Chemistry 652

Organometallic Chemistry

Midterm Examination, April 7, 2020 (the year of Covid-19!)

- In a deviation from normal procedure, this is an open book/notes exam. Specifically, you are welcome to look at a periodic table of the elements. During the exam, you may not discuss your work with anybody else!
- If you have a printer, you can print the exam and put your answers right on it. Alternatively, just write them on a piece of paper (organized by problem no., and put your name on it!). Send a copy/photo of your answers to: theopold@udel.edu
- The exam is timed. I must receive you answers electronically by the end of class (i.e. 3:15 PM on April 7, 2020). I will subtract points for answers submitted late. Allow some time (~ 5 mins?) at the end to send me your answers!

	1	
Name:	Key	
ranic		

1:

2:

3:

4:

1. (20 pts.) For the following molecules, give the valence electron count and the formal oxidation state of the metal.

2. (30 pts.) For the 2-step syntheses shown below, list all(!) products (i.e., I am looking for balanced equations) and draw structures of the organometallic ones

a)
$$CoBr_2$$
 $\frac{2 \text{ NaCp}}{-2 \text{ MaBr}}$ $\frac{2 \text{ NaCp}}{-2 \text{ NaCp}}$ $\frac{$

- 3. (25 pts.) Shown below are variable temperature 1H NMR spectra of CpRh(C2H4)2, showing the ethylene resonances only.
 - a) Estimate the temperature of coalescence (Tc)
 - b) What dynamic process gives rise to the coalescence phenomenon.
 - c) Based on these data, estimate the rate constant (units!) for the process at Tc.
 - d) Estimate ΔG^{\ddagger} (the free energy of activation) for the process.
 - e) Estimate Tc when measured in a 600 MHz spectrometer.
 - f) ΔG_{\ddagger} is an approximate measure of what?
 - g) How many resonances does the full 13C NMR of CpRh(C2H4)2 at 20oC exhibit?

See P.M. Perez-Gancia et al.

Organometallics 2020 Ashr.

DOI: 10.1021/acs. organomet.020060

4. (25 pts.) Consider the reaction shown below.

It's rate law has been determined by kinetic measurements. It is:

$$-d[1]/dt = k [ArBr][1]/[BPI]$$

a) What type of reaction is this?

b) What does the rate law suggest about the mechanism?

c) Suggest two different possible reaction mechanisms. Draw intermediates/transition states as needed, to identify the significant differences.

d) As the PI, what would you suggest to determine the actual mechanism?

a) an oxidative addition

b). The inverse order in [BPI] suggest a preequilibrium dissociation of the BPI ligard to liberate a 'P3Ni' fragment The orders in [1] and [AB:] suggest a bimolecular encounter of P3Ni and ABr in the hansilon state

transchon states