Experimental Design: Randomized design with 3 treatments and 4 replicates

Treatment Method: Monosem planter with in-furrow application via fertilizer drops

delivering 9.2 GPA.

Plot Size: 4 rows x 15'

Row Spacing: 30"

Plant Population: 30,000/acre

Sample Size: visual counts on 1 row x plot length; split 25 stems/plot

Stem Collection: 13 September

TRT	Material	Rate	% Dectes	% Dectes	%	31	Adjacent	15
			signs	found	Clean	July	soybean	July
1	UTC		88.6	46.0	11.4	0.25	1	2.0
2	Coragen	5 fl	64.2	27.1	35.8	0.25	beetle/80	0.5
		oz/A					sweeps,	
3	Coragen	7.5 fl	62.2	26.2	37.8	0	located	0.75
	_	oz/A					adjacent	
ANOVA			NS	NS	NS		to	
							sunflower	

Sunflower 2019 Dectes In-Furrow 2

Location: Warrington Irrigation Research Farm

Variety: Game Plan CL

Planting Date: 7 May

Experimental Design: Randomized design with 3 treatments and 4 replicates

Treatment Method: Monosem planter with in-furrow application via fertilizer drops

delivering 9.2 GPA.

Plot Size: 4 rows x 60'

Row Spacing: 30"

Plant Population: 32,000/acre (outer)

22,000/acre (inner)

Sample Size: visual counts on 1 row x plot length; split 25 stems/plot

Stem Collection: 13 September

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Notes: A discrepancy between planter computer and planter display was present at planting. It is possible but not definite that Coragen was gravity trickling through the line when planting the UTC. However, Dectes pressure was high and nearly every plant in the field was infested with a Dectes larva.

Overall

TRT	Material	Rate	% Dectes signs	% Dectes found	% Clean	9 July	17 July	24 July
1	UTC		99.0	78.0	1.0	8.0	3.0	1.5
2	Coragen	5 fl	95.0	71.9	5.0	9.0	8.75	1.25
		oz/A						
3	Coragen	7.5 fl	97.0	79.5	3.0	8.0	6.0	3.0
		oz/A						
ANOVA			NS	NS	NS	NS	NS	NS
Inner (22k			96.0	76.8	4.0			
plants)								
Outer			98.0	76.2	2.0			
edge (32k								
plants)								
ANOVA			NS	NS	NS	NS	NS	NS

Sunflower 2019 Dectes Foliar 1

Location: Staytonville, DE **Variety:** Game Plan CL

Planting Date: 20 May

Experimental Design: Randomized design with 5 treatments and 4 replicates

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 28 PSI.

Treatment Date: 9 July

Plot Size: 4 rows x 20'

Row Spacing: 30"

Sample Size: visual counts on 1 row x plot length; split 25 stems/plot

Stem Collection: 29 August

Data Analysis: ANOVA; Tukey-Kramer HSD means separation

Notes: Treatment timed when Dectes first appeared in sunflower. Dectes population at Staytonville site was low and beetles came in during an extended period of time.

TRT	Material	Rate
1	UTC	
2	Prevathon	20 fl oz/A
3	Prevathon	20 fl oz/A
	Brigade	6.4 fl oz/A
4	Experimental	
5	Brigade	6.4 fl oz/A

Treatments 2, 3, and 4 had Cidewinder 0.5% v/v

TRT	%Dectes	%Dectes	%Clean	0 PRE	2 DAT	8 DAT	15	22
	Signs	Found					DAT	DAT
1	38.4	15.8 b	61.6	0.25	0.25	0	0.25	0
2	15.2	9.1 ab	84.8	0	0	0	0	0
3	24.8	6.3 ab	75.2	0.25	0	0	0	0
4	32.3	5.1 ab	67.7	0.75	0	0	0	0
5	27.1	3.0 b	72.9	0	0.25	0	0	0
ANVOA	NS	<i>P</i> =	NS	NS	NS	NS	NS	NS
		0.035						

Sunflower Dectes Foliar 2

Location: Harbeson, DE **Variety:** Game Plan CL

Planting Date: 7 May

Experimental Design: Randomized design with 5 treatments and 4 replicates

Treatment Method: CO₂ pressurized backpack sprayer with a 10' boom equipped with 6

8004 nozzles calibrated to deliver 20 GPA at 31 PSI.

Treatment Date: 9 July

Plot Size: 4 rows x 25'

Row Spacing: 30"

Sample Size: visual counts on 1 row x plot length; split 25 stems/plot

Stem Collection: 29 August

TRT	Material	Rate
1	UTC	
2	Prevathon	20 fl oz/A
3	Prevathon	20 fl oz/A
	Brigade	6.4 fl oz/A
4	Experimental	
5	Brigade	6.4 fl oz/A

Treatments 2, 3, and 4 had Cidewinder 0.5% v/v

TRT	%Dectes	%Dectes	%Clean	0 PRE	2 DAT	8 DAT	15 DAT
	Signs	Found					
1	90.9 a	65.4 a	9.1 a	3.0	0.5	1.5 a	0
2	79.0 ab	42.0 ab	21.0 ab	2.75	0.5	0 b	0.25
3	58.3 b	37.1 ab	41.7 b	1.0	0.75	0.5 b	0
4	53.8 b	22.9 b	46.2 b	1.50	0	0 b	0
5	79.9 ab	45.7 ab	20.1 ab	1.25	0.25	0.25 b	0.25
ANOVA	P = 0.004	P = 0.030	<i>P</i> =	<i>P</i> =	NS	<i>P</i> =	NS
			0.004	0.035		0.001	

Misc. Observations

One corn field in Seaford was infested with wireworms. Half the field was planted with Poncho250 and the other half had Poncho500. May 16 P250 = 1.26% wireworm damage; P500 = 0; no significant difference (T-test).

On May 30, P250 = 1.62% wireworm damage; P500 = 1.08% wireworm damage; no significant difference (T-test).

Cucumber beetle first appearance: Laurel, 14 May

Slug eggs: May 6, Lewes

First Dectes on sunflower: June 27, Harbeson

				Dela	aware	in the	vear	2019								
							# of		% loss	# of apps per			bushel			% Total
		% Acres	Acres	% Acres	Acres	% Acres	apps/acres	Cost of 1	per acre	total soy		Overall %	lost per		Loss +	Loss +
Pest	Acres Infested	Infested	above ET	above ET	Treated	Treated	treated	Insecticide	infested	acres	cost/acre		pest	Loss + Cost		
Armyworm complex	13,714	9.0%	3,170		440	0.3%	1	\$8.50	0.25	0.003	\$0.02	0.02%	1,352	\$15,407	\$0.10	
Banded Cucumber Beetle	. 0	0.0%	. 0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	0.0%
Bean Leaf Beetle	54,762	35.8%	10,600	6.9%	1,725	1.1%	1	\$8.50	0.75	0.011	\$0.10	0.27%	16,196	\$154,432	\$1.01	5.4%
Blister Beetle	50,000	32.7%	0	0.0%	. 0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	0.0%
Corn Earworm	89,775	58.7%	45,770	29.9%	40,770	26.6%	1.1	\$15.00	2.50	0.293	\$4.40	1.47%	88,502	\$1,436,481	\$9.39	49.9%
Cutworms	240	0.2%	10	0.0%	0	0.0%	0	\$0.00	2.50	0.000	\$0.00	0.00%	237	\$2,042	\$0.01	0.1%
Dectes Stem Borer	18,850	12.3%	0	0.0%	0	0.0%	0	\$0.00	0.75	0.000	\$0.00	0.09%	5,575	\$48,111	\$0.31	1.7%
Garden Webworms	0	0.0%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	0.0%
Grape Colaspis	750	0.5%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	0.0%
Grasshopper	71,750	46.9%	2,145	1.4%	4,590	3.0%	1	\$8.50	1.25	0.030	\$0.26	0.59%	35,366	\$344,227	\$2.25	11.9%
Green Cloverworm	151,225	98.8%	5,870	3.8%	4,100	2.7%	1	\$8.50	0.25	0.027	\$0.23	0.25%	14,908	\$163,507	\$1.07	5.7%
Japanese Beetle	81,800	53.5%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	0.0%
Kudzu Bug	0	0.0%	0		0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Lesser Cornstalk Borer	0	0.0%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	0.0%
Mexican Bean Beetle	0	0.0%	0		0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Potato Leafhopper	65,000	42.5%	0		0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Saltmarsh Caterpillar	0	0.0%	0		0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Seedcorn maggot	5,000	3.3%	1,000		0	0.0%	-	\$0.00	0.70	0.000	\$0.00	0.02%	1,380	\$11,911	\$0.08	
Slugs	20,000	13.1%	0	0.0%	0	0.0%	0	\$0.00	0.50	0.000	\$0.00	0.07%	3,943	\$34,031	\$0.22	1.2%
Soybean Aphid	39,750	26.0%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Soybean Looper	12,200	8.0%	1,500		1,300	0.8%	1	\$13.50	1.00	0.008	\$0.11	0.08%	4,811	\$59,067	\$0.39	
Spider Mites	24,550	16.0%	7,700		4,650	3.0%	1	\$9.75	1.00	0.030	\$0.30	0.16%	9,681	\$128,883	\$0.84	
Spotted Cucumber Beetle	0	0.0%	0		0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Stink Bugs (see box below)	63,050	41.2%	2,100		1,200	0.8%	1	\$8.50	1.50	0.008	\$0.07	0.62%	37,294	\$332,045	\$2.17	
Threecornered Alfalfa Hopper	10,000	6.5%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Thrips	153,000	100.0%	0	0.0%	0	0.0%		\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Trochanter Mealybug	0	0.0%	0	0.0%	0	0.0%	-	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Velvetbean Caterpillar	0	0.0%	0	0.0%	0	0.0%	0	\$0.00	0.00	0.000	\$0.00	0.00%	0	\$0	\$0.00	
Other	40	0.0%	0	0.070	40	0.0%	1	\$25.00	0.00	0.000	\$0.01	0.00%	0	\$1,000	\$0.01	
Automatic (no insects)	0	0.0%	0	0.0%	75,000	49.0%	1	\$2.00	0.00	0.490	\$0.98	0.00%	0	\$150,000	\$0.98	5.2%
SUMMARY DATA																
Data Input			Yi	eld & Manag	ement Resu	lts		Economic Results				Stink Bug Compos		osition		
State	DE		Total Bushels Harvested		5,814,000				Total			Species		% of SB		
Year	2019			Is Lost to Ins	ects	219,245		Foliar Insecti		+	\$6.46		Brown		46	
Total Acres	153,000		Percent Yield Loss		3.63%		Seed Treatment Costs		\$213,589	\$1.40		Brown Marmorated		12		
Yield/acre	38		Yield w/o Ins			39.43		Scouting cos	ts	\$803,250	\$5.25		Green		42	
Price/Bushel	\$8.63		Ave. # Spray Applications		0.901		Total Costs		\$2,005,899	\$13.11		Redbanded		0		
% Acres Scouted	70		Seed Treate	d Acres		38,834		Yield Lost to	insects	\$1,892,083	\$12.37		Redshoul	dered	0	
Scouting Fee/scouted acre	\$7.50		Scouted Acres		107,100		Total Losses + Costs		\$3,897,982 \$25			Southern Green		0		
% Acres Insect Seed Trt.	25.382												Total (mak	ke it 100%)	100	1
Seed Trt Cost/treated ac	\$5.50															