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ABSTRACT 
 

Unusual raw materials are used to produce Tibetan black pottery in Puma township of 
Derge County, Sichuan Province, China. Carbonaceous, calcareous pyrite-rich illitic lakebed 
clay is mixed in equal proportions with a ferruginous talc-chlorite steatite. A two-stage firing 
process results in a dark, lustrous surface. The large amount of talc imparts many useful 
functional qualities to this pottery; most significant are the low thermal expansion and good 
thermal conduction properties of talc that make these ceramics highly suitable for heating and 
cooking in this high mountain region. Although used in some modern ceramics, and even in 
modern stoves, talc is an unusual ingredient in non-industrialized ceramics. Procurement and 
preparation of this resource adds to the production time but its properties and performance make 
talc an excellent choice for the well-being and comfort of local Tibetan households. 
 
 
INTRODUCTION 
 

Black pottery traditions are common in China from about 2200 B.C.E. onwards, and are 
found in many Tibetan areas. However, unusual raw materials distinguish the black pottery of 
one particular Tibetan workshop located in Derge County of the Ganzi Tibetan Autonomous 
Prefecture, Sichuan Province. The raw materials and production methods result in a ceramic that 
is very well suited to heating and cooking uses, and is in many ways a traditional hand-made 
pottery analogue to some modern industrial ceramics. This highly functional pottery can be 
either black or dark grey, with a very smooth, lustrous surface (Fig. 1). 

The small pottery workshop is located in the Puma township of the Dzongsar-Maisu (also 
called Menshö) area of Derge. Derge is in the eastern Tibetan cultural area traditionally known 
as Kham, now administratively in the northwestern part of Sichuan Province near the border of 
the Tibet Autonomous Region. The town of Derge, the county seat, is famous as the location of 
the Derge Parkhang, a historic Tibetan printing house and temple. Puma township is located to 
the southeast about a half-day drive out of Derge (Fig. 2).  

What is most important about the unusual raw material mix is that, even with hand-
building fabrication methods and a simple firing procedure, a high-quality ceramic is produced 
that is well suited for heating and cooking. The local black clay, an illitic ball clay, contains 
calcium carbonate and carbon. This clay is mixed with about 40-50 vol% of a material the 
potters call “gold stone” (sedo in Tibetan) which is primarily talc. The fabrication of objects is 
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Figure 1. Pottery of Puma Township in Derge County, Sichuan, is either black, like the stew-pot
on the left, or dark grey, like the hot water and tea pot on the right. Both types have a smooth, 
lustrous, almost greasy surface texture (Y. Xu).

Figure 2. Map of Sichuan Province showing location of the Puma township pottery workshop 
(C. L. Reedy).
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accomplished completely by hand, with the finishing step being careful smoothing of the surface. 
A two-stage open firing process uses local pine wood as the fuel. The final products can be gray 
or very black in color, with a lustrous to shiny surface. A wide variety of objects are made, 
including cooking pots, hot pots and braziers, tea pots and cups, liquid containers, vases, incense 
burners, and others. The innovative mix of raw materials that includes a large amount of talc, 
illitic clay, and carbon impacts the properties of the pottery in many positive ways and increases 
its usefulness and lifespan. Talc at this high level of addition is found in some modern industrial 
ceramics, but it is unusual in traditional hand-made pottery. Archaeological data are currently 
insufficient to determine when this talc-rich Tibetan black pottery first emerged.

The pottery technology of Puma township is also an excellent example of community-
based cultural preservation. While the tradition is ancient, by 1997 there remained only one 
elderly potter who had the traditional craft skills. Luore Phuntsok, the founder of the Yothok 
Yonden Gonpo Medical Association, a Tibetan non-governmental organization (NGO) located in 
Derge County, responded to help the tradition survive. The NGO was already involved in 
preservation of traditional Tibetan medicine practices, and it operates a hospital in the Dzongsar-
Maisu area where Tibetan medicine is practiced and taught. The NGO set out to also preserve 
many Tibetan crafts, including pottery. Workshops and training programs were developed to 
preserve not only pottery, but also bronze casting, weaving and dyeing, thangka painting, wood 
carving, furniture making, and many other crafts [1]. 

The pottery teaching workshop was established in 2003 by Tashi Namgyal. His son, 
Jamyang Gelek, took on the teaching duties in 2010. Today there are about 30 potters skilled in 
this pottery tradition, and active classes are held at the workshop in Puma (Fig. 3). Students are 
both local and from as far away as the Tibet Autonomous Region and Qinghai Province. 

RESEARCH METHODS

In 2014 our collaborative American-Chinese team surveyed remaining traditional pottery 
workshops of Sichuan Province, China. In July, 2014, we visited the Dzongsar-Maisu area of 
Derge County, including the Puma township pottery workshop. Raw material use and 
processing, workshop organization, pottery fabrication methods, firing procedures, product 
types, and marketing strategies were studied. Methods used included observation, participant 
observation, interviews, photography and videography, and collection of examples of raw 
materials, pottery sherds, and intact finished products. Our sampling strategy was to collect 
materials at all stages of processing. For raw materials this included ground and unground 
unfired clay from the grinding shed and from the workshop, ground and unground talc stone 
additive from the grinding shed and from the workshop, and the ground clay and talc additive 
mixture. All of these raw materials were from a single season of the workshop’s field collection 
efforts, so there may be some slight variation with the materials collected in other years;
however, we endeavored to collect a suite of raw materials representative of those used by the 
workshop, before and after processing. Ceramic collection included fired pieces from the kiln, 
wasters from the kiln, and a dozen intact objects of a variety of types (such as braziers, teapots, 
soup or stew pots, plates, and small vessels, juicers, whistles, and incense burners). Our goal was 
to collect objects from the full range of traditional and more modern designs and object types 
made by the workshop.

All of the materials and objects collected in the field were then studied in the laboratory 
by a variety of methods, and used to support the conclusions reported in this study. For raw 
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materials and sherds, minerals and other non-plastics were identified and studied qualitatively by
transmitted polarized light microscopy (thin section petrography) [2] using a Nikon Eclipse 50i 
POL microscope system. Thin sections were prepared using a blue-dyed epoxy to distinguish 
pores from clear minerals. Thin sections were also scanned using a Pathscan Enabler 5 
geological slide scanner, at resolution of 2.54 μm/pixel (10,000 x 10,000 dpi), for quantitative 
image analysis of entire thin sections. Image analysis was accomplished using Image-Pro 
Premier by Media Cybernetics, to examine the amount, size, and shape of inclusions and to 
measure the Total Optical Porosity and pore size and shape [3, 4].

Other techniques often used in the study of ancient and historic ceramics [5, 6] that were 
employed include scanning electron microscopy with energy dispersive X-ray analysis (Hitachi 
S3400 SEM and S4800 FESEM, both with ThermoNoran EDS and NSS software), electron 
probe microanalysis (Cameca SX100 5-spectrometer probe with backscattered imaging and 
EDS), refiring tests (Thermolyne 1700 Furnace), and differential thermal analysis (Perkin-Elmer 
1700 DTA). We also performed measurements to examine open porosity (ASTM C 20-74), and
gloss (Horiba IG-410 Gloss Checker). Hardness testing was performed using the Mohs hardness 
scale, measured by scratching the surface with a mineral for each hardness number using the 
procedure recommended to us by Fred Matson [7]. The Mohs stone was first used to scratch the 
pottery, and then both surfaces were observed for traces of the softer material at 10-30x using a 
stereomicroscope (Leica E74). The reverse procedure was then performed, with the pottery 
scratching the stone, followed by similar stereomicroscope observations. Intact objects were 
studied using Xeroradiography (Xerox Medical Systems Xeroradiograph 125) to examine the 
internal structure and distribution of particles and pores resulting from fabrication [8]. 
Performance characteristics were also studied by using pots for their intended cooking, serving,
and heating functions, and observing the results.

Figure 3. Interior of Puma township workshop, Dzongsar-Maisu area of Derge County (Y. Xu).
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RESULTS AND DISCUSSION 

Raw Materials and Processing

The Puma potters use black clay as one of their basic raw materials. There is only one 
source for this clay, a deep pit located on the mountain behind the nearby Dzongsar Monastery in 
the adjacent Dama township. Clay mining can only be done when the weather is dry enough. 
Summer is too wet, and the clay pit fills with water. During the cold season, the clay is too 
frozen to extract. Since clay mining times are so restricted, a large amount is extracted over two 
to three days at each visit. Only one or two trips to the clay source are needed each year to fulfill 
the needs of the Puma workshop.

By eye the clay appears to be very black. However, in thin section it is seen to actually be 
a very inhomogeneous material comprised of a white clay that appears black macroscopically 
because it is streaked with black veins, spots, and powdery areas of carbon (Fig. 4). There are 
veins and crevices of recrystallized calcium carbonate, and some clusters of primary calcium 
carbonate (Fig. 5, left). There is also a significant amount of accessory pyrite (iron sulfide) 
present, especially within and near the carbon streaks (Fig. 5, right).

After being brought back to the workshop, the clay is washed, then ground by hand and 
sieved to ensure a fine particle size. Before use in pottery production, the powdered clay is mixed 
with another raw material called sedo or “gold stone.” This stone is obtained from surface 
deposits further away from the village than the clay deposit, in Duopu Valley in boggy areas near 
Xinluhai Lake (called Yilhun Lhatso in Tibetan). The round-trip can be done in one day by 
horseback. The potters say that they add the gold stone because it makes the clay stickier and 
easier to work with; and because it also keeps the clay from expanding too much during firing, so 
prevents the pots from cracking or breaking during the first firing stage.

Figure 4. Clay used by the Puma potters is black in hand sample (left) but under the microscope 
(right, thin section, plane polarized light) is seen to be a white clay that is very inhomogeneous, 
with some veins and crevices of recrystallized calcium carbonate, some clusters of primary 
calcium carbonate, and powdery strings of black carbon (Y. Xu, left; C. L. Reedy, right).
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Figure 5. Rhombohedral cleavage of primary calcium carbonate grains can be seen within the 
clay (left, plane polarized light), and in reflected light the strings of carbon are seen to be dotted 
with pyrite grains (right) (C. L. Reedy)

The sedo stone is ground to a fine powder using a large stone mortar and pestle (Fig. 6), 
and then mixed with the clay. For small objects, potters say that a ratio of 50-50 clay to gold 
stone powder is used, and the potters say that they may add even more sedo for large pots.

Figure 6. The sedo is ground with a large stone mortar and pestle (left) to a fine powder (right). 
The ground sedo is then mixed with the ground black clay (Y. Xu).

Thin section petrography and differential thermal analysis confirm that the primary 
component of sedo is talc (hydrated magnesium silicate), with a significant amount of chlorite 
mica also present. In addition, the stone contains veins and chunks of iron oxides. These include 
hematite and iron hydroxides (goethite and limonite) formed as iron oxide hydrated upon
exposure to water over time (the stone is picked up from the surface of the ground in a boggy 
area near a lake), often forming yellow stains over much of the surface of the stone. It is common 

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1557/adv.2017.287
Downloaded from https://www.cambridge.org/core. University of Delaware, on 28 Jul 2017 at 01:57:54, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1557/adv.2017.287
https://www.cambridge.org/core


1949

for talc deposits to contain moderate amounts of chlorite, along with some iron and staining films 
[9]. Also present is some accessory serpentine, also typical in talc deposits. The chlorite and iron 
oxide/hydroxides together impart the golden color to the stone. The rock is best described as a 
ferruginous (iron-containing) steatite, which is sometimes called “soapstone” (Fig. 7). The term 
steatite is more appropriate than talc schist, because thin sections show that while in some areas 
of the stone the talc flakes have the strongly preferred orientation of talc schist (with talc grains 
aligned in the same direction), in many other areas they are instead more randomly oriented.

After the two raw materials are ground, they are mixed together. Water is added (very 
pure stream water, not yet sampled and analyzed), and the material is ready for the potting shed. 
In thin section the clay matrix of this mixed material appears completely black, because the 
carbon has powdered and spread over the entire matrix during grinding (Fig. 8). Many inclusions 
of the ground talc-chlorite stone are visible, with their iron staining. There are also grains of 
quartz, polycrystalline quartz, and microcrystalline quartz, liberated from the sedo during the 
grinding process. A few particles have a schistose texture with layers of talc alternating with 
fine-grained quartz; some are mainly talc but in layers of preferred orientation. Many other 
particles have a massive (non-layered) appearance. Sometimes chlorite is seen on surfaces, and 
there are a few serpentine patches.

Quantitative image analysis of a scanned thin section of unfired mixed material shows 
that particles sand-sized or larger ( 0.063 mm in Feret diameter, the caliper length along the 
major axis) constitute 35% of the total area of the material, with additional smaller silt-sized 
particles present. This area percentage for the sedo particles does not conflict with the workshop 
report that they mix powdered clay and powdered sedo in equal amounts because experiments 
with image analysis of clays with known amounts of temper additives have shown that 
multiplying measured area image analysis results by 4/3 calibrates to how a potter originally 
measured by volume a temper additive [3]. Applying that calibration factor here results in 47%, 
quite close to the 50-50 ratio the potters say that they aim to reach. The calibration factor is 
necessary because of known discrepancies between target and measured amounts due to several

Figure 7. Sedo stone hand sample (left); in thin section (right, plane polarized light), most of the 
stone is seen to consist of colorless talc, with scattered dark grains and veins of iron 
oxides/hydroxides (hematite, goethite, and limonite) as well as yellow patches that are a mix of 
chlorite mica flakes and limonite staining (Y. Xu, left; C. L. Reedy, right).
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Figure 8. Scanned thin section (plane polarized light) of mixed clay and sedo particles (unfired) 
(C. L. Reedy).

factors: (1) the volume of air surrounding the loosely packed additive particles, which is no 
longer present after kneading; (2) the ground particle volume also varies depending on the effort 
put into tamping down grains; (3) dry powdered clay can also vary in volume by as much as 
30%, depending on tamping effort; and (4) many particles in thin section will not be cut through 
their largest diameter. Statistically, the average diameter will be .785 times the actual diameter, 
which can affect area measurements [10]. 

It is also clear that even though the sedo was ground to a powder, the grinding process 
leaves a wide range of particle sizes. The quantitative image analysis shows a size distribution 
from silt (< 0.063 mm) up to 2.8 mm Feret diameter, which can be categorized as fine gravel. 
Most of the particles in all of the size categories are more elongated than equidimensional (with 
an average aspect ratio of 2.0). 

Fabrication

Fabrication of objects is done by hand, sometimes using molds, to build pots from 
preformed molded elements, coils, and slabs on a slow, hand-turned pottery wheel (Fig. 9). 
Potters make use of a combination of hand building, paddling, and smoothing to use coils and 
slabs, and they sometimes incorporate pieces, for instance, with dragon motifs, that are made in 
metal piece molds for the spouts and handles. Fired ceramic, convex molds are often employed 
for the lower parts of vessels. Sedo powder is used to keep the potter’s hands and the molds and 
tools from sticking to the clay during fabrication, so potters keep bowls of this golden powder 
near their workstation.
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Figure 9. Vessels, such as this incense burner, are built by hand using a small hand-turned,
tabletop wheel and incorporating the use of convex molds. Bowls of powdered sedo are used to 
prevent molds and the potter’s hands from sticking to the wet clay body (C. L. Reedy).

The surface of a finished object is carefully smoothed, first with a thin yak hide tool, then
with a smooth pebble that has a curved shape with one side convex and the other concave for 
finishing large radius surfaces on the interiors and exteriors; it also has one area with a very 
small radius and another with a slightly larger radius for finishing small interior surfaces. Other 
tools are hand-made wooden ones and pieces of a cow hide (Fig. 10). Potters say the meticulous 
finishing is done to make the surface shiny. This finishing step causes the talc particles on the 
surface to become more aligned parallel to the surface and the clay particles to become 
compacted and aligned, giving the clay body greater strength and the surface its lustrous, almost 
greasy texture. This burnishing step also lowers the porosity of the surface, making the object a 
better conductor of heat. This quality will cause it to radiate heat more effectively, and is an 
important property for the cooking and serving vessels and for braziers that are used to heat 
homes.

The workshop reports that the fabrication of pottery can only take place during the 
summer months. At other times of the year it is too cold to work, and the wet clay will also 
freeze or develop an unworkable consistency. The potters plan to construct a heated workshop in 
the future so that production can increase by extending the working period to year round.
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Figure 10. Tools, wheel, pot, and talc on wooden table with padded seat to upper right. Pot made 
by Vandiver, shown prior to the smoothing and burnishing step. The tools are, lower left to upper 
right, interior base forming tool, wooden and stiff-hide forming and trimming tool, rectangular 
stiff-hide forming and smoothing tool, special smoothing and shaping rock near wheel, and, in 
the background, powdered talc (sedo) for use in making the clay body less sticky and for 
smoothing the surfaces of the pots (C. L. Reedy).

Some apprentices can learn the craft in three or four years, but others need more training 
time. After training, many potters stay and work for the master of this workshop. If they set up 
their own workshop, it must be in this general area, because this is the only location where the 
necessary raw materials for this type of pottery are found.

Once complete, the objects are dried indoors at the back of the workshop for about 10 
days (Fig. 11). While there is a roof, the door and windows are open, and no additional covering 
is used. This drying is a crucial step, because if there is too much water remaining in the clay due 
to incomplete drying, when encountering the sudden temperature increase of firing, water boils 
within the walls of the pots and causes them to crack and occasionally blow up. The other 
problem is freezing during cold nights, causing the wet or damp clay to disaggregate into layers 
that sluff off the surface during drying. However, fabrication of objects takes place mainly in the 
summer when it is warm enough to work, and rainfall is often heavy. Under the humid 
conditions of summer, it appears that complete drying in the workshop is difficult to achieve,
which likely contributed to the development of the two-stage firing process described below.
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Figure 11. An array of finished objects drying inside the workshop (C. L. Reedy)

Firing

Firing is done about once a week, for all of the objects that have been drying inside the 
workshop and are considered ready. Local pine wood is used as the fuel. Firing is done as a two-
stage process. The first firing is at a relatively low earthenware temperature, and appears to be 
mainly to ensure that all remaining water held in pores within the objects is fully released and 
preliminary sintering has occurred. For this firing, objects are placed on a metal grate raised 
above ground, in an open but sheltered structure (Fig. 12). This grate looks somewhat like a large 
barbeque grill, with wood placed in slots just beneath the grate. This firing lasts for two hours, 
with the heat increased very gradually to very slowly release remaining water in pores in order to 
prevent cracking. The objects are left in place and allowed to slowly cool for one full day. Each 
object is then checked for cracks, and any cracked pieces are discarded. The potters report that 
usually about 10% of the objects fail to survive this first step, so it is a critical stage. 

The second, higher-temperature firing takes place in a shallow pit dug into the ground 
adjacent to the metal grate (Fig. 13), with wood piled around the objects. For the most traditional 
wares, which are very black, sawdust is also added for surface reduction. The sawdust is placed 
in empty spaces between pieces of wood, and ensures that air is more completely preheated and
that as high a temperature as possible is achieved. This reducing atmosphere produces pottery 
with very black surfaces. The potters say that some clients prefer a gray color rather than a deep 
black surface, so for those objects the sawdust is left out. 
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Figure 12. Kiln (left) with slots for inserting pine wood fuel, and firing trench with metal grate 
(right) where pots are placed during firing; piled charred wood at lower left marks the location of 
the second kiln, a pit kiln that fires to a higher temperature (C. L. Reedy, left; Y. Xu, right).

Figure 13. Closer view of the second, higher-temperature, firing location, a shallow pit kiln into 
which pottery objects are placed with wood and sawdust surrounding them (C. L. Reedy).
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Structural, Compositional, and Thermal Characteristics

Xeroradiography shows some of the structural features of the fabrication process and the 
variation in texture of the ceramic body (Figs. 14 and 15). For example, Fig. 14 shows a teapot 
and stew pot with lower bodies molded in pieces and strips over convex molds. The teapot was
joined to a molded upper-body with vertical smoothing marks on the interior of the joint. The 
neck also shows evidence of vertical smoothing, but, based on our observations, the neck was 
probably made by coiling, paddling, and smoothing — however, traces of these operations have 
been obscured in the radiograph by the vertical smoothing marks. The handle and spout were
molded in two-piece cast brass molds with dragon motifs, and the lid (Fig. 14 left, lower right, 
top view), was handmade. The upper part of the stew pot was made by coiling, paddling, and 
smoothing. Fig. 15 shows a brazier made with a molded base construction method.

Figure 14. Xeroradiographs of teapot and lid (left) and stew pot (right) showing coarse texture 
and similar fabrication techniques with molded base joined to molded or handbuilt upper body, 
vertical interior compression of joint; handles on stew pot and lid were made free hand, whereas 
spout and dragon handle were made in two-piece molds (P. B. Vandiver).

Compositional analysis by energy dispersive X-ray spectrometry shows the body to be made 
of a magnesium-silicate with some alumina and iron oxide (sedo or golden stone), and an illitic
clay with iron, potassium, magnesium, and sulfate, shown in Table I. For clay mined at about 
4000 meters altitude most fluxes are usually depleted; however, the amount of fluxes is high in 
this clay and is more similar to a humic, lakebed deposit found at sea level. The areas of raw 
materials sampled by EDS did not contain calcium, but the fired clay body did contain about 
7.7% CaO. This anomaly is due to the inhomogeneity of the clay raw material, as highlighted by 
the thin-section petrography. In order to obtain an average composition for the fine matrix 
material, the EDS analysis intentionally avoided inclusions such as the calcium carbonate ones. 
These are relatively large and unevenly distributed so easy to miss at the EDS magnification of 
400-500x. 

Using differential thermal analysis of the talc, fired from room temperature to 1100°C, 
heating 70 grams at 10°C/min., the decomposition reaction for the talc occurs at 962.8°C, in 
agreement with published data [11, 12]. The clay, however, is complex with a major but broad 
decomposition endotherm of about 1° between 868 and 875°, indicating illite, and possibly 
convoluting with some calcium carbonate; and two broad major exotherms of about 1° at 445°
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and 605° indicating burnout of two organic or carbon-containing materials. The baseline deflects 
slightly upwards at about 220°, and this deflection could indicate the onset of the burnout. Based 
on this data, a ball clay is suggested. However, two other endotherms are present, one of about 1° 
at 520° that is a return to near the baseline, perhaps indicating that one carbon-containing 
material has completed burning and another one has not yet begun. The second endotherm is a 
very small one of 0.2° at 790° that could be the decomposition of a minor amount of calcium
carbonate, but curiously where the peak of the calcium carbonate endotherm should be at about 
800-820°, the curve increases to a maximum. The complex undulating pattern could also indicate 
that a minor amount of montmorillonite might be present, perhaps as a mixed illite-
montmorillonite clay structure. No quartz inversion peak is found at 572°, indicating a lack of 
this mineral. This heterogeneous, complex clay requires further testing by DTA and X-ray 
diffraction once the carbon-containing fraction is removed. However, disaggregating the carbon 
fraction from the clay by Stokes’ Law separation, unexpectedly, was not successful.

Figure 15. Brazier showing (lower left) coarse texture of body, holes cut for inflowing air, two 
handles reinforced from above, decorated flaring rim, triple lug pot support, and decorated ring 
base. Top-left image shows joint between rim section and body as a line of porosity below the 
lugs. Upper right shows reinforcement around the triple lug supports for stew or tea pots. Lower 
right image shows molded base of stew pot with random alignment of porosity, indicating clay 
wads were added to the convex mold during construction (P. B. Vandiver).
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Based on refiring experiments in both oxidation in air and reduction firing in nitrogen 
from 700° to 1200°C in increments of 100°C with a 10-15 minute ramp and a 15 minute soak at 
each temperature, the microstructures most resemble the original sherd at 1100 ±50°C. The 
original sherd is a vitreous dark gray to black matrix with facets from the polycrystalline 
inclusions that vary in size and proportion. By 1000°C the talc has broken into friable plates and 
layers. When the unfired body is fired to 1000°C, the ground matrix is sintered but not as 
vitreous as the original fired bodies. Refiring to 1200°C produces, in oxidation, a vitreous clay 
and talc body, and in reduction, a very vitreous and bloated ceramic body, indicating that the kiln 
did not reach this temperature.

Figure 16. Microstructure of raw materials: Talc with sharp, angular, platy structure (left, 500x); 
clay with a wide range of poorly formed clay particles, 0.5-12μ (right, 8000x) (P. B. Vandiver).

Figure 17. A fresh fractured surface from a serving plate exhibits a fired ceramic microstructure 
at 670x (left) and 10,000x (right). Edges of talc particles have begun to soften and to lose their 
angular crystalline shapes. The clay has begun to sinter to the talc particles and to lose surface 
definition when fired at the estimated firing temperature of about 1100°C. The square platy 
particle on the right is also present in the lower right of the image on the left. These images were 
taken of a fractured surface made parallel to the pot’s surfaces in order to detect the alignment
that occurred during fabrication. Compared to Fig. 17, right, significant alignment and increased 
fracture strength is attained by the application of shear force during fabrication (P. B. Vandiver).
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The microstructures and particle size ranges of the raw materials, ground talc, and 
unground clay are shown in Fig. 16 and the fired microstructures are shown in Fig. 17. The 
ground talc has broken into angular plates that can measure a few microns thick and up to 3 mm 
maximum diameter. The poorly formed clay particles measure 0.5-12μ, a wide range of particle 
size. Illites are usually well formed with many 120° angled edges, and the particle size range 
usually varies from 5-10μ; the wispy, fuzzy, cloudlike structures are characteristic of 
montmorillonite clays, with average particle size about 0.1-3μ [5, p. 234-5]. This suggestion 
agrees with a fine fraction Stokes’ Law sedimentation test in which fine clay particles were still 
suspended one week after the test was begun. Even though unexpected in this alpine area, the 
most likely structure is a mixed illite-montmorillonite clay, but this result requires further testing 
by X-ray diffraction.

Table I. Approximate compositions of the fine matrix phase of the unfired raw materials and the 
fresh-fractured cross-section of a fired serving plate, collected over the whole area at 400-500x 
by EDS at 15 KV, 80 nA, for 3 minutes.

Compound SiO2 Al2O3 K2O Na2O CaO MgO Fe2O3 TiO2 SO3

Sedo, Talc, 
Golden Stone

65.01 2.29 0.30 0.20 0.00 29.89 2.08 0.00 0.23

Humic, Illitic 
Clay

58.38 22.92 5.03 0.40 0.00 2.45 7.62 0.00 1.27

Fired Pot, 
Body 

53.89 16.21 3.58 2.01 7.69 6.71 8.76 0.60 0.55

The talc-clay composite body composition falls within the enstatite (MgO·SiO2 with a 
composition of 66.6% SiO2 and 33.4% MgO) phase field in the MgO-Al2O3-SiO2 phase diagram 
with two eutectics at 1345°and 1360°C and incongruent melting behavior [13]. Enstatite with an 
orthorhombic crystal structure is one of three polymorphs, each with a different structure that 
makes transformation kinetics sluggish [14]. Enstatite, once formed, is stable below 1260°C, and 
with impurities present it forms as low as 1140°C, but we found no enstatite in thin section, and 
very little glass has formed to sinter the clay and talc. Kingery states that impurities, such as 
soda, potassia, calcia, iron oxides, and titania both lower and widen the fusion range and that 
with even 10% clay addition, protoenstatite crystals can be produced in a primarily silica liquid 
matrix at about 1000°C [13]. The Derge raw materials contain 2.81% fluxes in the talc present as 
K2O, Na2O, Fe2O3, and SO3, and 14.32% in a special deposit of clay that is unusually rich in 
fluxes for a mountainous, glaciated region. The answer has to be that insufficient time at the 
1100°C peak temperature has failed to develop sufficient glassy bond in the ceramic, and that 
this is intentional. Singer reports three industrial steatite body compositions used in the twentieth 
century that approximate our composition, but that are fired higher, as follows:
(1) Steatite Body, cone 7, 1210°C: 24wt% ball clay, 58% steatite talc, and 18% potassium 
feldspar; (2) Italian Steatite Cookware Body, cone 10, 1260°C: 26.3% China clay, 11.2% ball 
clay, 50.6% talc, 11.9% potassium feldspar, with water absorption measured at 14.5%, and a low 
volumetric expansion coefficient of 2.05 x 10+6; and (3) German Flame Resistant Cookingware, 
cone 12, 1310°C: ball clay, 22%, talc, 49%, feldspar, 12.8%, alumina hydrate, 16.2%, self glazes 
if doped with 3.2% ZnO [14]. He also differentiates between steatite talc and yellow stone talc,
without explaining the difference.
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Can we argue that the Derge ceramics represent a ceramic body engineered and optimized 
through trial and error and that not only the raw materials selection, functional design, and 
fabrication process but also the firing technology is optimized?  If so, what are the engineering 
compromises that make the performance of this body optimal for heating and cooking?  

(1) Thermal Conduction and Radiation: We know that, for opaque materials, small, flat 
pores have better thermal conduction than large closed pores that insulate, and that more porosity 
leads to poor thermal conductivity. We find that the conscious effort of the potters in their 
working methods leads to pores being compressed, closed, and elongated. We know that micro-
cracks, as in the 50 vol% talc, promote thermal radiation [13, 640-646]. We also know that the 
talc stone selected for the additive incorporates two forms of talc that have different fracture 
patterns when mined: one is laminar that splits into layers just below 1000°C and begins to fuse 
again at 1100°C, and another that is cross-bedded and that does not fracture. Without extensive 
grinding and milling, differential shrinkage around particles and particle laminations occur. We 
know that particle size and size distribution control total shrinkage, but not the differential 
shrinkage encountered with anisotropic materials. Blending talc particles of different shapes and 
sizes reduces differential shrinkage, and we find this practice at the Derge workshop [14].

(2) Thermal Shock: The orthorhombic talc has anisotropic thermal expansion, lower in 
plane than normal to it, and the ends of plates tend to be pinned or sintered with glass. We 
propose that this property of the bowing of plates responding to rapidly applied thermal stress 
may be useful for thermal shock, because the talc platelets are weaker than the glassy bonding 
phase [13]. The reported linear expansion coefficient for a vitreous steatite body is high, at 6-10
x 10-6 mm/mm////// C with an average of 7.7 at room temperature; the rate of increase is expected to 
decrease at elevated temperatures. The porosity is also a sink for micro-cracking from thermal 
stress. Thus, under-firing makes the body more able to withstand thermal shock.

Great effort is expended to grind and mix this talc in a stone-trough mortar with a large 
counterweighted stone. Apprenticeships last a long time and each operation is taught to exacting 
standards, from thorough grinding and mixing to extensive plastic deformation of the pottery 
walls in shear, the working and melding of joints, and the smoothing and burnishing of surfaces. 
Apprenticeships take a far longer time than is necessary to teach the operations and the rate 
limiting steps. This consistent level of workmanship and dedicated practice indicate that making 
this functional pottery is a risky undertaking and that knowledge and experience of all phases of 
the process are necessary for success. We argue that this ceramic has the characteristics of an 
engineered ceramic. Future research will look at the extent to which the processes developed in 
the Derge workshop might have been engineered and optimized for functional performance of 
the end products, and to what extent they may be more closely tied to social practices and 
structures surrounding the process of production.

Properties of the Products

The raw materials and firing processes result in objects that are moderately hard (Mohs 
hardness of 5). The lustrous surfaces are relatively glossy (gloss of 7.9 ± 3.7, n=5). Sherds from 
fired objects have only a modest number of large and very visible pores (Fig. 18 and Fig. 19).
Image analysis shows that the Total Optical Porosity for the vessel sherds in thin section 
averages only 5%, whereas open porosity of two small plates was measured at 15.29% ± 0.2. In 
thin section the larger pores are shown to be isolated rather than connected, resulting from shear 
force applied during forming. At the surfaces of pots, burnishing and smoothing steps have 
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reduced the porosity, and the pores are primarily located on the interiors. A large number of 
rounded pores are not necessary in this case for helping to absorb and halt the cracking process, 
since that function is served instead by the large number of coarse talc particles.

Many of the larger closed pores are somewhat elongated and wavy or tapered (Figs. 18-
21). This is a typical appearance of pores that form during effective forming of the clay body in 
which shear force aligns fine particles, pores, and coarse temper. Some of the smaller pores that 
are less visible in the scanned thin sections formed around talc grains (Fig. 20 and Fig. 21). As 
the clay dried it sometimes shrank away from large particles, leaving a narrow pore area 
alongside some of the talc particles.

Some of the talc particles in the thin sections of fired sherds that attained a lower firing 
temperature show enhanced parting and splitting between layers (Fig. 21), compared with the 
unfired material and higher fired sherds. The thin voids left between these split layers account for 
additional fine porosity (Fig. 22). This splitting occurs in particles or areas of the talc that show 
preferred orientation, rather than in the areas that are randomly orientated. Chlorite mica 
originating from the sedo remains quite visible on the surface of some talc particles (Fig. 23). 

Figure 18. A scanned thin section from a fired sherd (C. L. Reedy).

Figure 19. Scanned thin section of a second fired sherd which is thinner and has more elongated 
and aligned talc particles (2.8 – 4.5 aspect ratio versus the mean of 2.3 for Fig. 18) (C. L. Reedy).
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Figure 20. Isolated wavy pores often form as the clay body is formed, raised, and thinned by 
shaping. Finer pores not visible on the scanned thin sections emerge along the edges of some of 
the talc grains, as the clay shrinks away from the particles during drying (C. L. Reedy).

Figure 21. In thin sections of fired sherds, especially those fired below 1000ºC, there is 
enhanced parting and splitting between layers of some of the talc particles that occurs with loss 
of water of hydration. These underfired talc particles are friable until fired at a temperature above 
1000ºC (C. L. Reedy).
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Figure 22. Particles or areas within talc particles showing preferred rather than random 
orientation may show enhanced parting and splitting between layers; thin voids left between 
these split layers account for additional fine porosity (C. L. Reedy).

Figure 23. Long tabular grains and fan-shaped aggregates of chlorite on colorless talc surface 
(sherd thin section, plane polarized light) (C. L. Reedy).
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Figure 24. Microscopic, multi-layer talc particle in a 3-point bend configuration that has relieved 
the strain by propagating a longitudinal crack—illustrating a critical mechanism that avoids 
catastrophic thermal expansion and thermal shock of Derge pots, especially the stove-pots 
(15,000x). The bent particle in the center is 0.7μ long and 0.12μ thick. (P. B. Vandiver).

The characteristics and behavior of talc described above adds to the argument that 
thermal shock resistance and low thermal expansion of the ceramic body is achieved, even 
though most talc structures have a high thermal expansion. The mechanism of accommodation of 
thermal strain is shown in Fig. 24 in the delamination and cracking of talc layers that have been 
pinned together by glass that has formed primarily at edges, rather than surfaces. A scenario of 
microstructural development during firing reads as follows: Fig. 17 shows that the talc platelets 
(Fig. 16 left) are sintered with a dark black clay, with plastic properties similar to a ball clay, that 
contains a wide range of particle sizes as well as humic organic constituents (Fig. 16 right).
Particle sizes span the wide range of montmorillonites to kaolinites. The amount of flux is high, 
about 17%, or more if CaO is present. The glass, which develops by heating the clay, sinters 
together primarily the edges of talc particles. The firing is stopped at about 1100ºC before a 
continuous glassy phase has formed. During use the fine talc, as well as pores and microcracks, 
provide a mechanism for relief of thermal stresses in the body prior to catastrophic failure. Some 
twentieth century accounts of underfired steatite electrical porcelain report degradation by a 
"dusting" mechanism, as expected to occur in the Derge ceramics. We assume the same 
observable mechanism occurs in old cookpots, braziers, and pots that serve as stoves, although
we did not think of asking to see any of them during our visit.
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Design Issues, Product Variation, and Markets

A wide variety of objects are made (Fig. 25). Some of these are very traditional designs 
with traditional functions that have been used by local people for hundreds of years including 
cooking pots, medicine containers, tea pots and cups, containers for storing and serving liquids, 
and braziers. These objects are sold locally and to Tibetan communities further away. Other
products made in the Puma workshop are objects with modern designs and functions, intended to 
appeal to new markets of a wider national or international scope. Sold under the Door of Tibetan 
Arts designation, these new designs include juicers for apples, whistles, incense burners, small 
plates and dishes, and large flower pots. This is a similar dichronic transition to that detailed by 
Dean E. Arnold [15] for the ceramic production of a Maya community in Ticul, Yucatan, 
México. To design and market these newer product lines, the workshop and the local NGO 
collaborate with an external design team that includes professionals with formal design training 
and with knowledge of the wider outside market. This external team also has the expertise to
market products in Beijing, on an internet website, and through Weibo. The design team works 
closely with local people who know the local traditions to ensure that the special Tibetan 
characteristics of the pottery are retained.

The main goal is to develop an expanded market for the Dzongsar-Maisu area products, 
to help keep the tradition alive, but at the same time retain the most crucial special characteristics 
of this Tibetan pottery tradition. Some of the requirements are that all products must be made by 
hand in Tibetan areas, by Tibetans, using the traditional raw materials; they must be produced in
an environmentally sustainable way; and they must include fair trade practices so that those who 
participate in making them are fairly compensated for their work. This commitment to preserving 
the special Tibetan characteristics of the pottery tradition, while at the same time finding ways of 
also allowing for it to change and evolve to ensure that it will continue and even grow with an 
expanding market, is one significant aspect of this particular pottery tradition. The Tibetan NGO 
in Derge County provides strong local leadership in heritage preservation that ensures that design 
and marketing changes can occur without destroying the most important principles behind the 
cultural heritage that connects the local people to their traditions and environment.

Functionally Interesting Performance Characteristics

The most significant aspect of the Puma pottery technology is the innovative mix of raw 
materials. These raw materials impact many properties of the resulting products. The carbon in 
the clay produces the black color of pottery that is valued by many eastern Tibetans. The very 
large amount of powered talc from the steatite stone (sedo), combined with additional fluxes 
present in the clay and the  sedo, promotes initial sintering and some vitrification of the clay 
body at about 1100°C that is reached in the second firing in the pit kiln. An increase in sintering 
and decrease in porosity lead to an increase in thermal conductivity [16], but considerable fine 
and elongated porosity is present. The powdered talc, however, is the most significant 
component in many ways [14, 17]. It improves properties that help in production of the objects, 
by adding more platy particles that increase plasticity and simplify forming, by opening the body 
during drying to provide paths for water to evaporate, and by providing large anisotropic 
particles that reduce shrinkage, and thus possible cracking, of the clay body during drying and 
primary firing. It also impacts the appearance of objects, by imparting a smooth and lustrous 
surface texture. The talc also increases the lifespan of pottery by a hysteresis loop of minor 
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amounts of anisotropic expansion and contraction that improves thermal shock resistance for 
greater durability over long-term use. The large volume fraction of talc particles produces a 
secondary phase of layered and laminated particles and cross-bedded crystals throughout the 
material that absorb energy if any micro-cracks form, thus improving the mechanical 
performance of the pottery [16].

The presence of a large proportion of talc particles and thin sheared pores also improves 
the performance of the pottery in other ways. It adds both thermal insulating and radiating 
properties, respectively, that help with retention of heat during cooking, simmering, and serving, 
and giving better heat distribution to prevent burning of food [17]. Vessels made from this 
extremely talc-rich material heat contents very quickly using a very small amount of fuel, while
resisting cracking and thermal shock. In contrast, more common earthenware bodies require 
slower heating of their contents, or the vessel may crack. These properties are enhanced by 
engineering of the pot shape described below (Fig. 26).

Figure 25. The Puma ceramics are made in a variety of both traditional and modern designs and 
functions (C. L. Reedy).

Traditional braziers made with this talc-rich material are a very efficient way to provide a 
stove and perform the multiple and continuous cooking tasks that are typical in many Tibetan 
homes. Cooking experiments show that small pieces of wood in the cavity of the brazier will 
quickly heat a cooking vessel placed above it, efficiently cooking stews or other food (Fig. 26,
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left) and immediately providing heat to the room and its inhabitants. When the food is fully 
cooked, the upper vessel can be removed and another, such as a water-filled teapot, set in its 
place (Fig. 26, right). The cold water filling the teapot, when placed on an already hot brazier, 
could cause cracking in a typical earthenware vessel, but not in this talc-clay composite one. 
Instead, in this talc-rich material, the teapot will not crack, and the water in it will quickly 
become hot. The cooked food in the vessel it replaced will retain its heat for a long period of 
time, even after being removed from the hot coals. The lower brazier, now filled with the coals, 
radiates heat very effectively and helps keep a small room warm for hours. The ring base raises 
the bottom of the brazier off the floor; the base stays cool, and only the bowl heats up, thus 
protecting the Derge wooden houses from risk of fire.

Figure 26. A talc-rich Puma brazier requires only a few small twigs to heat and is ideal for 
quickly cooking food (left) and heating water for tea (right); the material is very crack resistant 
even when cold water is set above an already-hot brazier (C. L. Reedy).

CONCLUSIONS

The thermal properties described above make talc an important addition to modern
industrial ceramics; however, it is rare in traditional hand-made pottery. While talc is sometimes 
found in traditional contexts [18-21], it is a rare ingredient in non-industrialized ceramics. This 
particular combination of black carbon-rich calcareous clay mixed in equal proportions with a
crushed iron-rich talc-chlorite stone additive, used for objects built completely by hand and 
wood-fired in a pit kiln, is unique. The Derge pottery technology produces high-quality ceramics 
that are very effective for heating and cooking, for retaining heat during cold winters at high 
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altitude, and for resisting cracks and thermal shock. These qualities are particularly useful in the 
Tibetan households of the high mountains of the Dzongsar-Maisu region of Derge.
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