

Bermudagrass - New Seeding

Crop Highlights

- Success with seed has been limited
- Use newer, cold-tolerant, seeded-type hybrids; avoid Arizona common and Giant type common
- Best results occur when bermudagrass is sprigged, especially with irrigation
- Turf-type bermudagrass hybrids are available but not productive in a hay system
- Not tolerant of shading by other species including weeds

Yield Goal

Yield goals are not made for new seedings of perennial forages. Instead, these recommendations are designed to promote good establishment of the forage for future productivity and discourage weed competition.

Target pH: 6.5

Recommended Liming Source:

Table 1. Recommended type of lime as a function of soil test Ca and Mg concentrations.

Soil Test Levels	Recommended Lime Type
Soil Test Mg less than 50 FIVs	Dolomitic
Soil Test Mg between 50 and 100 FIVs AND LESS	Dolomitic
than Soil Test Ca	
Soil Test Mg greater than 100 FIVs	Calcitic
Soil Test Mg GREATER than 50 FIVs AND	Calcitic
GREATER than Soil Test Ca	

Nitrogen:

- 1. Do not apply N at seeding to avoid stimulating weed competition.
- 2. When seedlings are 2 to 4 inches tall and if weed pressure is not at a competitive level, broadcast 20 40 lbs N/ac.
- 3. After 4 weeks, an additional 20 40 lbs N/ac can be applied if weed pressure is not at a competitive level
- 4. Cease N applications at least 4-6 weeks prior to the Bermudagrass entering winter dormancy (generally early October).
- 5. During the first season of establishment, mow as needed to control weeds.

Phosphorus

Table 2. Recommended phosphorus rate to reach optimal soil test levels to support good forage

establishment and future productivity.

	UD FIVs										
Fertilizer	0	10	20	30	40	50	60	70	80	90	100
lbs P ₂ O ₅ /ac	120	110	100	85	75	65	50	40	0 - 20	0	0

- 1. If soil test P is "Low" or "Medium" (e.g., 50 FIVs or less), broadcast and plow down the recommended rate of phosphate prior to seeding.
- 2. If soil test P is "Optimum" (e.g., 51 to 100 FIVs), broadcast and incorporate phosphate prior to seeding or surface broadcast at or shortly after planting.
- 3. If soil test P is "Excessive" (e.g., greater than 100 FIVs), the application of phosphorus in fertilizers or manures is NOT RECOMMENDED.

Potassium

Table 3. Recommended potassium rate to reach optimal soil test levels to support good forage

establishment and future productivity.

	UD FIVs										
Fertilizer	0	10	20	30	40	50	60	70	80	90	100
lbs K ₂ O/ac	180	165	150	135	120	105	90	75	60	45	0

- 1. Broadcast and incorporate potash at or prior to seeding.
- 2. Application rates of 120 lbs K_2O /ac or higher should be split into two treatments. Apply ½ of the recommended rate at or prior to seeding and the remainder in late August or early September.

Magnesium

- 1. Magnesium (Mg) is recommended when soil test Mg is less than 38 FIVs to reduce the risk of grass tetany, especially in the spring.
- 2. If soil test Mg is less than 38 FIVs and lime is recommended, use dolomitic limestone.
- 3. If soil test Mg is less than 38 FIVs and lime is not needed, apply soluble Mg according to the rates in Table 4, below.

Table 4. Recommended application rates of soluble magnesium as a function of soil test Mg index value.

	UD FIVs								
Soluble Mg	0	5	10	15	20	25	30	35	40
lbs soluble Mg/ac	80	70	60	50	40	30	20	10	0

Sulfur

- 1. Apply 20 40 lbs S/ac to ensure that adequate sulfur is available to meet crop needs.
- 2. Broadcast S prior to seeding or use ammonium sulfate as an N source to supply needed S when deficiency is expected.
- 3. Sulfate-S is available immediately for crop uptake immediately after application. If a reduced form of S is applied (e.g., thiosulfate or elemental S), allow adequate time for oxidation of the applied S to the sulfate form to occur.

Manganese

Manganese (Mn) needs are predicted by an Availability Index that includes M3 soil test Mn and soil pH. Interpretation is crop specific.

MnAI = 101.7 - (15.2 X soil pH) + (2.11 X M3-Mn)

Where:

MnAI = Mn availability index

Soil pH = Soil pH measured in water (1:1 V:V) M3-Mn = Mehlich 3 soil test Mn in lbs/ac

Table 5. Interpretation of Mn availability index.

Mn Availability Index	Interpretation
Less than 12	Mn deficiency is possible. Monitor the crop for symptoms
12 or greater	Mn deficiency is unlikely.

- 1. If Mn deficiency is predicted or was observed in the previous growing season, broadcast 20-40 lbs actual Mn/ac.
- 2. Broadcast applications of acid forming fertilizers may correct Mn deficiency without the actual application of Mn in some cases, but may be less effective than applications of Mn.
- 3. If Mn deficiency symptoms appear during the growing season or after an application of lime, a foliar application of 0.5 to 2.0 lbs/ac actual Mn as Mn sulfate or chelated Mn can alleviate the symptoms and restore yield potential. *Apply only when adequate growth is present to aid absorption of foliar Mn.*

Zinc

Zinc (Zn) deficiency is predicted by an Availability Index that includes not only M3 soil test Zn, but also soil pH and M3 soil test P.

Table 6. Interpretation of Zn availability index.

Soil Test Criteria	Interpretation
M3-Zn is less than 1.9 lbs/ac	Zn deficiency is predicted
M3-Zn is less than 3.1 lbs/ac AND soil pH is higher than 7.0	Zn deficiency is predicted
M3-Zn is less than 3.1 lbs/ac <u>AND</u> soil pH is 6.6 or higher <u>AND</u> M3-P is 100 FIVs or higher	Zn deficiency is predicted
M3-Zn is 3.2 lbs/ac or higher	Soil should be sufficient in Zn

If zinc deficiency is predicted by the availability index or was observed the previous year, one of the following treatments can be applied:

- 1. Broadcast 10-12 lbs/ac actual Zn as Zn sulfate or Zn oxide or 2-3 lbs/ac actual Zn as Zn chelate. Broadcast applications should correct Zn deficiency for several years.
- 2. Foliar application of 1 lb/ac actual Zn as Zn sulfate or Zn oxide or 0.5 lb/ac actual Zn as Zn chelate in 20 to 50 gallons of water. *Apply only when adequate growth is present to aid in the adsorption of foliar Zn.* Application should be repeated if symptoms re-appear.

Boron

1. Boron deficiency is not usually observed in this crop. If B deficiency symptoms appear, contact your county agent for assistance with diagnosis and corrective recommendations.