Averages: A Simple Treatment

16th February 2010

Consider the following series of $10\left(N_{\text {data }}=10\right)$ numbers (we are being discrete:

$10,30,20,80,80,70,70,60,50,30$

What is the average of these discrete numbers? That is, what is the average value of x ?

Average $=\frac{1}{N_{\text {data }}}[(10)+(20)+(30+30)+(50)+(60)+(70+70)+(80+80)]$

Now, we can invoke the idea of a probability for each value we have to consider. This is the discrete analogue of the probability distribution function that we have considered as a continuous function. $N_{d a t a}=10$, so we bring that into the summation explicitly for each term.

$$
\text { Average }=\left[(10) \frac{1}{10}+(20) \frac{1}{10}+(30) \frac{2}{10}+(50) \frac{1}{10}+(60) \frac{1}{10}+(70) \frac{2}{10}+(80) \frac{2}{10}\right]
$$

If we consider the fractions that occur in the sum as probabilities for each discrete value of x, then the average is represented as:

$$
\text { Average }=\sum_{i=1}^{N_{\text {data }}}(\text { value })_{i} f\left((\text { value })_{i}\right)
$$

In the continuous limit, we replace the summation by an integration.

