Clean Coal Technologies

Michael T. Klein*
Rutgers University
Department of Chemical and Biochemical Engineering
Piscataway, NJ 08854

Outline

- Energy Sources
 - History, Projections and Usage
- Coal: Formation and Usage
- Clean Coal
- Options
 - Electricity
 - Liquid Fuels
 - Direct Liquefaction
 - Indirect Liquefaction

Trends in US Energy Consumption

http://www.eia.doe.gov/emeu/aer/eh/frame.html

US Electricity Generation By Source

http://www.eia.doe.gov/emeu/aer/eh/frame.html

Coal

- Is strategic*
 - 25% of world's supply in USA
 - USA coal content greater than world's reserves of oil
 - 250-300 year supply
- Is the workhorse of US electric power industry
 - Provides greater than 50% of US electricity

Figure 1.1: Proved coal reserves at end-1999 - regional distribution **

**www.chemistryexplained.com/Ce-Co/Coal

*US DOE www.energy.gov/energysources/coal

Coal Origins and Structure

- 250-300 million years ago:
 - Forests and plant material died and sank under earth's wet surface
 - Cellulose and hemi-cellulose decayed
 - Lignin (more resistant to microbial decay) concentrated and transformed
 - With prolonged exposure to T and P:

Key Structural Features of Coal

- PNA structures: 1-N aromatic (benzenoid) rings
- Heteroatoms: S, N, O, metals, ash
- Macromolecular Structure
- C/H ratio

Coal Utilization Options

- Combustion for Electricity*
- Indirect Liquefaction*
 - Reaction of coal with oxygen
 - Coal transformed to CO, H2 and other small gases
 - Petroleum-like molecules synthesized via catalytic Fischer-Tropsch process
 - Very flexible (can burn product "synthesis gas" for electricity)
- Direct Liquefaction
 - Fragments coal macrostructure
 - Preserves building blocks that are similar to petroleum molecules
 - Process involves thermal treatment in hydrogen donor around 400°C
 - Products could be sent to refinery

Petroleum Naphtha Molecules and Reactions

Clean Coal

- Designed to preserve/enhance this vital source of energy
- "Clean Coal Technology" describes a new generation of energy processes that reduce air emissions and other pollutants from coal-burning power plants
 - Sulfur and nitrogen oxides combine with water vapor: acid rain
 - CO2: greenhouse gas emissions
 - Mercury
 - Particulates
- More broadly, Clean Coal Technologies can describe environmentally friendly, sustainable use of coal for energy and fuels

Clean Coal Technologies

NOx Formation (NO₂, N₂O and NO)

- •Thermal NOx: reaction of N₂ and combustion air (~25% in coal unit*)
- •Fuel NOx: reaction of Coal-N with O₂ (~75% in coal unit)
- •Formation highly sensitive to reaction temperature, time and turbulence

•NOx Reduction Technologies

- Combustion modification (addressing the three t's)
 - •Low Nitrogen Oxide Burners:
 - •On 75% of existing coal power plants
 - •25 million ton reduction in US NOx emissions
 - Fluidized Bed Combustion (FBC)
 - Highly commercialized
 - Inherently low NOx emitting (T range)
 - Allows contact with S-adsorbing material
 - Very flexible with regard to feedstock
- Selective Catalytic Reduction
 - •NOx reductions of 80-90% or higher
 - •In about 30% of coal plants
 - •300 < T < 400 C,
 - Cat typically Vanadium/Titanium based

$$4NO + 4NH_3 + O_2 \xrightarrow{cat} 4N_2 + 6H_2O$$

$$2NO_2 + 4NH_3 + O_2 \xrightarrow{cat} 3N_2 + 6H_2O$$

$$NO_2 + NO + 2NH_3 \xrightarrow{cat} 2N_2 + 3H_2O$$

Clean Coal Technologies*

•Flue Gas Desulfurization (FGD)

- •Wet scrubbing is the predominant technology (SO₂ removals of 95%+ are typical)
 - •Slurry of alkaline sorbent contacts flue gas
 - Sorbent typically limestone or lime
 - •Typical reaction: $CaCO_3(s) + SO_2(g) -> CaSO_3(s) + CO_2(g)$
- Spray-dry scrubbing
- Many other FGS variants

Particulates

- •From mineral matter and formation reactions
- Appear as "Bottom Ash": discharged from the bottom of furnace
- Appear as "Fly Ash": suspended in Flue Gas
- •Electrostatic precipitators (ESP) and fabric filters are highly efficient (99.5% +)

^{*}iea-coal.org.uk; NETL

Clean Coal Technologies

•Mercury*

- •Hg volatilized during combustion, converted to gaseous elemental Hg^o
- •Subsequent cooling and reactions produces flue gas with:
 - •Hg^P: Particulate-bound mercury, and therefore handled with particulate control device (ESP, fabric filter)
 - •Hg²⁺: gaseous oxidized form, is water soluble and portions can be captured in wet FGD process
 - •Hgo: is captured by sorbent injection technology
- Sorbent injection technology
 - Activated carbon injection
 - Partially reacted coal (e.g., Nalco Mobotec-NETL "Thief" technology)

CO₂ Capture and Storage

- Pre-combustion (e.g., in a gasification scheme)
 - •Remove CO₂ from synthesis gas before combustion
 - •Takes advantage of the relatively higher CO₂ concentration
 - Selexol commercial process
 - •Current research includes membranes, ionic liquids, etc.
- Post-combustion CO₂ Capture
 - •Challenges due to low pressure (1 atm) and low concentration (10-15 vol%)
 - •CO₂ compression costs large
 - •Trace impurities reduce effectiveness of CO₂ reduction process
- Oxy-Fuel Combustion
 - Uses oxygen rather than air
 - Off gas is mainly H₂O and CO₂

A Conventional Amine Unit

CARBON CAPTURE

and Sequestration/Enhanced Oil Recovery

Clean Coal Results*

Integrated Gasification Combined Cycle (IGCC)

COAL TO LIQUIDS

Coal Liquefaction Options

- Indirect Liquefaction
 - University of Kentucky Center for Applied Energy Research
 - Illustrative movies (<u>www.caer.uky.edu/cct/ccthome.html</u>)
 - http://www.caer.uky.edu/cct/Coal-Gasification.swf
 - http://www.caer.uky.edu/cct/CTL.swf
 - http://www.caer.uky.edu/cct/IGCC.swf