
Kinetic Theory of Gases: Elementary Ideas

9th February 2011

1 Kinetic Theory: A Discussion Based on a Sim-

plified View of the Motion of Gases

1.1 Pressure:

Consul Engel and Reid (Ch. 33.1) for a discussion of the derivation for the
pressure of a rarefied collection of particles of mass m. In the following,
we provide a connection from the one-dimensional version to the full scalar
pressure. The connection is not quite direct from the discussion of Engel
and Reid.

In 3-D, for a collection of many particles (on the order of Avogadro num-
ber), using average values of velocity and velocity components (in Carte-
sian coordinates); these are not generalized coordinates (as physicists would
consider), the total kinetic energy is:

KEtotal =
N

2
m (~v · ~v)

=
N

2
m
(

v2
x + v2

y + v2
z

)

=
N

2
m v2

x +
N

2
m v2

y +
N

2
m v2

z

= (KE)x + (KE)y + (KE)z

The last equality is really just a notational trick; there really does not exist
a thermodynamic or kinetic property (KE)x or (KE)y or (KE)z! The
lowercase m is mass.
The velocity is a vector so the v2 we treat casually is really a dot product.

The pressure components for the x , y , and z directions as we determined
in class are:
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px =

(

N

V

)

m v2
x =

1

V
2 (KE)x

py =

(

N

V

)

m v2
y =

1

V
2 (KE)y

pz =

(

N

V

)

m v2
z =

1

V
2 (KE)z

N is the number of particles. V is the volume of space we are considering.
From statistical mechanics (which you will learn more about in the future)
we have the relation for the special case of a fluid or state of matter with
extremely weak interactions (or no interactions):

(KE)x =
N

2 NAvogadro
RT

(KE)y =
N

2 NAvogadro
RT

(KE)z =
N

2 NAvogadro
RT

Thus,

2 (KE)x =
N

NAvogadro
RT

2 (KE)y =
N

NAvogadro
RT

2 (KE)z =
N

NAvogadro
RT

Substituting the above relations for 2 (KEx), etc. into the pressure
equations yields:

px =

(

N

V

)

1

NAvogadro
RT

py =

(

N

V

)

1

NAvogadro
RT

pz =

(

N

V

)

1

NAvogadro
RT

Recall that N
NAvogadro

is the number of moles Nmoles. Thus, the equations

for pressure become:
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px =

(

Nmoles

V

)

RT

py =

(

Nmoles

V

)

RT

pz =

(

Nmoles

V

)

RT

Here, we stop and realize that we have a x-component of pressure, a y-
component and a z-component. This is not an artificial result, as rigorously,
pressure is a tensorial property (it is a 3x3 matrix). The diagonal elements
(which we have computed) have special meaning in that they can be used to
determine the pressure as we know it. Rigorously, the scalar pressure (that
we normally measure and talk about) is determined from the trace of the
pressure tensor (or matrix). This is:

pscalar
total =

1

3
(px + py + pz)

=
1

3

(

Nmoles

V

)

(RT + RT + RT )

=

(

Nmoles

V

)

R T

pressure =

(

Nmoles

V

)

R T

This should be a more convincing argument for the equality of kinetic theory
description of fluids to that of an ideal gas.

2 Maxwell-Boltzmann Distribution of Velocities

For a collection of particles that do not interact, we recall that the ideal
gas description is sufficient to predict properties of fluids at certain limit-
ing conditions. Within such a description, the particles, of certain masses,
are considered to be moving with velocities that are distributed in a cer-
tain fashion. We now consider this distribution of velocities, starting with
the distribution of velocity in one-dimension. The generalization to three
dimensions follows.

We are concered with finding a velocity distribution function. This
mathematical description provides the probability of a particle having the
Cartesian components of velocity in the range vx + dvx, vy + dvy, and
vz + dvz .

We let the distribution function be:

3



Ω(vx, vy, vz) = f(vx) f(vy) f(vz)

With the definition of the probability density distribution above, we can
determine the probability of a particle having the components of velocity
vx + dvx, vy + dvy, and vz + dvz as:

Ω(vx, vy, vz) dvx dvy dvz = [f(vx) dvx] [f(vy) dvy] [f(vz) dvz]

Ω(vx, vy, vz) dvx dvy dvz = [f(vx) f(vy) f(vz)] dvx dvy dvz

An assumption regarding the nature of this distribution: the gas
is isotropic such that the direction of particle movement does not
affect the properties of the fluid. In this sense, the velocity distri-
bution is effectively dependent on the magnitude of the velocity.
The magnitude of the velocity is:

| ν | =
√

v2
x + v2

y + v2
z

We now consider the natural logarithm of the distribution function:

ln Ω(vx, vy, vz) = ln f(vx) + ln f(vy) + ln f(vz)

ln Ω(ν) = ln f(vx) + ln f(vy) + ln f(vz)

with

ν2 = v2
x + v2

y + v2
z

To determine f(vx), we consider the derivative of the probability function
Ω(ν) with respect to the variable vx.

• Effectively, we are interested in finding that distribution of velocities
(along the x-direction) that distributes the total kinetic energy of the
system among the available degrees of freedom in the collection of par-
ticles (recall that the internal energy of an ideal gas is only dependent
on the temperature and amount of fluid) under the constraint that the
total number of particles is constant, the volume we consider remains
constant, and the temperature is constant and thus known.

(

∂ ln Ω(ν)

∂ vx

)

vy ,vz

= d ln f(vx)
d vx

(

d ln Ω(ν)

d ν

)(

∂ ν

∂ vx

)

vy ,vz

= d ln f(vx)
d vx
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One can show that
(

∂ ν
∂ vx

)

vy ,vz

= vx

ν .

(

∂ ν

∂ vx

)

vy ,vz

=

(

∂

∂vx

(

v2
x + v2

y + v2
z

)1/2
)

vy ,vz

=
1

2
(2vx)

(

v2
x + v2

y + v2
z

)

−1/2

=
vx

ν

Using this last relation, we obtain:

(

d lnΩ(ν)

d ν

)(

∂ ν

∂ vx

)

vy,vz

=
d ln f(vx)

d vx
(

d lnΩ(ν)

d ν

)

(vx

v

)

=
d ln f(vx)

d vx
(

d lnΩ(ν)

ν d ν

)

=
d ln f(vx)

vx d vx

Since each direction is equivalent (under our assumption of isotropy of
the medium), we can write for the vy and vz differentials (and you can show
yourself independently):

(

d lnΩ(ν)

ν d ν

)

=
d ln f(vy)

vy d vy
(

d lnΩ(ν)

ν d ν

)

=
d ln f(vz)

vz d vz

Thus, the following equality is clear:

d ln f(vy)

vy d vy
=

d ln f(vx)

vx d vx
=

d ln f(vz)

vz d vz

Since the individual functions of x, y, and z are equal to one another
for all space, we can justifiably argue that each is a constant (equal in all
cases); in general we can write:

d ln f(vj)

vj d vj
=

d f(vj)

vj f(vj) dvj
= −γ for j = x, y, z

We use the negative of a positive γ in order to obtain a probability function
that is well-behaved as vj approaches ∞. The solutions for the previous
equation are:
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∫

d f(vj)

f(vj)
= −

∫

γ vj dvj

ln f(vj) = −1

2
γ v2

j

f(vj) = A e−γ v2

j /2

This last equation is the general expression of our solution; it applies to
the individual probability distributions in each direction (x,y,z) (recall we
decomposed our total distribution into a product of the three individual
distributions).

We still need to consider 2 missing elements:

• A

• γ

To determine an expression for A, we need to consider that the distribution
is normalized over the domain for which it is defined. What does this mean
operationally? Since this expression represents a probability, the sum of
the individual probabilities for each infinitesimal region of space (or in this
case, each window in ‘velocity” space) must sum to 1. Thus we have:

∫

∞

−∞

f(vj) dvj = 1 =

∫

∞

−∞

A e−γ v2

j /2 dvj

1 = 2 A

∫

∞

0
A e−γ v2

j /2 dvj

1 = A

√

2π

γ

A =

√

γ

2π

We used the property of even integrands to change the lower limit of inte-
gration. Thus, the distribution becomes:

f(vj) =

√

γ

2π
e−γ v2

j /2

To evaluate γ, we introduce from statistical mechanics (which we just
state here without proof, which is left for another course or to the individual
student):

〈

v2
x

〉

=
kB T

m
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where m is the mass of the particles. Thus,

〈

v2
x

〉

=
kB T

m
=

∫

∞

−∞

v2
x f(vx) dvx

=

√

γ

2π

∫

∞

−∞

v2
x e−γ v2

x /2 dvx

=

√

γ

2π

(

1

γ

√

2 π

γ

)

=
1

γ
m

kb T
= γ

We have thus arrived at the famous Maxwell-Boltzmann velocity dis-
tribution in one dimension:

f(vj) =

(

m

2 π kB T

)1/2

e−m v2

j /2 kB T ) =

(

M

2 π R T

)1/2

e−M v2

j /2 R T )

where mass, m, is in units of kg and molar mass, M , is in units of kg
mol

(we use the relation R = NA kB for the conversion between the forms using
m and M .

In three dimensions (Cartesian represenatation) the total distribution
becomes:

Ω(vx, vy, vz) =
∏

j=1,3

f(vj)

Ω(vx, vy, vz) =
∏

j=1,3

(

m

2 π kB T

)1/2

e−m v2

j /2 kB T )

Ω(ν) =
∏

j=1,3

(

m

2 π kB T

)1/2

e−m v2

j /2 kB T )

Example Problem 33.1 (Engel and Reid)

• Compute average velocity, 〈vx〉.
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〈vx〉 =

∫

∞

−∞

vx f(vx) dvx

=

∫

∞

−∞

vx

(

m

2 π kB T

)1/2

e−m v2
x /2 kB T ) dvx

=

(

m

2 π kB T

)1/2 ∫ ∞

−∞

vx e−m v2
x /2 kB T ) dvx

= 0

The result reflects the vectorial nature of velocity.

3 Maxwell Distribution of Speeds

We stipulated in the above discussion of the Maxwell-Boltzmann distribu-
tion that the medium defined by the particles is isotropic; that is, prop-
erties are not dependent on a direction (on internal or external gradients).
Furthermore, though we wrote Ω(ν) as a function of speed, ν, there was no
explicit dependence on speed, a non-vectorial quantity, in the final expres-
sion. With this in mind, we next consider the distribution of speeds that
emerges from the velocity distribution we derived. Again, bear in mind that
speed is not vectorial, velocity is.

Based on our earlier definition of the probability distribution based on
speed, ν, we can write now:

F (ν) dν = f(vx) f(vy) f(vz) dvx dvy dvz

=

[

(

m

2 π kB T

)1/2

e−m v2
x /2 kB T )

][

(

m

2 π kB T

)1/2

e−m v2
y /2 kB T )

]

[

(

m

2 π kB T

)1/2

e−m v2
z /2 kB T )

]

dvx dvy dvz

=

(

m

2 π kB T

)3/2

e−m (v2
x+v2

y+v2
z) /2 kB T ) dvx dvy dvz

We are almost to the point of having our expression for the speed distribu-
tion, since we can see clearly that v2

x+v2
y +v2

z = ν2. However, the differential
volume element dvx dvy dvz is the troubling part. Here we consider the idea
of change of variables from Cartesian components of velocity to a spher-
ical coordinate representation of speed.
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Thus, the volume element becomes 4 π ν2 dν after integrating over the
angular dimensions. The Maxwell speed distribution thus becomes:

F (ν) dν = 4 π

(

m

2 π kB T

)3/2

ν2 e−m ν2 /2 kB T ) dν

F (ν) dν = 4 π

(

M

2 π R T

)3/2

ν2 e−M ν2 /2 R T ) dν

Properties of this distribution include:

• At a particular temperature, there is a single maximum value of the
speed

• Despite including a Gaussian factor, the distribution is not symmetric
due to the ν2 term which introduces contributions from tail values at
higher speeds

• At higher temperatures, the distribution becomes broader (more speeds,
or translational energy levels accessible)

• At lower masses, the distribution becomes broader (more speeds are
accessible)

• Comparison of distribution for gases of different mass At same temper-
ature, kinetic theory says all gases have some energy (depends on T);
thus, heavier masses have distributions that are narrower and peaked
at lower speeds.

4 Measures of the Maxwell Distribution of Speeds

We can consider individual distributions of different gases (or even a single
gas) at different temperatures, for instance. But there are certain measures
of the distribution of speeds for a particular gas that we can consider in
order to make quick comparisons. We consider these next.

• Most probable speed, νmp

d F (ν)

d ν
=

d

d ν

(

4 π

(

m

2 π kB T

)3/2

ν2 e−m nu2/2 kB T

)

= 4 π

(

m

2 π kB T

)3/2
d

d ν

(

ν2 e−m nu2/2 kB T
)

= 4 π

(

m

2 π kB T

)3/2

e−m nu2/2 kB T

[

2 ν − mν3

kB T

]
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The maximum probability occurs when the derivative is identically 0;
we thus obtain:

2 νmp −
m ν3

mp

kB T
= 0

νmp =

√

2 kB T

m

• Average Speed

< ν > = νave =

∫

∞

0
ν F (ν) dν

= 4 π

(

m

2 π kB T

)3/2 ∫ ∞

0
ν3e−m ν2/2 kB T dν

=

(

8 kB T

π m

)1/2

=

(

8 R T

π M

)1/2

• Root-Mean-Square Speed

νrms =
[〈

ν2
〉]1/2

=

(

3kB T

m

)1/2

(1)

• Using the previous expressions for average speed and root-mean-square
speed, we obtain the following relation between the two measures of
the speed distribution:

[〈

ν2
〉]1/2

=

√

3 π

8
〈ν〉

• νrms > νave > νmp

• All measures are proportional to T 1/2 and M−1/2.

5 Collisions and Collision Frequency

5.1 Gas of Dissimilar Particles, 1 and 2

The rudimentary concept of molecular collisions will be relevant to fu-
ture discussions of reaction kinetics and mechanisms. Here we consider what
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insights kinetic theory (separate from the field of reaction kinetics) can pro-
vide.

First, consider a gas of dissimilar particles, 1 and 2. We want to estimate
the number of collisions a single particle of 1 will make with all other 2
particles. Then, we’ll consider the total number of collisions per unit of time.
Since these properties are per unit of time, they are intuitively frequencies
One of the assumptions that we will invoke is that the density is low (or
the distance between is particles is ”sufficiently” large; or the particles have
very weak ”effective” interactions). All of these assumptions can justifiably
argued and leave room for further exploration. For now, we proceed with a
simplistic model.

Consider Figure 33.13 in Engel and Reid. Here we have a particle moving
with some effective speed (which we can determine based on our earlier
discussion of measures of probability distributions of speeds; we’ll see how
to do this shortly). Consider the cylindrical volume swept out by a particle
moving with average effective speed < νeff >.

• length of the cylinder generated by particle moving for a time ∆t:
length = < νeff > ∆t

• surface area of base of cylinder A = σ = π (r1 + r2)
2

(r1 + r2) is the effective radius of the cylinder

• The volume is then Vcylinder = π (r1 + r2)
2 < νeff > ∆t =

σ < νeff > ∆t.

• The effective speed, < νeff > is determined from consideration of the
apparent speed between two particles in a collision when both have a
certain speed. We can approximate this effective speed as follows:

< νeff > =
(

< ν1 >2 + < ν2 >2
)1/2

=

[(

8 kB T

π m1

)

+

(

8 kB T

π m2

)]1/2

=

[

8 kB T

π

(

1

m1
+

1

m2

)]1/2

=

(

8 kB T

π µ

)1/2

where the reduced mass µ is defined as:

1

µ
=

m1 + m2

m1 m2
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The average effective speed, < νeff >, is determined by considering the
relative velocity of two particles traveling with veolcites ~v1 and ~v2.

~veff = ~v1 − ~v2

The magnitude of this effective velocity, the effective speed, is :

νeff =
√

~veff · ~veff

νeff =
√

(~v1 − ~v2) · (~v1 − ~v2)

The square of the effective speed is:

ν2
eff = ~veff · ~veff

ν2
eff = (~v1 − ~v2) · (~v1 − ~v2)

The average of the square of the effective speed is:

〈

ν2
eff

〉

= 〈~veff · ~veff 〉
〈

ν2
eff

〉

= 〈(~v1 − ~v2) · (~v1 − ~v2)〉
〈

ν2
eff

〉

= 〈~v1 · ~v1 − 2 ~v1 · ~v2 + ~v2 · ~v2〉
〈

ν2
eff

〉

= 〈~v1 · ~v1〉 − 2 〈~v1 · ~v2〉 + 〈~v2 · ~v2〉

Because the velocities of particle 1 and particle 2 are uncorrelated, the
average of their dot product (or projection on one another) is zero. Thus,
〈~v1 · ~v2〉 = 0.

〈

ν2
eff

〉

= 〈~v1 · ~v1〉 + 〈~v2 · ~v2〉

Thus,

√

〈

ν2
eff

〉

=
√

〈~v1 · ~v1〉 + 〈~v2 · ~v2〉
√

〈

ν2
eff

〉

=
√

〈

ν2
1

〉

+
〈

ν2
2

〉

From our discussion above concerning the relation between root-mean-square
and average speeds, we can write the last expression (which is in terms of
root-mean-square speeds really) as an expression in terms of average speeds:
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√

〈

ν2
eff

〉

=
√

〈

ν2
1

〉

+
〈

ν2
2

〉

√

3 π

8
〈νeff 〉 =

√

(

3 π

8

)

〈ν1〉2 +

(

3 π

8

)

〈ν2〉2

√

3 π

8
〈νeff 〉 =

√

3 π

8

√

〈ν1〉2 + 〈ν2〉2

〈νeff 〉 =

√

〈ν1〉2 + 〈ν2〉2

With the above definitions, we can now define the number of collisions
that a single particle will have with other particles in the cylindrical volume
in a unit of time as follows:

z12 =
N2

V

(

Vcyl

∆t

)

=
N2

V

(

σ 〈νeff 〉 ∆t

∆t

)

=
N2

V
σ

(

8 kB T

π µ

)1/2

Are the units of this property consistent?
For the collision frequency of a particle 1 with another particle 1, z11,

we have:

z11 =
N1

V
σ
√

2

(

8 kB T

π m1

)1/2

The total collisional frequency is thus:

Z12 =
N1

V
z12

Z12 =
N1

V

N2

V
σ

(

8 kB T

π µ

)1/2

Z11 =
1

2

N1

V
z11

Z11 =
1√
2
(
N1

V
)2 σ

(

8 kB T

π m1

)1/2

Note the units for the total collisional frequency; it is per unit volume.
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6 Mean Free Path

Knowing the distribution of velocities, we can determine the collision fre-
quency (as shown above). Knowing the previous two kinetic properties of a
gas, we can now consider the Mean free path, the average distance a particle
travels in between collisions. The question we are asking is:

In a unit of time, a particle travels a certain distance, along the way par-
ticipating in a number of collisions. Thus, the mean free path (the distance
travelled between collision events) is:

Mean Free Path =
〈ν〉

(z12 + z11)
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