
 1

Ills Cured With a Dose of Remedy
Michael Critchfield

California State University, Chico
Chico, CA, 95929
(530) 898-6000

mcritchfield@csuchico.edu

Michael Murray
California State University, Chico

Chico, CA, 95929
(530) 898-6000

mmurray@csuchico.edu

ABSTRACT
We presented a paper in Denver that addressed our Remedy
design process. At that time we talked about our current
development process, but we hadn't implemented the product at
that point. We received a lot of wonderful feedback from the
session, and we found that many people wanted to know how
things turned out.
We were intrigued by the amount of people that were
considering Remedy as their helpdesk solution. Many of these
people were hesitant to go with Remedy because of the cost
issues, or were concerned about the impact it might have on
their own help desks.
Because we hadn't implemented Remedy at the time of our
presentation, we couldn't answer many of their questions. Since
the last SIGUCCS conference, we have not only fully developed
the product, we have also had our project leaders attend multiple
Remedy training sessions, and have had these staff members
further develop the product that we currently use as our User
Services workflow system.
We will discuss every aspect of our development, to include:

• Project management. A Remedy implementation is a
major undertaking. Every college has different
business rules, and how you handle this area is crucial.

• Development. The development stage should involve
anyone that will touch the application. Involving your
employees benefits everyone.

• Testing. Every individual should test the product. This
will minimize the number of issues after
implementation

• Cross-platform issues. Remedy is now issuing version
4.5. The last version of Remedy that supported
Macintosh clients was 3.2. Organizations need to
think about this before jumping onboard.

• Licensing issues. The most expensive part of Remedy
is the licenses. What is more important is
understanding how much you will need to spend on
licenses before you buy.

• Other topics
o Development server. Is it worth it?
o Crystal Reports. Compatibility issues and

importance of reports.

This presentation will be of great value, not only to those
campuses that are considering Remedy, but also to those
that have been using Remedy, but haven't been satisfied
with their current implementation.

1. PROJECT MANAGEMENT
All projects need a good manager and Remedy is no different.
When we started our project, we opted to bring in a project
manager from outside our organization. We felt that a project
manager with no prior knowledge of our operations would have
an unbiased view and would help us to better define our
business rules.
It was the project manager’s responsibility to ensure that all of
the groups involved in the use of the final product got a chance
to provide input into the development. It was also the
responsibility of this project manager to create a list of needed
resources and to make sure they were purchased and available
when needed.
The project manager was also responsible for overseeing our
outside developer. He was to ensure that our application was
being developed to the specifications agreed upon in our
Requirements Analysis.
Unfortunately for us, we discovered four months before our
rollout that our chosen project manager was doing none of the
above.
To make matters worse, our developer was not even close to
making his deliverables. We found out later on that he had not
even been through training on Remedy’s most current product,
which is what he was developing for us. This meant that many
of the features that were available to us were not being used.
In April of this year, we felt it was time to shift gears. We
decided to take two of our professional helpdesk staff members
and make them responsible for the Remedy implementation.

LEAVE THIS TEXT BOX IN PLACE
AND BLANK

 2

2. A NEW BEGINNING
First, we created a list of all necessary purchases and completed
a project cost analysis. Realizing that purchasing equipment and
software would take months and that this project had a drop-
dead date of June 30th, it became evident that this needed to be
done quickly.
We spent a few days determining exactly what we would need to
make this project a success, and then presented our list of needs
to our director. While he wasn’t pleased with the amount of
money he would need to spend, he knew that there was no
choice.
A week after taking on this project, our developer came to
campus to install his “completed” work on our Remedy server.
After reviewing the product we discovered that several parts of
the program simply did not work and several areas were not
developed per our Requirements Analysis.
We were becoming concerned that we were getting so close to
our deadline, yet had very little to show. The development was
going much slower than we would have hoped, and the product
simply was not acceptable.
We were then notified that Peregrine, a Remedy competitor,
acquired the company who we contracted with for development
and that our developer had left said company to take a position
with another company.
It was now two and a half months to our target rollout and we
had a non-functional product, and no developer.
We decided that with the short time we had left it would make
the most sense for us to finish the application. While this would
be difficult to do in our limited timeline, we were unhappy with
the current progress, and basically reached our breaking point. It
was time to move on.

3. REMEDY TRAINING
One of our problems was that we had no support for our
customized application, only Remedy support. We needed to be
familiar enough with the Remedy product to ensure that any
bugs discovered during rollout could be quickly solved.
Therefore, we scheduled three Remedy training sessions, which
we felt would provide us the tools necessary to handle our
responsibilities.
We are breaking out “Remedy Training” in this paper for one
reason and that is to emphasize its importance. If you are
planning a Remedy development whether developed in house or
out, learn from our experience and send two or more of your
staff to Remedy training. It will help you to know what to
expect and it will give you the understanding of how Remedy
works so that you can better oversee your developer.
Both of us attended the following training sessions:

• Administering the Action Request System. This
class is an introduction to the ins and outs of Remedy
administration. They cover all of the basics and even
touch on some advanced features.

• Advanced Topics. This class was one of the most
valuable training classes we attended. This class
would probably be better titled. “Cool Stuff You Can

Do With Remedy”. We took a lot of great information
back to Chico after this class

• Performance Tuning & Troubleshooting. This class
teaches Remedy administrators how to keep their
applications running smoothly and quickly. They
touch on server tips, design tips, and much more.

These classes really launched us into our roles. We came
back with a much better understanding of the system and
were able to design it the way CSU, Chico had intended.
However, we only had 6 weeks left to produce our
application. Our first task was to determine what currently
worked and what we needed to fix.
After reviewing the workflow that was currently in place,
we realized that we would have to almost completely
revamp the system.

4. DEVELOPMENT
After reviewing the results from our testing we created a list of
modifications that needed to be made before rollout and began
hammering them out one by one.
Since we purchased a development server as well as a
production server we could have testing occurring at the same
time as development. We cannot stress enough how valuable
this development server was.
To our benefit, we had a well thought-out Requirements
Analysis and a good idea of how the end product was to
function. This made our redesign process much quicker.
We started with the application’s Control Panel. In Remedy, the
database is accessed through “forms”. During the development
process, many forms are created. In our application, we have 41
different forms, which are used for a variety of different
functions, such as:

• Service Request Form. This is the main form in our
system, as it contains all of the key information for
work order tracking..

• Assets. Every computer, monitor, printer, etc. on our
campus is stored in this form, along with the state
decal number.

• Locations. Every building and their associated room
numbers are stored in this form.

• Customers. All campus employees and their related
information are stored in this form.

There are many other forms that contain crucial data, and a
number of forms which are strictly used for our workflow.
The problem with this is that the amount of forms can be
confusing for the end user. Also, we wanted to limit the number
of forms the end user had to see.
The easiest way to interface these forms is through a “control
panel”. In Remedy, the Control Panel is the starting point for all
users. You could think of it as your “one stop shop” for the
Remedy system.
Our Control Panel was nothing but a few search buttons and a
button to create a new request. We felt that the control panel
should be used for much more.

 3

We added such features as:

• Tables, which display the technician’s open requests,
their groups open requests, and associated groups
open requests.

• A documentation area. All of our commonly used
documents, such as remote access dialup instructions,
are stored in this area so our Help Desk staff can
quickly access them for our customers

• A reporting area, which allows management to view
various reports.

• Special Buttons:
o Quick Closes. This button allows a

technician to select a pre-defined service
request type, such as a password reset,
hardware consultation, or training request,
then click a button and have a request
created and automatically closed.

o Major events. In the event of a network
outage, for example, a request can be
created that acts as the master event, then
requests can be quickly added to it with the
click of a button. Once the event has been
repaired, a technician can close all of the
request with a click of a button. A
description of the work done is
automatically added to each request, then
they are all closed.

There are many other features we added to the control panel as
well. It is definitely the way to go with Remedy.
In addition to the control panel, we basically reworked all of the
forms and associated workflow. Major areas, such as billing,
took an incredible amount of time and effort, but we were able
to develop them as we had intended.
In the end, our product was barely recognizable compared to the
product we were originally given.

5. TESTING
Before we took over development, early versions of our
application were e-mailed to us in the form of “definition files”,
which we would load onto our server. It was our job to check
every aspect of the application for functionality, and to compare
its features to our Requirements Analysis.

As we tested, we noted bugs, or the parts of the application, that
either did not work, or did not match our requirements. These
bugs were tracked in an Excel spreadsheet that was sent back
and forth between the developer, the project manager, and our
testing team.

This proved to be a mess after a while, as we would often get
new versions of the bug report that did not contain all of the
proper information. We were losing data between all of the
people involved since we were not using one common copy of
the report.

Our solution was to set up an online database that contained the
bugs. Only one person would be allowed to maintain the
database, therefore eliminating loss of data. A bug submission

form was also created that was to be used by the people involved
in the Remedy project. This form did not write to the database
directly, as we wanted to verify each bug report and also make
sure that the bug report was not a duplicate entry.

Bugs were assigned identification numbers (ID’s) that could be
referred to any time updates were made. If a bug was fixed, the
developer would e-mail the database administrator with the bug
ID and solution. The fix would then be verified by the testing
team. If the bug were indeed repaired, then the bug would be
marked as fixed, and would no longer appear in the bug report.

6. IN-HOUSE TRAINING
We were now at the point where we were ready to roll out our
production system. However, we had developed a system
completely different than our existing work order database.
We quickly developed a training program for our staff. Since
each area handles their workflow differently, we felt the best
approach was to split the classes up, addressing each of our key
areas separately:

• Help Desk

• Field Services / Tech Shop

• Network Management & Design

• Administration
We had one of our students create a Remedy user guide that
people could refer to if they needed help, and we also followed
up with each area after the product was rolled out.
After the initial training sessions, we felt that it might help to
have some specialized training. Since our Help Desk staff had
helped us test our application throughout development, they
were far more familiar with the system than the other areas. We
would send two or three of our Help Desk staffers to the other
areas for an hour or two each day. During this time, the new
users could get answers to any questions they had.
This also helped us get over the “old school” attitude that some
people tend to have when they have to move to a new system.
These folks are comfortable with the status quo and often can
make a transition such as this difficult. We found, with the extra
attention we gave them, that these attitudes were not prevalent at
all.

7. CROSS-PLATFORM ISSUES
We were concerned when we found out that Remedy no longer
offered a Macintosh client. Our campus user population consists
of 40% Macintosh platforms. This makes for a large portion of
our call volume. Because of this, it is imperative that our Mac
support technicians use Macs in their daily routine.

If you’ve ever tried to troubleshoot an operating system problem
without actually sitting at a computer with a similar setup, you
can relate. For our student technicians, who typically do not
have the support experience that our professional staff has, this
becomes even more of an issue.

When we first started the initial Remedy project, we were
informed that both the PC and Mac platforms were supported.
Early versions of Remedy did have a Mac client, but they
decided that Macs were such a small percentage of their

 4

customer base that it no longer made financial sense to develop
one.

Macintosh users can still get the last Remedy client, but the
features that have been added since that version (v 3.2) are not
supported. We developed our application in version 4.03, and
many of the features we have will simply not work in the older
Mac client.

We decided that we had three options:

1. Put PC’s on the Mac technician’s desks, in addition to
their Macs.

2. Put PC Cards in each of the Macs.

3. Use Virtual PC.

Option one simply would not work. Our workspace is very
limited, and adding an additional CPU, monitor, etc. on every
Mac technician’s desktop was simply not an option at all.

Option two appeared to be a good one at first. We had heard
good things about these cards, and the fact that they had their
own processor and memory on board made us believe that they
would be a great fit.

We called Orange Micro and arranged to have a demo PC Card
sent to us for testing. The PC Card was tested on a variety of
Mac platforms, including a G4. We had a lot of problems with
the card from the start, and never were satisfied with the
product.

We were left with our final option. We loaded Virtual PC on a
G3 and proceeded testing. Unfortunately, the performance of
this product left a lot to be desired.

The act of loading the Windows environment alone took way
too long. Once Windows loaded, things did not get any better.
Accessing Remedy took too long, and creating service requests
took even longer. At this point, we were getting concerned.

Then we decided to give Virtual PC a shot on the new G4s that
were floating through our office. The performance increase was
astounding. Windows loaded quickly, and Remedy responded
much better. To this day, Remedy is not as fast on the Mac side
as it is on the PC side, but it isn’t bad.

To this point we had already spent a large chunk of money, and
now we had the pleasure of informing our bosses that we were
going to need to purchase Mac G4s for every Mac technician
that needed to access Remedy. While the Mac techs rejoiced, the
director was not pleased. Again, there was really no choice, so
the G4s were purchased.

8. LICENSING ISSUES
Remedy makes the majority of their money through its product
licensing, and to be honest, they are experts at getting the most
money they can. Remedy licenses do not come cheap, but there
is really no choice in the matter.
Their main product, the Action Request System (ARS), is
licensed in two different ways:

• Fixed licenses. These are tied to an individual user.
They are not available to any other user.

• Floating licenses. These are assigned to a general
pool and “checked out” by a user. When a user logs
in, a floating license is granted to the user and
becomes unavailable for any further use until the user
logs out.

While Floating licenses sound like the best way to go, it should
be noted that they cost 2.5 times as much as a Fixed license.
Also, once all of the Floating licenses are in use, subsequent
user logins can only view Service Requests, without editing.
You will have to decide how many of each type to purchase for
your organization. At CSUC, we purchased 45 Fixed licenses
and 5 Floating licenses. Since most of our users are on the
system throughout the day, we did not have the need for many
Floating licenses.
There is one other licensing issue to be aware of. If you decide
to use a development server, you will need to have the same
licensing configuration that your production server has.
However, the development licenses only cost half the price of
production licenses. Just be sure to tell Remedy that they are for
your development server, because they will likely try to charge
you full price.

9. OTHER TOPICS
There are a couple of other things any organization should
consider when moving to the Remedy system.

9.1 Development Server – Is It Worth It?
We were surprised to find out that the majority of companies
running Remedy do not use a development server. The purpose
of this server is to allow the developers the chance to add new
features to the application without risking the data and the
health of the live server.
If a mistake is made on the live server during production hours,
the effects can be extremely detrimental to the organization.
Support organizations cannot afford downtime or lost data.
For this reason, we decided it would be worth the cost of the
extra Remedy server license to purchase a development server.
Our production server is pretty robust:

• Dual P450 processors

• 256 MB ECC RAM

• Four 9 GB Fast/Wide SCSI hard drives in a RAID 5
configuration

The good news is that the development server does not support
users, so the hardware can be far less than the production server.
We settled on a P450 desktop computer with 128 MB RAM and
a 13 GB hard drive. This would be more than enough to develop
our application.
Since we implemented our development server, we have done
the majority of our enhancements on it. We have had a few
occasions where we have had to make modifications on the
production server, but only in cases where something was not
functioning properly.

 5

The use of a development server is highly recommended. The
headaches you can save your organization are worth the extra
cost.

9.2 Crystal Reports
One of Remedy’s real weaknesses is the reporting feature.
Reports can be run on any form, but the output is as bland as it
could possibly be. Reports appear as plain text in rows, and
there are no real formatting options.
Seagate offers a product called Crystal Reports that works
extremely well with Remedy. The reports are designed from
scratch, and are made with relative ease.
There are some limitations, however. For example, there is one
field type (tables) in Remedy that will not display in a Crystal
report. These table fields usually display a collection of
information from a different form, and because of this, they
cannot be displayed in Crystal Reports. Of course, there are
workarounds.
The limitations of Crystal Reports are minor, while the benefits
are major. Before you purchase Crystal Reports, try using the
Remedy reports and see if they are enough for your
organization. If they’re not, go with Crystal Reports.

10. IN SUMMARY
When we presented our paper on Remedy last year, we still had
not implemented our application. We were asked how much
money we had spent at that time on Remedy, and the crowd let
out a gasp. Yes, we have spent a considerable amount of money
on this product, but we wanted to do it right.
We had heard enough tales of horror from other organizations
about their implementation that we decided we would do
whatever it would take to make it work the way we wanted it to.
In hindsight, we would have probably forgone the outside
developer and project manager, and done it all ourselves. We
could have easily sent our own people to Remedy training in the
first place, and had them develop the application from scratch,
rather than have them have to go through and rebuild a bad
application.

11. ACKNOWLEDGMENTS
We would like to personally thank the people from the campuses
of CSU, San Marcos, CSU, Sonoma, and Stanford University.
These people answered every question we had about Remedy
and made our jobs much easier down the line.

	PROJECT MANAGEMENT
	A NEW BEGINNING
	REMEDY TRAINING
	DEVELOPMENT
	TESTING
	IN-HOUSE TRAINING
	CROSS-PLATFORM ISSUES
	LICENSING ISSUES
	OTHER TOPICS
	There are a couple of other things any organization should consider when moving to the Remedy system.
	Development Server – Is It Worth It?
	Crystal Reports

	IN SUMMARY
	ACKNOWLEDGMENTS

