
CHEM-443, Fall 2013, Section 010    Student Name_______________________ 
Final Exam       December 9, 2013 
 
Directions: Please answer each question to the best of your ability. Make sure your response is legible, precise, 
includes relevant dimensional units (where appropriate), logically presented (include non-mathematical 
language if necessary to convey your intent clearly and transparently), and correct/accurate. You are free to 
use your Equations Handbook, Calculator, blunt/sharp writing instrument, and brain (your choice). If you have any 
doubt(s) about the meaning/intent of a question(s), please ask immediately so you do not wander off on an incorrect 
path! Please leave all responses to be graded on the exam sheet. Work on scratch paper will not be 
considered. For all questions (excluding multiple choice, fill in the blank, and true/false), even when ostensibly simple, 
single-value numerical values are requested, responses showing no work involved in the determination of final 
answers will be given no credit.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem Points 
1           /10 
2           /10 
3           /10 
4           /10 
5           /20 
6           /15      
7           /10 
8           /10 
9           /5 
Extra Credit           /5 
Total           /100 



1 (10 Points) Matching / Fill-In. Provide the proper response from the right column in the blanks provided in the left 
column. Keep in mind that some blanks in the left column may require multiple selections from the choices in the right 
column. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  
1. Examples of colligative properties include freezing point depression and 
critical opalescence, true or false? _________H________________ 

A a 

  
2. At the azeotropic condition for a two-phase (alpha and beta) binary 
(species A and B) system, what condition pertaining to phase 
compositions holds? ________I ________ B  
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3. For a dilute solute in a binary solution (i.e. dissolved oxygen in water), 

the solute fugacity is expressed as 


fi
liquid  solution (T,P,{x}) = xiKi

HL (T,P)
 

True or False? ___G____ 

C Gibbs-Duhem equation 

  
4. The formation of an ideal liquid solution entails what changes in total 
enthalpy and total volume? ___________S_____________ 

D less than zero 

  
5. For a 3-phase, two-component system in equilibrium, how many 
intensive degrees of freedom are available? For this question, one 
chemical component is able to partition into all 3 phases, while the second 
component equilibrates between only two of the three phases.___M____ 

E greater than zero 

  
6. 

 
The Third Law of Thermodynamics arises from the observation that as 

absolute temperature approaches zero, the _______L_______ of a pure 
fluid also must approach zero to ensure that we can obtain a non-singular 
value of entropy at T = 0 Kelvin. 

F      xA = yA; xB = (1-xB) 

  
7.  In the Van der Waals equation of state, the ____A____ parameter 
relates to the attractive interactions between particles. 

G true 

  
8. 

 
Defining the equilibrium constant in terms of reactant and product 

molar concentrations is the most general formulation of this 
thermodynamic quantity. True or False? ______H____ 

H false 

  
9. 

 
In multi-component systems, the __C___ relates individual species 

activities to one another. 
I    xA = yA; xB = (1-xA) 

  
10. 

 
Consider the solidification of liquid water introduced into an 

environment at T= -10 Celsius ; the entropy change of the water is 
negative. What can we say about the entropy change of the environment? 
______E_____ 

 
J.  µi

A (T,P) = µi
B (T,P)

  

 K ΔH = 0; ΔV = RT ln(P)  
 L heat capacity 
 M one 
 N enthalpy 
 O ΔH=RT ln(x); ΔV = RT ln(P) 
 P zero 
 Q TA=TB (T=temperature) 
 R Helmholtz Free Energy 
 S. ΔH = 0; ΔV = 0 



2. (10 Points) Much effort has been directed toward finding drugs to combat the AIDS syndrome caused 
by HIV. Thermodynamics makes a contribution to that effort by facilitating interpretation of experimental 
calorimetric titration data. Isothermal titration calorimetry (ITC) provides information about the energetics of 
the interactions between physiologically important macromolecules and small substrates (i.e. low-molecular 
weight drugs non-covalently interacting with, i.e. binding to, protein receptor targets). An example is the 
inhibitor drug Ritonavir binding to a polypeptide cleaving site of HIV-1 protease (a protease is a protein that 
cleaves peptide bonds) shown in Figure 1. (The binding of the drug in the binding site prevents the 
cleavage of the viral polypeptide chain into functionally active proteins the virus needs to propagate, Figure 
1, right panel).  

 
The ITC method is based on measuring the incremental amounts of heat requiring removal from or addition 
to a solution of the macromolecule as small amounts of the ligand (i.e., the small molecule) are added over 
time. In the simplest practical scenario, the reversible binding “reaction” is pictured as: 
 

€ 

Protein (P) +  Ligand (L) KB← → $  Protein : Ligand (PL) 
 
By assuming that there is a single binding site, one can derive relationships between the enthalpy of 
binding at standard conditions (

€ 

ΔHo ), the binding constant, KB, and the number of binding sites (in this 
case taken to be 1 binding site). 
 
For the HIV-1 protease system, binding constants from ITC measurements at 25 Celsius are shown in 
Table 1. The enthalpies of binding, from the same set of experiments, are also shown. Determine the 
associated changes in Gibbs free energy and entropy for the various drugs.  
 
 Ritonavir Saquinavir Nelfinavir Indinavir 
∆HO (kcal/mol) -3.70 1.90 2.60 2.10 
KB 22.65 19.97 19.30 20.13 
∆GO (kcal/mol) -1.85 -1.78 -1.76 -1.78 
∆SO (kcal/mol-K) -0.0062 0.013 0.015 0.013 
Binding enthalpy data from: Luque et al. PROTEINS: Structure, Function, Genetics. 49:181-190. 2002. 
Binding constant data from:  Valezquez-Campoy et al. Archives of Biochemistry and Biophysics. 390:169-
175. 2001. 
 
Solution: 

ΔGo = −RT ln(KB ) = −(0.00199 kcal
mol  K

)(298K )ln(22.65) = −1.85kcal /mol

ΔSo = ΔH
o −ΔGo

T
=
−3.70kcal /mol − (−1.85kcal /mol)

298K
=
−1.85kcal /mol

298K
= −0.0062

 

	
   	
   	
  
Figure 1. (left) HIV-1 protease and a small-molecule inhibitor. (Right) The HIV viral life cycle showing 
the junction where inhibition of the protease is targeted in order to shut down viral propagation. 



Repeat calculations for all drugs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. (10 Points) An ideal Carnot engine, with an efficiency η = 0.40, operates using 0.5 kilomoles of an ideal 
diatomic gas as the working substance. During the isothermal expansion stage, the pressure of the gas 
decreases to half of the maximum pressure on the cycle. At the end of the adiabatic expansion stage, the 
pressure of the gas is 9 atm and its volume is 2 m3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A. Calculate the heat absorbed from the high temperature reservoir during the isothermal expansion stage 
of the cycle. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



B. Calculate the work done by the gas during each of the 4 stages of the cycle. 
 

 
 
 
C. Calculate the entropy changes for each of the 4 stages of the cycle. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



4 (10 Points) Consider a rubber band of length L maintained at a tension f. The total differential of the 
extensive internal energy of the rubber band comprised of n moles of material is: 
 

€ 

dU = T dS + f dL + µ dn  
 
where U is the extensive internal energy, T is the temperature, S is the extensive entropy, f is the tension, L 
is the length, 

€ 

µ  is the chemical potential of the rubber band, and n is the number of moles of material. The 

equation of state (EOS) of this system is 

€ 

U =
θS2L
n2 . Derive the Gibbs-Duhem relation for this system. 

Recall that the Gibbs-Duhem relation is the total Legendre Transform of internal energy, U. 
 
Solution: 
dU = TdS + fdL +µdn
Thus
U = TS + fL +µn
The Gibbs-Duhem relation is the total Legendre Transform of U:
U −TS − fL −µn = 0
TdS + fdL +µdn−TdS − SdT − fdL − Ldf −µdn− ndµ = 0
−SdT − Ldf − ndµ = 0
or
SdT + Ldf + ndµ = 0
The last two equations are expressions of the Gibbs-Duhem relation for this system

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. (20 Points) Consider the binary system composed of acetonitrile(1) and nitromethane(2). This system 
forms ideal vapor and liquid mixtures.  
 

	
  
 

At thermodynamic conditions where the liquid mixture is in equilibrium with the gas mixture: 
 
A. How many independent intensive variables (degrees of freedom) are available? 
 
 
 
 
 
 
 
B. At a total pressure, PTotal = 70 kPa, and liquid composition of x1 = 0.5156, what are the temperature and 
vapor phase composition, again considering that vapor and liquid phases are in equilibrium. The 
following information may be helpful. 
 
Temperature in Celsius and pressure in kilopascal (kPa) for the following equations. 
 

€ 

ln P1
saturation =14.2724 − 2945.47

T +224.0

ln P2
saturation =14.2043− 2972.64

T +209.0

 

 
 
 
 
Solution: 
This question asks for the temperature at the given pressure and liquid-phase composition. This will be an 
iterative solution, since the temperature enters non-linearly into the analysis via the relations for the 
saturation pressures given above. Keep in mind that the vapor is an ideal gas mixture and the solution is 
ideal, thus following Raoult’s expression. 
 
 
 
 
 
 
 
 
 



 
 
 
Iteration Procedure: 

1. Pick initial temperature 
2. Compute α12 (equation B) 
3. Compute P2(saturation) (equation C) 
4. Compute T using inverted saturation pressure relations 
5. Compute new α12 and P2 (saturation) using equations B and C 
6. Iterate until convergence 

 
Results of Iterations 

 
 
 
 
Vapor phase composition: 

 



6. (15 Points) This problem addresses a simple model for the adsorption of particles in a gaseous phase 
onto a solid surface. This is one way to develop the Langmuir Adsorption Isotherm from a microscopic view 
of matter. Consider a surface having a total of ‘A’ binding sites. We are interested in ‘N’ particles adsorbing 
onto the surface (adsorption is non-covalent interaction of a particle with a surface binding site). For this 
problem, we will consider that the adsorbing particles do not interact with one another.  
 
A (10 Points) Determine an expression for the entropy associated with ‘N’ particles adsorbed onto a 
surface having a total of ‘A’ binding sites. Consider that N is less than or equal to A. Cast your final 

expression for S
AkB

 in terms of fractional surface coverage, θ =
N
A

. Also consider the thermodynamic limit 

where N∞ and A ∞, with θ =
N
A

still bound to finite values. Useful relations may be: 

S
kB
= ln(W );    Binomial Coefficient, W(n,k) = n!

k!(n− k)!
,  0 ≤ k ≤ n

Stirling 's Approximation :
ln N!( ) = N lnN − N

 

 
Solution: 
S = kB ln(W )
S
kB
= ln(W ) = ln A!

N!(A− N )!
"

#
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'= ln(A!)− ln(N!)− ln((A− N )!)

= A ln(A)− A{ }− N ln(N )− N{ }− (A− N )ln(A− N )− (A− N ){ }
= A ln(A)− N ln(N )− (A− N )ln(A− N )
= A ln(A)− ln(A− N )[ ]− N ln(N )− ln(A− N )[ ]
S
AkB

= ln(A)− ln(A− N )[ ]− N
A
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= ln A
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= −θ ln(θ )− (1−θ )ln(1−θ )

 

 

B (5 Points) What numerical value of θ =
N
A

 maximizes the surface entropy? Show all work necessary to 

arrive at your answer. 
Solution: 
 
dS
dθ

= 0    Maximizes entropy

dS
dθ

= − ln(θ ) -1+ln(1-θ )+1=0

0 = ln 1−θ
θ

"

#
$

%

&
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1= 1−θ
θ

2θ =1
θ = 0.5

 

 
 



7. (10 Points) For the following process at T = -10 Celsius and P = 1 bar (constant T and P) in which water 
spontaneously and completely freezes, determine an expression for the entropy change for water. State 
any assumptions you make. For constant pressure or constant volume heat capacities used, please 
indicate what phase of the material the property is associated with. Also, please indicate the definition of 
any changes in thermodynamic properties you incorporate into your expression. 
 
 

H2O(liquid,  T = −10oC,  P =1 bar)→H2O(solid,  T = −10oC,  P =1 bar)  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 (10 Points) A traditional property of medicinal compounds used to assess the ability of molecules to 
transfer between phases (i.e., aqueous to hydrophobic as involved in partitioning from outside to inside of 
cells) is the oil/water partition coefficient. This coefficient models the following equilibrium: 
 

Solute (oil,T,P, xsolute
oil )⇔ Solute (water,T,P, xsolute

water )  
 

The partition coefficient is Koil
water (T ) = xsolute

water

xsolute
oil . We are given for a particular compound that at T=300K, the 

partitioning process between water and oil involves Δso = −50 cal (mol  K)−1 and Δho = 0 . 
 
 
A. What is Δµo at T=300K? 
 
Δµo = Δho −TΔso = 0− (300K )(−50cal /mol  K ) =15kcal /mol  
 
 
 
B. What is the partition coefficient at T=300K? 
 
ΔGo = Δµo = −RT ln(K )

K = exp −Δµo

RT
#

$
%

&

'
(= exp

−15kcal /mol
(0.00199kcal /molK )(300K )
#

$
%

&

'
(=1.2x10−11

 

 
 
Since the entropy change for this molecule is so large and negative, the partition coefficient is very small. 
The free energy for partitioning is positive, thus driving the partition coefficient (equilibrium constant) to a 
small value. 
 
 
 
 
C.  Estimate the partition coefficient at T=320K? State any assumptions you make. 
 
d lnK
dT

!

"
#

$

%
&=

−Δho

R
dT
T 2 = 0  

 
 
Assuming the enthalpy of partitioning is very weakly temperature dependent over this temperature range. 
 
Thus, 
 
K=1.2x10-11 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
9 (5 Points) Find the molecular weight of a compound that has a weight concentration of 1.2 grams/L in 
solution and an osmotic pressure of 0.2 atm at T=300K. 
 
 
 
 
 
Π =CRT

=
n
V
RT = w

(V )(MW )
RT = 1.2gram

L
RT
MW

MW =
1.2RT
Π

=
1.2(gr / L)(0.08206L − atm /molK )(300K )

0.2atm
=147gr /mol

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Extra Credit (5 Points) For a second order phase transition, the molar enthalpy, entropy, and volume for a 
pure fluid are continuous functions through the phase change. Thus, like the equality of chemical 
potentials of a pure fluid in the coexisting phases for a first-order transition, one can write the equality of the 
molar volume, enthalpy, and entropy of the two phases (denote them 

€ 

α and β ) along the coexistence line 
for such fluids. Consider the equality of molar volume for this problem. Based on the above information, 
determine a relation analogous to the Clausius-Clapeyron equation that relates the slope along the 

coexistence line, 

€ 

dP
dT

 to the coefficient of thermal expansion and isothermal compressibility of the 

coexisting phases of the fluid. Recall that molar volume, a state function, can be expressed in terms of 
state variables such as temperature and pressure; that is, Vm = Vm(T,P). Thus, its total differential can be 
expressed as: 
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dVm (T,P) =
∂Vm (T,P)
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