
 1

Linux and Open Source in the Academic Enterprise
Mike Davis

Virginia Commonwealth University
P.O. Box 980016

Richmond, VA 23298
(804) 828-9843

jmdavis@hsc.vcu.edu

Will O’Donovan
Virginia Commonwealth University

P.O. Box 980016
Richmond, VA 23298

(804) 828-9843

wjo@hsc.vcu.edu

Carlisle Childress
Virginia Commonwealth University

P.O. Box 980016
Richmond, VA 23298

(804) 828-9843

cgchildr@hsc.vcu.edu

John Fritz
Virginia Commonwealth University

P.O. Box 980016
Richmond, VA 23298

(804) 828-9843

fritz@hsc.vcu.edu

ABSTRACT
Open Source Software (OSS) has made great strides toward

mainstream acceptance over the past two years. However, many
IT managers, both in business and academia, are still cautious
about OSS. Is it reliable? Is there support? Will it last? Linux has
further complicated the issue not only because its operating
system is OSS, but because it runs on inexpensive commodity
hardware. Often IT managers are hesitant to move from long
trusted proprietary hardware and software and trust major projects
to OSS and commodity hardware.

Past SIGUCCS presentations by Virginia Commonwealth

University have detailed our use of standards based email and
directory services to replace legacy systems. That email migration
put us on a path toward the implementation of a variety of Open
Source Software and commodity hardware solutions.

In 1997, the primary Open Source Software in use on our

campus was Perl. In the past three years, we have implemented
OSS solutions for email, webserving, webmail, software
development, directory services, and database development.
While implementing OSS we have also begun to implement
commodity hardware solutions running the Linux Operating
System in those areas where it provides benefits. While Linux
webservers have become the norm, we have brought other Linux
based machines online for directory services, webmail, and
research. Recently, we investigated, benchmarked and purchased
a Beowulf Linux cluster to significantly expand our ability to
provide resources for our computationally intensive research.

Open Source Software and the Linux operating system
provide two very important tools to allow universities to leverage
skilled and trained staffs to meet user needs and expectations in a
highly cost effective manner without sacrificing quality of service.
This paper will examine VCU’s transition from proprietary
hardware and software solutions to OSS and commodity
hardware. It will focus on selection criteria, testing methods,
implementation, the evaluation process and the "selling" of OSS
and commodity hardware to IT managers.

Keywords
Linux, Open Source, Beowulf, commodity hardware..

Introduction
VCU has traditionally met its users computing needs with a
variety of proprietary hardware (Pyramid, OS 390, VAX/VMS,
IBM SP, SGI) and a combination of proprietary and custom
software. Over the past 15 years the VCU Academic Technology
unit has fought to keep pace with the ever-expanding general and
research needs of the University community. Through the use of
case studies, this paper will show the effectiveness of Open
Source Software, commodity hardware and the Linux operating
system to solve real world problems of varying natures.

Hardware:
As desktop computers became commonplace (and the need for
centralized office applications diminished), the primary uses for
the central computing resources became email, database storage
and analysis, statistical analysis, and computationally intensive
research such as drug design, chemical and physical simulations,
mechanical simulations, bioinformatics, and Monte Carlo type
applications for a variety of disciplines.

In 1998 email needs for faculty and students were met by four
machines and two distinct protocols. On the Medical College of
Virginia Campus of VCU, centralized email service was provided
using the IMAP standard on a dedicated SGI Origin 200 (more

 2

information about the selection and implementation of IMAP for
the campus may be found in the SIGUCCS proceedings for 1997
and 1998). On the Academic Campus of VCU, email service was
provided by three multi-function IBM SP2 nodes using sendmail,
POP, and later IMAP. These three machines also provided a wide
variety of general and research services.

The university offered three machines to meet the needs of its
computationally intensive researchers. Two eight processor SGI
Origin 2000's (one on each campus) and a four processor SGI
Power Challenge L were available to researchers on the two
campuses.

For statistical and database research, two one processor IBM SP
wide nodes were available (one of these IBM SP's also provided
email and web service for faculty and staff on the Academic
campus). In addition, statistical software was available on one
eight processor Origin and the four processor Power Challenge L.

A small number of workstations were available on the Medical
College of Virginia campus for limited visualization and general
usage. In addition an IBM SP node was setup to provide login
services for users needing dial-in access to email.

By late 1998, all of this hardware was moving toward 100%
utilization. The four IBM SP nodes were often taxed by 300% to
400% usage (ie. running three to four times the optimum number
of jobs) , the SGI research machines were closer to 100% usage,
and the SGI Origin 200 IMAP commercial mailserver software
was beginning to cause load problems. To meet the needs of
users, an additional four processors were added to one of the
Origin 2000's and planning began to replace the mailserver
software on the Origin 200 as well as to secure replacements for
the aging IBM SP nodes.

Until 1998 the use of commodity hardware was limited to the PC
and Novel LAN groups at VCU. One of the authors, Mike Davis,
used Intel hardware and Linux as his primary desktop machine
and two low-cost Cobalt RAQ machines were purchased to
provide support for University FTP and a Community Web
Service Project. But, most users and computing staff had little
interest in commodity hardware or Open Source operating
systems.

Software:
Ironically, early 1998 was the point at which a number of Linux
advocates made the decision to supplement the traditionally
bottom-up strategy of unix implementation and attempt to directly
interest media in Linux to increase the operating systems publicity

(Eric Raymond's book The Cathedral and the Bazaar details this
decision). These advocates hoped that increased publicity would
interest Chief Information Officers and higher level managers in
Linux while engineers, developers and administrators continued
their grass-roots advocacy and implementation. As press reports
about Linux increased, its acceptance at VCU increased as well.

In addition the increased publicity of Linux helped propel the
concept of Open Source Software from the domain of software
developers and administrators to the attention of both the public
and information technology managers. Open Source Software has
a variety of definitions. In general, Open Source is "free" software

which allows: free distribution, access to source code, the right to
modify the source code, no discrimination against persons or
groups, and no restrictions on fields of endeavor.

Open Source Software goes beyond a simple definition. Key to
the Open Source movement are several concepts which interested
Academic Technology. Stability, portability, support, and access
to source code are the reasons that we find open source software
appealing.

Stability:
Most open source projects rate stability at least as highly as
performance. With the price of hardware decreasing rapidly, and
staff salaries increasing, we'll gladly put up with a 30%
performance hit if it will eliminate even one show-stopper bug.
Even with the stress on stability, we find that we often get much
better performance from Open Source Software.

Portability:
Open Source Software is portable to many platforms, including
commodity hardware. This portability allows Academic
Technology to leverage the skills of its staff.

Support:
We've found that when we can't solve a problem with commercial
software, the problem often also tends to be beyond the capacity
of the commercial vendor's support staff. Universities can seldom
pay the large fees required for direct access to developers. In one
case, we later learned that the support engineer that we consulted
met once a week with a manager who met once a week with
developers. Ironically that problem was finally resolved in the
same manner as most Open Source issues, an engineer at the
vendor read our Usenet posting and responded with the
appropriate information. In general Open Source authors are more
accessible than developers for commercial vendors.

Source Code:
While source code may not be the “Holy Grail” as some Open
Source advocated describe, it is important. We use the source
code, sometimes to fix problems, and sometimes to diagnose them

Case Studies:
Linux, and Apache to the rescue:
In the summer of 1998, the Academic Technology unit on the
Medical College of Virginia Campus at Virginia Commonwealth
University made the decision to purchase a dedicated Linux
server. The machine was a dual Pentium II- 400 scheduled to be a
test unit for the replacement of an SGI Indigo2 webserver that was
overloaded by a combination of general web pages and the
distance education software "Web Course in a Box." This new
server would run the Redhat 5.2 version of Linux and use the
Open Source Apache webserver to provide central support for
departmental, staff, and student web pages on the campus. The
machine would represent the first centralized use of Intel
commodity hardware and totally Open Source software at VCU.
As is often the case, these plans needed to be changed due to
changing situations.

By late fall of 1998 the SGI webserver was at a critical point

 3

primarily due to a dramatic increase in. "Web Course in a Box"
(WCB) usage and the resultant poor performance of WCB. The
time required to seamlessly move both services from the machine
was too long to make a transition that was transparent to users, at
least several days would be required. In addition, we worried
about some of the older cgi scripts using early versions of Perl on
the SGI. We decided that moving everything to the new machine
was not a viable option.

The Instructional Development Center (IDC) at VCU was created
to explore new instructional technology, and to initiate and
demonstrate the effective use of innovative educational methods
for the delivery of instruction. Communications with the IDC (co-
developers with Madduck Technologies of "Web Course in a
Box") revealed that a test server was running using the Apache
webserver and the BSD operating system at a test site. Once we
new that "Web Course in a Box" would function reliably with
Apache, we were able to plan for the transition. In coordination
with IDC, we set out to determine possible problems with the
move.

Database issues were the first difficulty that we encountered. The
SGI machine used a different version of unix databases than
RedHat Linux. We would need to create Perl scripts to convert the
databases to text format and then convert them to the new
database format on the Linux box. The IDC produced these
scripts, then we tested them, worked together to make corrections
and re-tested. When we had these tools in place, the rest of the
move was simple though it required much attention to detail.
During this time, we practiced the move and configuration
repeatedly to try to make it as quick as possible. In all, we would
need to move almost a gigabyte of data and convert hundreds of
small databases. Each move was timed and the data spot tested to
insure integrity. The process would be to convert and move WCB,
configure Apache and then set a redirect on the commercial
webserver on the SGI. At this time, we would also begin the use
of a new, dedicated url for "Web Course in a Box." The dedicated
url would make any future moves of the server much easier.

When the time came for the actual move, down-time was limited
to three hours and the process proceeded flawlessly. By noon on
the day of the move, the new server was handling its duties
extremely efficiently. The one issue that we experienced was that
the new server was too fast to track the 5000 line cgi processes
when they ran. While the SGI and commercial webserver had
required 15 to 30 seconds to run the cgi, the Linux box and
Apache required less than two seconds. It tool several frantic and
comedic minutes to realize that all was fine and that the new
machine was just too fast to watch the processes run using unix
process monitoring tools.

The success of the "Webcourse in a Box" move was noticed and
commended by both IDC and the Office of Information
Technology senior management. The level of respect for
commodity hardware, the Linux operating system, and Open
Source software increased dramatically within OIT. Two more
dedicated Linux servers were ordered, a rack-mount dual Pentium
II-450 machine to finally replace the general webserver still
running on the SGI and a rack-mount single processor Pentium II-
450 test machine.

Improving IMAP mailserver performance:
As previously mentioned, the commercial email server software at
Academic Technology on the Medical College of Virginia campus
was having problems supporting the load of approximately 7000
users. The major issue was that every access of a folder required a
number of reads to add new messages. Every time a user opened a
his inbox, the server went through the process of performing a
STAT (examining the file's system information) of each message
followed by a READ of the headers of each message. When users
had large numbers of messages in a folder, this overhead proved
significant.

We determined that when messages in a folder numbered less than
200, performance was satisfactory. If more than 200 messages
were present, the wait became a problem. In the some cases,
opening a folder with several thousand messages could require
five minutes or more. In addition, during times of heavy use, the
cache saved by the server could be overwritten causing all of the
messages to need to be reread. Worse than this was that users
deleting messages one at a time were forced to wait as the system
updated itself.

Originally, we tried to improve performance by tuning the system
parameters to better handle these mailserver issues. When that
proved less than satisfactory, we began to break the mail
directories up over a number of separate disk partitions. These
changes were nothing more than "first aid". The problems still
existed, but we attempted to spread users across partitions in such
a way that we could minimize the wait experienced as a whole.
We knew that we needed to solve this problem that was endemic
to the commercial mail server.

In December of 1998, our Unix team began to investigate various
mailserver's IMAP implementations. We looked at PMDF,
Simeon (ExecMail), Cyrus, and finally the updated version of the
Netscape Mailserver 4.0. Our investigations led us to reduce the
contenders to Simeon, Cyrus, and Netscape Mailserver 4.0.
Netscape was a complete rewrite of the program with totally new
message handling. Having had problematic experiences with early
versions of Netscape's products, Netscape Mailserver 4.0 was
soon eliminated. With the choices reduced to two, we obtained
copies of both and set about testing and benchmarking them.

Cyrus is an Open Source product originally developed at
Carnegie-Mellon. It also served as the basis for the commercial
product Simeon. The differences between the two in late 1998
were mostly in the admin interfaces. Simeon had a Graphical User
Interface for admin as well as a command line interface. Cyrus on
the other hand was managed from a list of simple command line
arguments. Simeon did have some minor performance
enhancements not available with Cyrus.

Having had problems with our previous email server vendor's
response time to bugs and overall general support, we had become
somewhat distrustful of commercial support in general. We
subscribed to both Simeon and Cyrus Usenet groups and
monitored the performance of the company with regard to bug
fixes and product updates. In general 30 to 60 days were required
for Simeon bug fixes. With the source code, we found that we
could fix bugs in Cyrus ourselves or find someone on the Cyrus
Usenet group that had already fixed the problem in a much shorter

 4

time.

Having reached a dead end on the issue of a source license for
Simeon, we set up a conference call with our salesperson and a
Simeon Engineer to determine just what the true differences in the
programs were. We determined that there were no substantial
differences in the programs. Both programs used the same file
layouts. Both used databases to store header information and both
were remarkably faster than the commercial product we were
using. Simeon offered GUI admin tools, some minor performance
enhancements and commercial support but no source code. Cyrus
offered no GUI admin tools but had a very active group of
developers at Carnegie-Mellon and elsewhere and complete
access to all of its source code. With the source code, we felt
comfortable that we could work with the Open Source community
developing Cyrus to make any fixes necessary.

On April 1, 1999, we made the decision to implement Cyrus. At
this point we began two months of stress testing to assure
ourselves that Cyrus was a completely stable product. These stress
tests included driving the load on our test server to over 200.
Even at a system load of 200 (100 times the optimal load for a two
processor machine), Cyrus kept functioning reliably.

Satisfied that Cyrus was stable, we could begin the final phases of
the email migration. We wrote programs to convert the Netscape
folders of our users to the database oriented Cyrus format. The
holiday weekend of July 4th, 1999, was set as the migration date
and users were informed that email would be out of service for up
to 48 hours. A complete backup of all 50 GB of email was made,
and the actual migration began. We also used this time as an
opportunity to upgrade the email hardware by attaching another
set of RAID disks. The process took 41 hours. To users, this
migration was transparent. They experienced the migration down
time, followed by remarkably better email service with no major
changes required on the client side.

After a full year, the performance of Cyrus has exceeded all
expectations. Though the use of databases complicates the
software, the overall administration is a fraction of that required
previously for the "supported" commercial product. Between .25
and .5 of an FTE has been freed by switching to Cyrus. This
efficiency has allowed the department to move forward with other
longterm goals.

Beowulf cluster for research:
Computationally intensive research has increased dramatically
over the past two years. In 1997, the research load on the MCV
campus was handled by a single four processor SGI Power
Challenge L. In 1998, we added an eight processor Origin 2000.
In 1999, the Origin with supplemented by the addition of four
processors and of a 180GB Fibre Channel RAID. By the end of
1999, these two machines were running with loads 2 to 4 times
optimum usage. Jobs that required 14 to 30 days of time with a
full processor were taking two to four times as long. The Origin
on the Academic Campus was experiencing similarly high usage.

Plans had been made to combine the research computing
resources of the two campuses and to expand this combined
resource. Funds were secured to purchase equipment to increase
the number of processors in the combined single system image

Origin 2000 from 20 to 28. While we believed that this increase
should provide adequate resources for current users for a year, we
knew that it provided no resources for new research and did
nothing to alleviate chronic resource shortfalls on the four IBM
SP2 nodes in research use by the two campuses. To expand our
services, we would need to find another solution to these
performance problems.

Commodity hardware, Open Source software and research by
NASA and a variety of other institutions seemed to provide an
appropriate solution. We could use a Beowulf cluster to meet our
increasing needs. A Beowulf is defined in How to Build a Beowulf
by Sterling et al, as "a collection of personal computers (PCs)
interconnected by widely available networking technology
running any one of several open-source Unix-like operating
systems."

Instead of merely adding eight processors to the Origin 2000's, the
same funds could be used to secure a 32 processor Beowulf
cluster (for computational research), a four processor Sun
Enterprise server (to replace the obsolescent SP nodes) , and 324
GB of disks. With these purchases, we would be able to expand
our services.

We began to research and document the performance of Beowulf
clusters in a wide variety of research including chemical, physical,
mechanical, biological, and geological. Research from around the
world was used to provide a firm foundation on the real-world
capabilities of Beowulf clusters.

Finally, we needed to benchmark applications in actual use by
VCU researchers. Our benchmarking efforts received invaluable
assistance from a VCU researcher in the School of Engineering
who had purchased a Beowulf for his personal research. We
provided the researcher with assistance in setting up, managing,
and maintaining this six processor cluster, as well as porting
software to it which provided us both experience and increased
comfort level as we moved ahead. In addition, we were able to run
benchmarks of engineering and computational chemistry codes on
this small cluster.

The initial benchmarks for clusters centered around substantiating
the belief that commodity Intel hardware and Linux had the
capabilities required for computational research. These
benchmarks consisted of the test programs of the GAMESS US
software. GAMESS is one of the standard tools used in
computational chemistry and has been developed by the Ames lab
at the University of Iowa. This software runs on a wide variety of
platforms including the SGI Origin, and Linux clusters.

The newest version of GAMESS was obtained, compiled,
installed, and optimized for shared memory message passing on
the 12 processor Origin. In addition the standard version was
obtained, compiled and installed on a node of the six processor
Beowulf in the School of Engineering.

The Beowulf cluster performance exceeded that of the Origin
2000 on all of the short tests while performing at greater than 66%
of the larger machine on the longer tests. This provided important
evidence that a two processor $4000 node of a Beowulf had the
capacity to perform well when compared with a $29000 node on

 5

the SGI Origin 2000. Some representative samples are below.

Table 1. Initial results:

Test Origin Time PIII-700 Time
E01 0.9 seconds 0.4 seconds

E04 0.3 seconds 0.1 seconds

E07 1.4 seconds 1.2 seconds

E10 0.5 seconds 0.2 seconds

E13 1.0 seconds 0.7 seconds

E16 0.3 seconds 0.1 seconds

E19 0.9 seconds 0.5 seconds

E22 2.5 seconds 2.1 seconds

E25 4.0 seconds 1.5 seconds

E28 1.4 seconds 1.2 seconds

E31 17 seconds 25.4 seconds

After apparent success with the sample programs further
computational chemistry benchmarks were run using GAMESS
on real world molecules. These benchmarks compute the direct
rhf energy of a crown ether molecule. The results of these
benchmarks showed that the Beowulf was significantly faster than
the Origin in both single and dual processor tests.

Table 2. Single processor results:

Machine Cpu Time Wall Time CPU use
Origin 2000 4493.9 sec 4531.0sec 99.18%

PIII-700 2908.5 sec 2908.5 sec 99.35%

Table 3. Dual processor results:

Machine Cpu Time Wall Time CPU use
Origin 2000 2342.7 sec 2355.0 sec 99.48%

PIII-700 1581.8 sec 1601.8 sec 98.76%

Within the PIII-700 node, a speedup of 183% was experienced
when testing two processors versus one. The SGI Origin scaled
slightly better at 192% percent, but was still significantly slower
in dual processor tests than the PIII-700 dual processor machine.
These results mirror similar results from a University of Adelaide
sponsored paper "Commodity Cluster Computing for
Computational Chemistry." With these results and similar results
for mechanical engineering applications and Monte Carlo
applications, we moved ahead with our purchase of a 32 processor
Beowulf cluster.

Our beowulf, hydra.vcu.edu, consists of 16 dual processor
600mhz nodes (32 processors total). It uses two 100Mbit fast
Ethernet switches, two KVM (keyboard, video, mouse)
controllers to allow all nodes to use one monitor, keyboard and

mouse, and two remote power controllers to provide a remote
startup, shutdown, and restart capability.

The cluster is networked by bonding two 100Mbit Ethernet cards
in each node to create a single channel. Originally designed by
NASA researcher Donald Becker for 10Mbit Ethernet, this
network topology still continues to prove its efficiency. Tests on
our Beowulf show that we can obtain 184.3Mbits/ second of TCP
throughput for a cost of $248 per node. Due to bus and timing
issues, current Gigabit Ethernet will support 240Mbit/second of
TCP throughput at a cost of $1650 per node. We are quite
pleased with the price/performance of channel bonding in our
cluster.

One issue that may cause some resistance to the implementation
of a beowulf solution is a belief that beowulf clusters are less
scaleable than various traditional vendors hardware. Clearly, these
arguments must be addressed with real world data and should be
examined from a price/performance point of view.

Since our purchase and installation of a Beowulf cluster, we have
spent time determining the performance of that cluster. We have
examined how fast the network is, how the processors perform,
how the network mounted files systems perform, and how the
system performs overall. In a number of benchmarks, the Beowulf
performance is superior to machines ranging from a Cray
Research T3E, to an IBM SP cluster, and to an SGI Origin 2000.

In multi-processor testing of Gamess-US software using the
previously referenced crown molecule, the cluster scales well and
with an extremely attractive price/performance.

Figure 1. Beowulf and Origin Scaling

In these tests, the Beowulf performed approximately 25% faster in
jobs run on one to six processors. The paper "Cluster Computing
for Computational Chemistry," showed good scalability for
individual GAMESS-US jobs of up to 20 processors on Beowulf
clusters. When this data is put into the perspective of cost per
processor, one realizes that the cluster can both scale well and
perform well when compared to machines costing up to an order
of magnitude more.

Conclusion:

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6 7

W
al

l C
lo

ck
 T

im
es

Number of Processors

Crown Benchmark Results

beowulf times
Origin 2000 times

 6

These case studies show that the use of Linux, Open Source
Software (OSS) and commodity hardware have allowed VCU to
improve both its efficiency and capabilities. OSS programs such
as the Apache Web Server and Cyrus have allowed VCU to
provide web and email services more efficiently and with a lower
cost. Open Source software provides stability, portability, support
and access to source code. The performance of the Beowulf
cluster has provided us with the ability to offer more computing
resources for our researchers. These features allow VCU to
leverage its staff knowledge and hardware dollars to better meet
the needs of its users.

References:
[1] Raymond, E., The Cathedral and the Bazaar, 1st ed., O'Reilly
and Associated, Sebastopol, CA (1999)

[2] Sterling, T., et al., “How to Build a Beowulf,” Cluster
Computing Conference- 1997, Emory University, Atlanta, GA
(1997)

[3] Hawick, K., D. Grove, P. Coddington, and M. Buntine,
"Cluster Computing for Computational Chemistry," DHPC
Technical Report DHPC-073, University of Adelaide, Adelaide,
South Australia (2000)

	References:

