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I. The Rigid Rotor and Q. M. Orbital Angular Momentum

Consider a rigid rotating diatomic molecule −− the rigid rotor −− with
two masses separated by a distance ro; the distance is fixed, and the rota-
tion occurs in the absence of external potentials. The quantum mechanical
description begins with the Hamiltonian:

Ĥ = K̂ + V (x, y, z) =
−h̄2

2µ
∇2 + 0

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

This is simply the kinetic energy operator as we have seen in the past for the
particle-in-box and the harmonic oscillator. Now, we can change coordinate
systems from Cartesian to polar spherical coordinates. This goes as:

Cartesian(x, y, z) → sphericalpolar(r, θ, φ)

x = rsinθcosφ

y = rsinθsinφ

z = rcosθ

∇2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

r2sin2θ

∂2

∂φ2
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Thus, in spherical polar coordinates, Ĥ(r, θ, φ)ψ(r, θ, φ) = Eψ(r, θ, φ) be-
comes:

[

−h̄2

2µ

(

1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

r2sin2θ

∂2

∂φ2

)]

ψ(r, θ, φ) = Eψ(r, θ, φ)

For the rigid rotor, the length between masses is constant. Thus

ψ(r, θ, φ) → ψ(ro, θ, φ) → ∂

∂r
ψ = 0

The Schrodinger equation is now:

[

−h̄2

2µr2
o

(

1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2

)]

ψ(r, θ, φ) = Eψ(r, θ, φ)

Recall: µr2
0

= I, the moment of Inertia of the rotor.

[

−h̄2

2I

(

1

sinθ

∂

∂θ

(

sinθ
∂

∂θ

)

+
1

sin2θ

∂2

∂φ2

)]

ψ(r, θ, φ) = Eψ(r, θ, φ)

If we assume that ψ(ro, θ, φ) is more generally ψ(ro, θ, φ) = B(r)Y (θ, φ)
(the function B(r) is some generic function that takes into account the true
r-dependence which we are simplifying in the present case by treating the
system as a rigid rotor), the problem reduces to:

[

−h̄2

2I

(

1

sinθ
∂
∂θ

(

sinθ ∂
∂θ

)

+ 1

sin2θ
∂2

∂φ2

)]

Y (θ, φ) = EY (θ, φ)

Solving the Rigid Rotor Problem

Rearranging the previous equation:

[

sinθ
∂

∂θ

(

sinθ
∂

∂θ

)

+
2IE

h̄2
sin2θ

]

Y (θ, φ) = − ∂2

∂φ2
Y (θ, φ)

The left-hand side of the previous equation is a function only of θ and the
right is a function only of φ. Thus, we can use separation of variables to
generate a solution:

Y (θ, φ) = Θ(θ)Φ(φ) → Define : β ≡ 2IE

h̄2
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Thus,

[

sinθ
∂

∂θ

(

sinθ
∂

∂θ

)

+
2IE

h̄2
sin2θ

]

Θ(θ)Φ(φ) = − ∂2

∂φ2
Θ(θ)Φ(φ)

Dividing by Θ(θ)Φ(φ) and simplifying:

[

sinθ

Θ(θ)

∂

∂θ

(

sinθ
∂

∂θ

)

Θ(θ) + βsin2θ

]

= − 1

Φ(φ)

∂2

∂φ2
Φ(φ)

Since both sides are functions of different variables, each is equal to a con-
stant, which we’ll let be m2.

1

Φ(φ)

∂2

∂φ2
Φ(φ) = −m2

sinθ

Θ(θ)

∂

∂θ

(

sinθ
∂

∂θ

)

Θ(θ) + βsin2θ = m2

First consider the φ expression:

∂2

∂φ2
Φ(φ) = −m2Φ(φ)

Solutions are of the general form: Φ±(φ) = A±e
±imφ. As before, the bound-

ary conditions lead to quantization. Since this expression is related to the
z-component of the angular momentum, we can imagine the particle moving
along a circular ring. At the values of φ separated by an entire revolution,
the wavefunction has to be the same; i.e. Φ(φ) = Φ(φ+ 2π).

The latter constraint leads to: e±i2πm = 1. This is valid for values of m:

m = 0,±1,±2,±3, .....

m is the magnetic quantum number. Thus :

Φ(φ) = Ame
imφ m = 0,±1,±2,±3, ...

Normalization gives:

Φ(φ) =
1√
2π
eimφ m = 0,±1,±2,±3, ...
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Now we’ll consider the Θ function:

sinθ

Θ(θ)

∂

∂θ

(

sinθ
∂

∂θ

)

Θ(θ) + βsin2θ = m2

First change variables: x = cosθ, Θ(θ) = P (x), and dx
−sinθ = dθ.

Since 0 ≤ θ ≤ π, −1 ≤ x ≤ 1, conveniently. Also, sin2θ = 1−cos2θ = 1−x2.
After some rearrangement and simplification, one obtains the associated
Legendre equation:

(

1− x2

) d2

dx2
P (x)− 2x

d

dx
P (x) +

[

β − m2

1− x2

]

P (x) = 0

The boundary conditions arise due to the requirement that Θ is continuous;
this quantizes β:

β = l(l + 1); l = 0, 1, 2, 3, .... (with m = 0,±1,±2,±3, ...)

The energy (eigenvalue) is thus quantized from the definition of β.

E =
h̄2

2I
l(l + 1) l = 0, 1, 2, 3, ....

The wavefunctions are the associated Legendre Polynomials, P
|m|
l :

P
|m|
l (x) = P

|m|
l (cosθ)

P 0

0
(cosθ) = 1 P 0

1
(cosθ) = cosθ

P 0

2
(cosθ) =

1

2

(

3cos2θ − 1
)

P 1

2
(cosθ) = 3cosθsinθ

Putting things togther:

Θ(θ) = AlmP
|m|
l (cosθ)

From normalization:

Alm =

[(

2l + 1

2

)

(l − |m|)!
(l + |m|)!

]1/2

← 1 = A2

lm

∫ π

o

[

P
|m|
l (cosθ)

]

2

sinθdθ

The Spherical Harmonics are the eigenfunctions for the 3-D rigid rotor:

Y m
l =

[(

2l + 1

4π

)

(l − |m|)!
(l + |m|)!

]1/2

P
|m|
l (cosθ)eimφ (ĤY = EY )

(

El =
h̄2

2I
l(l + 1)

)

But what is the relation between the l and m quantum num-

bers that have arisen? For this, we need to consider Angular

Momentum
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