Commercial Nutrient Handler Calculation Review

Review

What does a fertilizer label tell you?
Fertilizer bag reads: 15-10-10
This is the percent $\mathrm{N}-\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)-\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ by WEIGHT. If you have a liquid fertilizer you need to know how much it weighs per gallon to be able to figure out how much fertilizer you are applying.
(Actually, the analysis 15-10-10 is the percent $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}$ by weight, but the test will NOT require you to convert between the oxide forms, $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$, and the elemental forms, P and K . For all of the following examples we will SAY P and K but in reality we are calculating $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$)

When you work with a percentage, remember that you need to convert the percentage to a decimal number. For example, the bag of fertilizer reads 15-10-10, you can convert the percentages to decimal numbers as follows:

```
15% N = 15% % 100% = 0.15 N
10%P( }\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{5}{})=10%\div100%=0.10P(\mp@subsup{\textrm{P}}{2}{}\mp@subsup{\textrm{O}}{5}{}
10% K (K2O)=10% \div100% = 0.10 K( }\mp@subsup{\textrm{K}}{2}{}\textrm{O}
```


Sample Questions

1. You have a 70 lb bag of $0-46-0$ fertilizer. This bag will supply how many lbs of:

This fertilizer has $0 \% N$ and $K\left(\mathrm{~K}_{2} \mathrm{O}\right)$.
a. $\mathrm{N}=0 \mathrm{lbs}$

$$
\begin{gathered}
0 \% N \div 100 \%=0.00 \text { lbs } N \text { per lb of fertilizer } \\
0 \text { lbs } N \text { per lb fertilizer } \times 70 \text { lbs fertilizer }=0 \text { lbs } N
\end{gathered}
$$

b. $\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=32.2 \mathrm{lbs}$

$$
46 \% P\left(P_{2} O_{5}\right) \div 100 \%=0.46 \text { lbs } P\left(P_{2} O_{5}\right) \text { per lb fertilizer }
$$

$0.46 \mathrm{lbs} P\left(P_{2} \mathrm{O}_{5}\right)$ per lb fertilizer $\times 70 \mathrm{lbs}$ fertilizer $=32.2 \mathrm{lbs} P\left(P_{2} O_{5}\right)$
c. $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)=0 \mathrm{lbs}$

$$
0 \% \mathrm{~K}\left(K_{2} \mathrm{O}\right) \div 100 \%=0.00 \text { lbs } K\left(K_{2} O\right) \text { per lb of fertilizer }
$$

0 lbs $K\left(K_{2} O\right)$ per lb of fertilizer x 70 lbs fertilizer $=0 \mathrm{lbs} K\left(K_{2} O\right)$
2. You have a 50 gallon tank of 10-15-10. Each gallon weighs 11 lbs . This tank will supply how many lbs of:
a. $\mathrm{N}=55 \mathrm{lbs}$
$(11 \mathrm{lbs} / \mathrm{gal} x 50 \mathrm{gal}$ tank $=550 \mathrm{lbs}$ fertilizer $)$

$$
(10 \% N \div 100 \%=0.10 \text { lbs } N \times 550 \text { lbsfertilizer }=55 \mathrm{lbs} N)
$$

b. $\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=82.5 \mathrm{lbs}$

$$
\begin{gathered}
(11 \mathrm{lbs} / \mathrm{gal} \times 50 \mathrm{gal}=550 \mathrm{lbs} \text { fertilizer }) \\
\left(15 \% P\left(P_{2} O_{5}\right) \div 100 \%=0.15 \mathrm{P}\left(\mathrm{P}_{2} O_{5}\right) \times 550 \mathrm{lbs}=82.5 \mathrm{lbs} P\left(P_{2} O_{5}\right)\right)
\end{gathered}
$$

c. $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)=55 \mathrm{lbs}$

$$
\begin{gathered}
(11 \mathrm{lbs} / \mathrm{gal} \times 50 \mathrm{gal}=550 \mathrm{lbs} \text { fertilizer }) \\
\left(10 \% K\left(K_{2} \mathrm{O}\right) \div 100 \%=0.10 K\left(K_{2} \mathrm{O}\right) \times 550 \mathrm{lbs}=55 \mathrm{lbs} K\left(K_{2} \mathrm{O}\right)\right)
\end{gathered}
$$

3. You have a 40 lb bag of 10-10-10. This bag will supply how many lbs of:
a. $\mathrm{N}=4 \mathrm{lbs}$

$$
(10 \% N \div 100 \%=0.10 \text { lbs } N \text { per lb fertilizer } \times 40 \text { lb of fertilizer }=4.0 \text { lbs } N)
$$

b. $\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)=4 \mathrm{lbs}$

$$
\begin{aligned}
\left(10 \% P\left(P_{2} O_{5}\right)\right. & \div 100 \%=0.10 \mathrm{lbs} P\left(P_{2} O_{5}\right) \text { per lb fertilizer } \times 40 \text { lbs of fertilizer } \\
& \left.=4.0 \mathrm{lbs} P\left(P_{2} O_{5}\right)\right)
\end{aligned}
$$

c. $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)=4 \mathrm{lbs}$

$$
\begin{aligned}
\left(10 \% \mathrm{~K}\left(K_{2} \mathrm{O}\right)\right. & \div 100 \%=0.10 \mathrm{lbs} \mathrm{~K}\left(\mathrm{~K}_{2} \mathrm{O}\right) \text { per lb fertilizer } \times 40 \mathrm{lbs} \text { of fertilizer } \\
& \left.=4.0 \mathrm{lbs} \mathrm{~K}\left(K_{2} \mathrm{O}\right)\right)
\end{aligned}
$$

Review

When we calculate the amount of fertilizer needed to supply a certain amount of $\mathrm{N}, \mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$, or $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$, we need to know:
a. How much $\mathrm{N}, \mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ or $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ is needed per unit area (1,000 square feet, acre, etc.)
b. The analysis of the fertilizer (percent $\mathrm{N}, \mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$, and $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$)
c. How much fertilizer do we need per unit area? Divide \#1 by the percentage given in \#2. Note that 10% would be $0.10!!$
d. How much area we need to fertilize.

Take this example: you are told you need to apply 2 lbs of N per 1,000 square feet, that the fertilizer you have available is a $30-0-0$, and that you are going to fertilize 150,000 square feet. The easiest way to calculate this:

Step 1. How much N do we need? We need 2 lbs per 1,000 square feet
Step 2. What is the fertilizer analysis? It is a $30-0-0$, which means it is $30 \% \mathrm{~N}$ by weight (or 0.30)
Step 3. How much fertilizer do we need per 1,000 square feet? Divide 2 by 0.30 (30\%), which gives you 6.66 lbs of fertilizer per 1,000 square feet.

Step 4. How much area are we fertilizing? We have a total of 150,000 square feet, which means that we multiply by 6.66 lbs by 150 , giving a final answer of $1,000 \mathrm{lbs}$ of fertilizer.

Sample Questions

5. You need to apply 2 lbs of N per 1,000 square feet. You have a 15-10-10 fertilizer available, and the total area to be fertilized is 3 acres. How much fertilizer will you need? (Given: an acre is 43,560 square feet)

Step 1. How much N do we need? We need 2 lbs of N per 1,000 square feet
Step 2. What is the fertilizer analysis? It is 15-10-10
Step 3. How much fertilizer do we need?

$$
\begin{array}{r}
2 \text { lbs of } N \text { per } 1000 \text { sqft } \div 0.15 \text { lbs } N \text { per lb fertilizer } \\
=13.3 \text { lbs of } 15-10-10 \text { per } 1,000 \text { sqft }
\end{array}
$$

Step 4. How much area are we fertilizing?

$$
\frac{43,560 \text { sq } \mathrm{ft}}{1 \text { acre }} \times 3 \text { acres }=130,680 \text { sq } \mathrm{ft}
$$

Final Answer

130,680 sq ft $\div 1000$ sq $f t=130.68 \times 13.3$ lbs of $15-10-10=1,738$ lbs $15-10-10$
6. You need to apply 60 lbs of $\mathrm{N}, 50 \mathrm{lbs}$ of $\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$, and 65 lbs of $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ per acre. If DAP fertilizer (which is 18-46-0) is used to supply the phosphorus recommendation, how many lbs per acre of urea (which is 46-0-0) will be needed to meet the nitrogen recommendation? How much potassium oxide ($0-0-60$) will be needed to meet the K requirement?

Step 1. How much $\mathrm{N}, \mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ and $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ do we need? We need 60 lbs of $\mathrm{N}, 50 \mathrm{lbs}$ of $\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ and 65 lbs of $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ per acre

Step 2. What are the fertilizer analyses? We have 18-46-0, 46-0-0 and 0-0-60

Step 3. Which analysis should we start with? We start with 18-46-0 because it supplies N and P $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$. This is the only source of $\mathrm{P}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ so this formulation should be used to meet the whole P $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ requirement. This formulation will also supply N .

$$
50 \text { lbs of } P\left(P_{2} O_{5}\right) \text { per acre } \div 0.46 \text { lbs } P\left(P_{2} O_{5}\right)=108.69 \text { lbs of } 18-46-0
$$

$108.69 \mathrm{lbs} \times 0.18 \mathrm{lbs} N=19.56 \mathrm{lbs}$ of N with $18-46-0$

Step 4. How much additional N is needed and which formulation will be used to supply it? 60 lbs of $N-19.56$ lbs of N from $18-46-0=40.44$ lbs of N still needed 40.44 lbs of N per acre $\div 0.46 N=87.9$ lbs of $46-0-0$ to supply remaining N

Step 5 . Which formulation will we use to supply the $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ and how much will be needed? 65 lbs of $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ per acre $\div 0.60 \mathrm{~K}\left(\mathrm{~K}_{2} \mathrm{O}\right)=108.3$ lbs of $0-0-60$

Final Answer

108.69 lbs per acre of 18-46-0
87.9 lbs per acre of $46-0-0$
108.3 lbs per acre of 0-0-60
7. A fertilizer spreader has an application width of 7 feet. A 100 -foot long area is used for calibration of a 25-5-3 fertilizer. If 5 lbs of fertilizer is collected from this calibrations area, what is the rate of potassium that is being applied per acre with this fertilizer? (Given: an acre is 43,560 square feet)

Step 1. How much $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ is in the 5 lbs of fertilizer that was collected?
$5 \mathrm{lbs} \times 0.03 \mathrm{lbs} K\left(K_{2} \mathrm{O}\right)=0.15 \mathrm{lbs} K\left(K_{2} \mathrm{O}\right)$ is delivered from $25-5-3$

Step 2. Calculate square footage and acreage of application area.
7 feet $\times 100$ feet $=700$ sq ft of collection area

Step 3. How what is the rate of potassium per acre?
43,560 sq ft per acre $\times \frac{0.15 \text { lbs } K\left(K_{2} O\right)}{700 \text { sq ft collection area }}=9.33$ lbs of $K\left(K_{2} O\right)$ per acre
Final Answer
9.33 lbs of $\mathrm{K}\left(\mathrm{K}_{2} \mathrm{O}\right)$ per acre
8. An organic material that contains 4% total nitrogen is applied to the soil at a rate of 60 pounds per 1,000 square feet. The nitrogen recommendation is 4 pounds of available nitrogen per 1,000 square feet. If it is assumed that 60% of the nitrogen in the organic material (i.e. manure) will mineralize to available nitrogen for this crop, how many pounds per 1,000 square feet of ammonium sulfate (which is 21-0-0) should be applied to meet the nitrogen recommendation?

Step 1. Calculate how much Total N is in the organic material
60 lbs of material per 1000 square feet $\times 0.04$ Total N $=2.4$ lbs of Total N per 1000 square feet

Step 2. Calculate how much N will be available for the crop from the organic material
2.4 lbs of Available N per 1000 square feet $\times 0.60$
$=1.44$ lbs of Available N per 1000 square feet
Step 3. Calculate how much additional N is need from the 21-0-0?
4 lbs of Available N per 1000 square feet -1.44 lbs of Available N per 1000 square feet $=$
2.56 lbs of N per 1000 square feet is still needed

Step 4. Calculate how much 21-0-0 is needed
2.56 lbs of N per 1000 square feet $\div 0.21$

$$
=12.1 \text { lbs of } 21-0-0 \text { per } 1000 \text { square feet }
$$

Final Answer
12.1 lbs of 21-0-0-per 1000 square feet

