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Chapter 1
p. 5
Robert Boyle actually worked, together with Robert Hooke, to discover the law named after him during the 17th century, not during the 19th century as the book says.  He was able to evaluate the data because of the great skill of Hooke in constructing, for its time, a highly innovative pump that allowed them to achieve a variety of pressures, which would be considered low even today.
p. 9
Below equation 1.12, the authors state “The parameters a and b take the finite size of the molecules and the strength of the attractive interaction into account, respectively.”  This is an incorrect statement; they have the meanings of the two reversed.  The parameter a represents the attractive forces and the parameter b represents the effects of the finite size of molecules.
Chapter 3

p. 50
The sentence starting “The following equations gives . . .” should read “The following equation gives . . . “
p. 50  In section 3.4, in describing phase transitions, the authors state that CP ( ( during the phase transition.  (Note that they do NOT say that the heat capacity is equal to infinity.)  Technically one cannot define a heat capacity for a system undergoing a phase transition, since a heat capacity is determined by the measurement of a temperature change upon the addition of heat.  Since no temperature change occurs upon addition of heat in a phase transition, there is no practical way to determine a heat capacity during a phase transition.  Implying the existence of a heat capacity approaching infinity is nonsensical to anyone who thinks about the situation.  The heat capacity is an undefined property for a system undergoing this process. This example illustrates the problem of using the mathematical definitions of thermodynamics too literally.  Do not fall into this trap when you work with thermodynamics; think about the physical situation carefully and do not use mathematics willy-nilly.
p. 52
The “derivation” of equation (3.37) in the text is mathematically non-rigorous. In particular, one cannot “divide” by differentials in derivations, as stated.  This mnemonic device of dividing by a differential, however, works in this case (and in many cases in thermodynamics) because the thermodynamic state functions are special, but that does not make this derivation rigorous.  If you were asked to derive a relationship on an exam or quiz, talking about dividing by a differential would be marked incorrect.  The correct way to arrive at this relationship is to start with the definition of the enthalpy:
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By equality, the partial derivative of the left side with respect to T at constant P is identical to the same partial derivative of the right side.  This gives:
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Conversion by the cyclic rule then allows one to simplify the equation to yield the result.  Note that, in a correct derivation, there is NO “dividing by” a differential.  Be careful of this when reading and when doing problems.

p. 56
The drawing of the Joule-Thomson experiment is incorrect.  In the initial configuration, the porous plug is against the right piston, as shown.  However, in the final configuration, the porous plug should be against the left piston, rather than the right piston as shown in the bottom drawing.  That is, the Joule-Thomson process pushes the gas from one side of the porous plug to the other, in the process changing the pressure from P1 to P2.

p. 57
Again, the authors divide by a differential to get equation (3.53).  This gives a correct result, but it is not a mathematically rigorous procedure.  The correct way to perform this derivation is, starting with equation (3.52), to rearrange it to this form:
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This equation has the standard form of a complete differential, so we identify the partial derivative of T with respect to P at constant H as
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Since the partial derivative on the left is the Joule-Thomson coefficient, this equation is easily rearranged to the result
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Note that this derivation involves no division by a differential, which is an undefined operation in calculus.  Be aware that there may be other “derivations” of this type throughout the text.
Chapter 4

p. 68
The discussion of units at the bottom of page 68 and top of page 69 and in Example 4.1 is confusing, at best.  Every reaction has an enthalpy of reaction expressed in a unit like kilojoules (kJ), not in units of kJ/mol.  That amount of energy depends on the specific amounts of material participating in the reaction, i.e. it is an extensive quantity.  It is inconvenient to tabulate enthalpies of reaction for each and every amount of material.  Imagine having a line for a reaction that consumes 1.0 gram of water and then next line showing the value for the identical reaction consuming 1.01 gram of water, etc.  This would be a nightmarishly long table and no matter how many entries there were, it would be incomplete!  The quantities reported in tables are intensive quantities, often on a molar basis (although they are sometimes given on a weight basis).  These tabulations have units of kJ/mol for the values of reaction enthalpies because this quantity indicates the amount of material that is the basis for the numbers in the table.  By convention, formation reactions are defined on the basis of formation of 1 mol of product.  Combustion reactions are defined on the basis of reaction of 1 mol of material with sufficient oxygen to cause complete conversion to stable oxides.  To find the enthalpy of a particular reaction having arbitrary amounts of material, one must combine by Hess’s law the appropriate proportions of these intensive values.  The unit associated with the value of the enthalpy of an arbitrary reaction is correctly just kJ, not kJ/mol (as the authors state).  For example, in Example Problem 4.1, in solution a, each value of enthalpy to the right is, in fact, multiplied by the number of mols and should be expressed as kJ. Examination of the second line shows that the authors have left out the units of the number 2, which is “mol”.  Similarly, for the other two reactions, the number 1 is not shown, but it too has the unit “mol”.  Thus, the value of the enthalpy change for each of these reactions actually has units of kJ, and therefore can be added or subtracted to find the value for the overall reaction.  Therefore, the correct unit of the answer is kJ.  Of course, since this is a reaction that converts one mol of water, it is also acceptable to say (after the fact of calculation) that the enthalpy of this reaction is 927.0 kJ/mol, where the “/mol” is appended to mean per mole of water (or for that matter, per mol of oxygen atoms, but it is not per mol of hydrogen atoms !!!!).  So, the authors are – in one sense – correct about the units of the answer, but not for the reasons they state.  The confusion, I think, lies in the failure of the authors to make a distinction between the stoichiometric number in a chemical equation and the number of moles for which the quantity associated with the equation is tabulated.  It is important to think about the process of quantifying the amounts of material participating in the reaction to avoid the confusion of asking unnecessary (and, frankly, ridiculous) questions like that in the last paragraph at the end of page 68 and top of page 69.
p. 77  Problem 4.4 is, at best, incorrectly stated and more likely naïve.  The heat of formation of any element in its common state at any temperature is, by definition, zero.  Hence, the question is nonsensical.  What was apparently intended to be asked was this:  “What is the change in enthalpy of N2(g) upon heating the gas from 298.15 K to 650 K, assuming the temperature variation of CP,m is as given in the text or your handbook.  Compare this to the enthalpy change by heating over the same range, with the assumption that the heat capacity is constant at its value at 298.15 K.”  This is what the answer book shows is being calculated.  This misstatement shows that the person who wrote the problem does not understand clearly the definition of the heat of formation.
Chapter 5

p. 86  There is a typographical error in Example Problem 5.2 and an incomplete writing of the partial derivatives.  The equation in the solution should be written as
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The extra f should not be in the equation.  In addition, a partial derivative must ALWAYS include the necessary information to inform the reader of what variable is held constant.  A similar problem is seen in the last line of this example.  The correct answer to part b should read:

“Because 
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is an exact differential.”  Note that, in each case, the proper way to write the partial derivative is to include the variable held constant.
p. 94 and p. 95
In Example Problem 5.8, the authors make the assumption that the heat taken into the surroundings is absorbed in a reversible process.  (If that were not the case, they could not calculate (Ssurroundings by dividing qsurroundings by T, the temperature of the surroundings.) This problem represents is a bipartite system composed of what they call “the system” and what they call “the surroundings.”  They show that, for an isolated bipartite system, as long as any part of a total system is subject to an irreversible process, the process for the bipartite system as a whole is irreversible, i.e. (S is negative. This is a perfectly reasonable conclusion: if any part of the process is irreversible, the whole process is irreversible.  However, think about such a process as it actually happens.  Heat is not sequentially removed from the system and then deposited into the surroundings in two distinct processes; the process is concerted and happens as a single step.  In particular, this is always true for real systems; there is no way to get around it.  We often divide up processes in the way the authors did for calculational and pedagogical convenience, even though the process actually happens in a concerted manner.  Ask yourself how you might create a system that approached this kind of thought experiment in which one part of a system acts reversibly while a second part acts irreversibly.  Is it possible to make a system in which one part acts reversibly and one part acts irreversibly, but the two parts interact to allow transfer?  Equilibrium thermodynamics avoids questions like this one by dealing only with the states after the interaction happens.
Chapter 6

p. 119
In the lines just above equation (6.31), the sentence should read “This equation takes on different forms for liquids, solids, and gases.”
p. 120
The discussion in the first paragraph should indicate to you that something strange is going on.  Whenever some variable takes on the value infinity, there is usually something unusual, as we encounter repeatedly in various areas of physical chemistry.  In this case, this applies to a state of the system that is impossible in practice to achieve, a state in which the gas occupies an infinite volume.  The value of infinity for the entropy tells one that this state can be imagined but never achieved.  Although such states cannot be achieved, we can imagine them and do calculations based on passing through them, if care is exercised in the calculations.
p. 121  The statement after equation (6.36) is correct, but it is not a derivation.  It is a verbal shortcut.  Said correctly, the free-energy difference of a reaction is
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.  Taking the derivative of both sides with respect to some variable like temperature gives the following result: 
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 which results because the derivative of a difference between two funtions is the difference of the two derivatives.  Although I did this derivation for the Gibbs energy, a little thought shows that the procedure should apply to any state-function difference.  Hence, the authors’ statement that one can substitute (G for G to produce an equation for this derivative arises.
p. 122
For a mixture, one may define the total Gibbs energy as a sum of contributions from each component: 
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, even though the Gibbs energies of the various species may depend on the amounts of other components in complex ways.  Any extensive quantity such as Gi may be written as the number of moles of material times an intensive quantity, Gm,i.  Thus, the equation can be recast as: 
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, from which the derivation follows and the identification of Gm,i as the chemical potential (i.
p. 123
The argument about ( being constant (although one is changing ni) results from the fact that it is only a function of intensive variables (such as concentrations, temperature and pressure) and the numbers of mols are being changed in such as way that the concentrations are constant.  That is the reason one may treat the chemical potential in equation (6.41) as a constant.  Changing ni without fixing the concentrations would give a potential that changes during integration, meaning one could not treat the chemical potential as a constant.  The relation that shows it is a function of intensive variables is called the Gibbs-Duhem equation, which has not been derived here.
p. 128
Once again, the authors insist on writing that the units of the solution in Example Problem 6.6 is kJ/mol, not kJ.  In Example Problem 6.7, in addition to the problem cited for Example Problem 6.6, the authors assume, without stating it clearly, that the enthalpy of reaction is independent of temperature over the range from 299.15 K to 525 K.  This is a potential source of error in calculation.  You should, when doing calculations, be as precise as possible, i.e. I expect you to take account of the temperature dependence of (Hreaction when doing such a calculation.  On page 132, the authors talk qualitatively about how this can affect what is measured.
p. 130
The statement at the top of the page is not correct.  The ratio of functions of pressures is not exactly the thermodynamic equilibrium constant, except if the gases are all ideal.  When gases are not ideal, the thermodynamic equilibrium constant is related to this ratio of pressures, but not in a direct way that reflects the nonideality of the system.  In such systems, one is forced to define various quantities to take account of nonideality in defining the thermodynamic equilibrium constant.  For sufficiently low pressures, all gases will behave close to ideal; but one should remember that the thermodynamic equilibrium constant is defined such that it is true for all systems, not just ideal ones.
Chapter 7

p. 152
In the discussion of Figure 7.2, the authors are discussing the molar volume, although they use the symbol V instead of Vm.
p. 155
The text refers to T = 425 K, but the figure shows plots for 400 K.  The qualitative statements about the trend of z versus P are correct; it is just that the text and the figure are inconsistently labeled.

p. 164  In problem P7.12, the equation is written incorrectly.  The correct equation should be:
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p. 165 In problem 7.22, the equation is incorrect.   The correct equation is:
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There should be no multiplier (i.e. 1/RT) before the derivative in the term after the first =.
Chapter 8

p. 180  Equation (8.17) is correct under the conditions that the authors specify, namely when 
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 is independent of temperature.  However, to be as precise as possible about the situation, as explained by the authors, one should include the real possibility that it depends on temperature.  The molar enthalpy of vaporization is dependent on temperature because the molar heat capacity difference for vaporization, (CP,m(T) =  CP,mgas(T) – CP.mliquid(T), is a value other than zero.   When it is not zero, the temperature dependence of the enthalpy of vaporization should be considered to define the vapor pressure at a temperature.  It can be determined by the following equation:
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from which the dependence of the vapor pressure on temperature may derived, if one knows the functional dependence of the molar heat capacity difference on temperature.  The simplest case is for a system in which the molar heat capacity difference between the gas and liquid is constant, but not zero.  You should be able to derive a form for the dependence of vapor pressure on temperature by applying what you know about thermodynamics.  It should also be obvious from this example how one would handle a situation in which the difference in molar heat capacities actually had a more complex dependence on T.  Given that the heat capacities of materials (as seen in the tables) are somewhat complex values of T one might expect that, to be precise, one has to integrate functions of T to make a prediction of how the vapor pressure depends on temperature.  As a concrete example of the fact that the molar enthalpy of vaporization may not be independent of temperature, one may quote a common empirical equation for the vapor pressure as a function of temperature, the Antoine equation:
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where A and C are constants and P 0 is the vapor pressure is at some reference temperature.  One may ask the following question:  Given a situation in which the Antoine equation accurately describes the temperature dependence of the vapor pressure, how does the molar enthalpy depend on temperature?  You should be able, with thermodynamic manipulations, to answer that question.
Chapter 9

p. 195
Equation (9.3) is true only for ideal gases.  In practice, at the pressure at which most chemistry in a laboratory is done, this approximate equation may be applied to find the chemical potential as a function of pressure.  However, in high-pressure chemistry (as one might find in an industrial reactor) equation (9.3) should not be used and the more general equations that take account of the effect of nonideality on the chemical potential should be used.

p. 211
Equation (9.46) is true only if the gases are considered ideal.  Just as the authors define the activity of the solvent in equation (9.49) with reference to the chemical potential, one may also define in a general way the activity of a gas phase by an equivalent equation to (9.49), which reduces to equation (9.46) in the limit that the gases are ideal.  The activities of nonideal gases can also be quantified in terms of the fugacities of the gases, which one sometimes sees in the literature.  These concepts are more fully explained in section 9.11, which begins on page 213.
Chapter 10

p. 224
Note that the authors define the formation enthalpy for the hydrogen ion at an activity of 1.  It turns out that the concept of activity is particularly important when dealing with systems that are far from ideality.  The authors have not discussed the concept very much in the previous chapters (for example, with respect to work done at high pressures), but in this chapter the use of the activity is a necessity, and a clear understanding of this abstract concept is essential to being able to work facilely with the mathematics of the thermodynamics of ionic solutions.  In addition, the authors point out the serious, practical problem that amounts to not being able to measure the free energy of formation of an ion of a single type in solution (because one cannot form a single ion in any practical realistic system).  Thus, we define conventions, average properties of sets of ions, etc. to be able to have useable quantities for practical work.  This adds yet another element of abstractness to this already complicated problem.  However, if you work through the details, you will find that the structure of the thermodynamics of ionic systems is logical and consistent.  The general discussion of activity of ions is given in section 10.3, after the activity of ions is mentioned here!  So, if you are confused by what an activity of 1 for a hydrogen ion is, you may wish to read section 10.3 first.
p. 225
The formation reactions for ions, because of the conventions, always apply to the reaction of the elemental material with hydrogen or hydrogen ion.  Thus, the enthalpy, entropy, and Gibbs energy of formation of an anion, Xn-, are the respective quantities of the following reaction:
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Similarly, for a cation, Mn+ the enthalpy, entropy, and Gibbs energy of formation are the respective quantities for the following reaction:
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For example, for the chloride ion, the equation (10.1) is the reaction which determines the values of the enthalpy, entropy, and Gibbs energy of formation for the chloride ion. The involvement of hydrogen and hydrogen ion in this “formation reaction” makes dealing with the thermodynamics of ions slightly more complex than dealing with the thermodynamics of nonionic systems.
p. 227
In equation (10.9), NA is Avogadro’s number.  Why do you suppose that Avogadro’s number suddenly appears in this equation, when it was not apparent in the equation above?
p. 227
In the second to last paragraph, the authors suddenly introduce the phrase “Born model.”  What do you think the “Born model” is?  It is just the simple relationship they have developed in the paragraphs above!

p. 229
In equation (10.21), the authors define the mean ionic molality, as well as several other mean quantities.  While the mean activity and mean activity coefficient are useful quantities, since one knows the molality of the solution, it is really unnecessary to define the mean ionic molality for practical work.  It is obvious that the authors simply wanted to show the applicability of the idea of defining mean quantities by defining this quantity.

p. 230
Equation (10.24) is correct, but I would say this in a manner that is consistent with our usual way of defining activities.  Let the solute be decomposed into anions and cations through dissolution, with stoichiometric coefficients of (- and (+ respectively.  The chemical potential is given as a sum of the chemical potentials of all of the components:
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Each of the activities may be replaced by the appropriate product of an activity coefficient and a concentration, which leads to the following result:
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where, in the last term, the activity coefficients of the two ions are replaced by the mean activity coefficient.  The concentration of an ionic species is 
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, for a solution of molality, m.  Comparing this to the chemical potential of other nonionic species, one sees that it has a standard-state component, then a correction for having the ions at a concentration other than the standard concentrations, and finally it has a correction for nonideality.  This is just like defining any other chemical potential.  The advantage of this method rather than the authors’ way of dividing the terms (as shown in equation (10.24)) is it is exactly analogous to the definitions of activities of nonionic materials, with the exception that one conventionally uses the mean activity coefficient in place of each separate ionic activity coefficient.  Separating out the stoichiometric coefficients and burying them in this “standard-standard”-state quantity makes the mathematics of the chemical potential of ions appear different from the mathematics of the chemical potential for other systems, but it is not.  An important part of learning is realizing that a single concept can cover a wide variety of situations. That is what knowledge is: realizing similarities to make remembering the connections among quantities that seem disparate simple.
p. 231  Equation (10.29) apparently has some problem.  Since ( should have units of m-1.  However, the right side of this equation is not dimensionally correct.  It appears that the problem is with the concentration expressed as a molality (which is mol/kg-water).  If the concentration were expressed as mol per volume, the dimensions would be correct, although there may have to be some numerical factors included.  I would use this equation with care.

p. 232
As a consequence of the previous anomaly with the definition of the screening length, equation (10.31) has incorrect units, and so probably does the equation that is at the end of this paragraph that gives ( as a function of the ionic strength.  This latter equation is also wrong in its dependence on molality.  The dimension of the factor 
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 is appropriate if one considers ( to have units of m-1, so this equation appears to be dimensionally correct.

p. 233
Equations (10.33) are correct, if one expresses the ionic strength in terms of molality.  However, this is a limiting form known as the Debye-Hückel Limiting Law (DHLL).  The more correct form is given in equation (10.34) on page 234.  This equation, which the authors call the Davies equation, is known as the Debye- Hückel-Guggenheim equation to many people.  The actual law of Debye and Hückel is the part of equation (10.34) found by neglecting the term linear in I in the square brackets.  (This linear term is an empirical addition to the Debye-Hückel equation.)  The authors never quote the actual Debye-Hückel equation, so here it is:
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where (DH has the value 1.173 at 298.15 K when the ionic strength is expressed in terms of molality.  At other temperatures, this coefficient will have different values, as it is temperature-dependent.
p.234 and p. 235   The authors persist in labeling the process like MgF2 (s) ( Mg2+(aq)  +  2 F-(aq) a dissociation, which it is.  However, the more common term for the process is dissolution, because that nomenclature indicates the obvious fact that the material moves from one phase to another while dissociating.  Dissociation is a term usually reserved for processes that occur within a single phase, such as the dissociation of chlorine gas into chlorine atoms or the dissociation of aquated acetic acid to form aquated hydrogen ion and aquated acetate ion.

Chapter 11
p. 247
The statement about (G(/n being an intensive quantity is correct, however it is not correct to say that (G( is extensive.  This can easily be seen from an examination of equation (11.26) on page 245.  In that equation, (G( is given as a sum (or difference) of chemical potentials (which are intensive quantities). n is, in fact, also intensive, since it is the number of moles of electrons transferred for a specific amount of material reacted (as indicated by the stoichiometry of the reaction).  For example, for the Daniell cell, n = 2 because on the basis of one mole of Zn reacted, two mols of electrons are transferred.  That is, n actually has units of mols of electrons per mol of material reacted, which makes it an intensive quantity.

p. 249
In equation (11.28), the result is correct. But there is potentially confusion because the unit of 2 is (see above) moles of electrons per mole of Zn (or Cu) and the unit of F is C/mol electrons.  Thus, the “mol-1” on the left is actually different from the “mol-1” on the right, inasmuch as they refer to different materials.

p. 251
In the first paragraph of section 11.8, the definition of Q should be 
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p. 251
Immediately below that, the sentence should read:  “It must be calculated from the measured mean activity a( and the definition: 
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p. 255
In the discussion about the Planté cell, the authors write the cell reaction with a doubleheaded arrow.  This is confusing because it is similar to the symbol for chemical equilibrium.  Remember that, there are two ways in which a cell can operate: (1) chemical reaction can happen spontaneously ((G < 0), in which case work is done on the surroundings; (2) one have work done on the chemical system by imposing a voltage on cell, driving the system through a nonspontaneous ((G > 0) reaction that is the reverse of that in (1).  This is all they imply by the doubleheaded arrow.
p. 256
The anode reaction for the lithium ion battery (equation (11.66)) is not balanced.  It should be written as:
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The cathode reaction is not written correctly either.  It should be:
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Of course, one does not necessary know the structure of the carbon-lithium compound, so it is often written as CLix, meaning that there can be a variety of structures of this material.  As the authors say, this is not a stoichiometric compound.

Chapter 17

p. 402  In problem 17.2, “Figure 17.5” should be “Figure 17.4”.
Chapter 33

p. 862  Equations (33.18) and (33.19) are confusing because the authors are using the symbol “dv” to mean two different things in these two equations.  In (33.18), they use “dv” to mean the total three-dimensional differential, which is often called “dv” in many other books.  (The complete differential in this case is dv   =  v2dv sin( d( d(, written in terms of the independent variables.)  On the other hand, in equations (33.19) and (33.20), that symbol is the differential only of the single variable, v, in spherical polar co-ordinates.  The integration over ( and ( of equation (33.18) yields (33.19), in which the only differential left is “dv”.
Chapter 35
p. 885  In problem 35.22, the correct value of the diffusion coefficient should be D = 1.13 (10-10 m2s-1, not 1.13(10-11 m2s-1.

Chapter 37
p.37-1 in the Solution Manual  In this problem the authors have forgotten the effect of the mediator (M) on the concentration of the intermediate.  The correct derivation is this:

At steady state:  
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This equation may be solved to give an expression for the steady-state concentration of NO3:
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The expression for the rate of formation of product is just:  
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Substitution of the steady-state concentration gives the reaction rate under these conditions:
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So, the final answer they achieve is correct, but the intermediate steps do not properly take into account the presence of the mediator.
Appendices
Appendix D

p. 1035  The answer to part b of problem 34.21 should be 3.60(1010 collisions s-1.  This answer is also incorrect in the Student’s Solution Manual.

p. 1062  The answer to question 13.2 should be 1/d1/2.
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