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Having determined the orbital angular momentum operators for q.m. rota-
tion, we will now consider rotation in 3-dimensions (i.e, in a plane). The
systems is a rigid two-body rotor with fixed distance between the two masses
at each end of the rotor. Using the commutativity of the total angular mo-
mentum and one of its components, we will arrive at the eigenfunctions and
eigenvalues of the angular momentum operators.

Consider Figure 1. The momentum vector is along the z-direction, so let’s
determine the eigenvalues and eigenfunctions for the operator corresponding
to the z-component of orbital angular momentum.

The z-component angular momentum operator, l̂z, in Cartesian coordinates
is:

lz = x py − y px. (classical)

l̂z = −ih̄

(

x
∂

∂y
− y

∂

∂x

)

The equivalent expressions for the x− and y− components are:

l̂x = −ih̄

(

y
∂

∂z
− z

∂

∂y

)

l̂y = −ih̄

(

z
∂

∂x
− x

∂

∂z

)

We also have:
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l̂2 = l̂2x + l̂2y + l̂2z

More succinctly:

l̂ = −ih̄r×∇

l̂2 = −h̄2 (r×∇) • (r×∇)

Also recall the commutation relations:
Since the total angular momentum, l̂2, and the z-component, l̂z, commute,
they must share the same eigenstates. Thus:

l̂2Ψkm = kh̄2Ψkm

l̂zΨkm = mh̄Ψkm

Since h̄ has units of momentum, the eigenvalues are just a simple scalar
value multiplying the unit of momentum.

In spherical polar coordinates:

x = rsinθcosφ

y = rsinθsinφ

x = rcosφ

For the 3-dimensional rotor case, switching to polar coordinates (r, θ, φ).

The separation vector, r, is taken to be fixed, and so we can take the wave-
function to be Ψ(θ, φ). The operators in spherical polar coordinates are thus:

l̂x = −ih̄

(

sinφ
∂

∂θ
+ cotθ cosφ

∂

∂φ

)

l̂y = −ih̄

(

cosφ
∂

∂θ
− cotθ sinφ

∂

∂φ

)

l̂z = −ih̄
∂

∂φ
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l̂2 =

[

−h̄2

(

1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2

)]

If we compare the Hamiltonian operator for the 3-d rigid rotor (considered
previously), we see that:

Ĥ = K̂ =
l̂2

2I

The Hamiltonian and Angular momentum operators commute, sharing
eigenstates. Thus, the spherical harmonics are eigenfunctions of l̂2 with
eigenvalues, l2 = h̄2l(l + 1).

l̂2Y m
l = l2Y m

l = h̄2l(l + 1)Y m
l l = 0, 1, 2, 3, .....

The length of the momentum vector is quantized in units of h̄; l is the an-
gular momentum quantum number.

The z-component of angular momentume, lz, is the eigenvalue of the oper-
ator, l̂z:

l̂zY
m
l = −ih̄

∂

∂φ
Y m

l = h̄mY m
l

Thus, the eigenvalues of the z-component are h̄m. The spherical harmonics
are also eigenfunctions (eigenstates) of the l̂z operator. Thus, Ĥ, l̂2, and l̂z
commute.

Up to now, we again have introduced l and lz and m, etc. However, we have
not shown what the relation is between, most importantly, m and l. It can
be shown that the operators l̂2 and l̂z commute; thus, we can know/measure
the observables associated with these operators simultaneously.

[l2, lz] = 0.

These observables are the total angular momentum and the z-component
of the total angular momentum. Since the z-component of the total can only
be less than or equal to the total, we have the following:

Since, |lz| ≤ |l| → |m| ≤
√

l(l + 1) → |m| ≤ l

Thus, m = 0,±1,±2,±3, ....,±l. For each value of l, there are
2l+1 possible m values. Since the energy does not depend m, each
state is then (2l+1)-fold degenerate!
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Table .

l m Y m
l Degeneracy (2l+1)

0 0 Y 0
0

1

1 -1, 0, 1 Y −1

1
, Y 0

1
, Y 1

1
3

2 -2, -1, 0, 1, 2 Y −2

2
, Y −1

2
, Y 0

2
, Y 1

2
, Y 2

2
5

3 -3, -2, -1, 0, 1, 2, 3 Y −3

3
, Y −2

3
, Y −1

3
, Y 0

3
, Y 1

3
, Y 2

3
, Y 3

3
7
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