Guidance: Please answer each question to the best of your ability. Make sure your response is legible, precise, includes relevant dimensional units (where appropriate), logically presented (include non-mathematical language in addition to mathematical language if necessary to convey your intent clearly and transparently), and state all assumptions you invoke. You are free to use your Equations Handbook, calculator, and writing instrument of your choice. If you have any doubt(s) about the meaning/intent of a question(s), please ask immediately so you do not wander off on an incorrect path. Please do not ask your colleague to borrow their Handbook or calculator or writing instrument.

1	$/ 20$
2	$/ 20$
3	$/ 20$
4	$/ 20$
5	$/ 5$
Extra Credit	$/ 100$
Total	

1 (20 Points). Since enthalpy is a state function, it can be written as a function of the state variables temperature (T) and pressure $(P), H(P, T)$. Thus, the total differential of enthalpy of a substance (solid, liquid, gas) can be expressed as:

$$
d H(P, T)=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P
$$

The constant pressure heat capacity of a substance is defined as $C_{P}(T)=\left(\frac{\partial H}{\partial T}\right)_{P}$. Consider a 143.0 gram sample of graphite heated from 300 K to 600 K at constant pressure conditions. The variation of graphite's molar heat capacity with temperature over this temperature range is given by:

$$
C_{P, \text { molar }}(T)=-12.19+0.1126 T-0.0001947 T^{2}+1.919 \times 10^{-7} T^{3}-7.800 \times 10^{-11} T^{4}
$$

1A. Compute numerical values for $\Delta \mathrm{H}$ and q_{P} for this process.
Given: graphite (solid carbm); constant pressure heating; $C_{p, m}(T)$ given

$$
\begin{aligned}
& \Delta H: \quad \underline{d H(P, T)}=\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial \rho}\right)_{T} d P=\underline{\left(\frac{1 H}{\partial T}\right)_{\rho} d T \quad\binom{\text { Since }}{\text { SP } P=0}} \\
& \Delta H=\int_{T_{1}}^{T_{2}} d H(P, T)=\int_{T_{1}}^{T_{2}}\left(\frac{\partial H}{\partial T}\right)_{P} d T=\underline{\int_{T_{1}}{ }^{T_{2}} n C_{P, n}(T) d T} \\
& \Delta H=\eta \int_{T_{1}}^{T_{2}}\left[-12.19+0.1126 T-0.0001947 T^{2}+1.919 \times 10^{-7} T^{3}-7.8 \times 10^{-11} T^{4}\right] d T \\
& \Delta H=n\left[-12.19 T+\left(\frac{1}{2}\right)(0.1126) T^{2}-\left(\frac{1}{3}\right)(0.0001947) T^{3}+\left(\frac{1}{4}\right)\left(1.919 \times 10^{-7}\right) T^{4}-\left(\frac{1}{5}\right)\left(7.8 \times 10^{-11}\right) T^{5}\right]_{T}^{T} \\
& T_{1}=300 \mathrm{~K} ; \quad T_{2}=600 \mathrm{~K} ; \quad n=\frac{143.0 \mathrm{~g}}{12 \mathrm{gr/hole}} \\
& \Delta H=46.9 \mathrm{~kJ}
\end{aligned}
$$

We know that: $d u=d q-\rho_{\text {xt t }} d V \Rightarrow d q=d U+\rho_{\text {ext }} d V$

$$
d t=d\left(u+\rho_{e+t} v\right)
$$

assuming reversible heating:

$$
\begin{aligned}
& \text { reversible heating: } \\
& d q_{p}=d(u+\rho v)=d H \quad \cdot \quad q_{p}=\Delta H
\end{aligned}
$$

2 (20 Points). Consider a Carnot Engine (with ideal gas as fluid) operating cyclically and reversibly between 4 equilibrium states. The cycle consists of an isothermal expansion from state 1 to state 2 at temperature $\mathrm{T}_{\text {Hot }}$; an adiabatic expansion from state 2 to state 3 ; an isothermal compression from state 3 to state 4 at temperature $T_{\text {Cold }}$; and a final adiabatic compression from state 4 to state 1.

2A. For each leg of the cycle, compute $\int_{?}^{?} \frac{d q_{\text {reversible }}}{T}$. You will have to determine the limits of integration based on the information given and your knowledge of thermodynamics and the Carnot Cycle (Carnot Engine).

From 2A, we have:

$$
\oint \frac{d q_{\text {rev }}}{T}=n R \ln \left(v_{2} / v_{1}\right)+n R \ln \left(v_{4} / v_{3}\right)
$$

Recall! for adiabatic, reversible process $(2 \rightarrow 3 \& 4 \rightarrow 1)$

So 1. $\oint \frac{d q_{n v v}}{T}=n R \ln \left(v_{2} / v_{1}\right)+n R \ln \left(v_{4} / v_{3}\right)$

$$
\begin{aligned}
& =n R \ln \left(v_{2} / v_{1}\right)-n R \ln \left(v_{3} / v_{4}\right) \\
& =n R \ln \left(v_{2} / v_{1}\right)-n R \ln \left(v_{2} / v_{1}\right)
\end{aligned}
$$

$$
=0
$$

seems like $\frac{\text { dqrev }}{T}$ is a State function

$$
\begin{aligned}
& P_{2} V_{2}^{\gamma}=P_{3} v_{3}^{\gamma} \quad P_{4} V_{4}^{\gamma}=\rho_{1} v_{1}^{\gamma} \quad\left(\gamma \equiv c_{p} / c_{v}\right) \\
& \frac{P_{2} V_{2}^{\gamma}}{P_{1} V_{1}^{\gamma}}=\frac{P_{3} V_{3}^{\gamma}}{P_{4} V_{4}^{\gamma}} \Longrightarrow\left(\frac{V_{2}}{V_{1}}\right)^{\gamma}=\left(\frac{P_{1} P_{3}}{P_{2} P_{4}}\right)\left(\frac{V_{3}}{V_{4}}\right)^{\gamma} \\
& =\left(\frac{n R T_{H} n R T_{c} V_{2} V_{4}}{V_{1} V_{3} n R T_{+1} n R T_{c}}\right)\left(\frac{V_{3}}{V_{4}}\right)^{\gamma} \\
& \left(\frac{v_{2}}{v_{1}}\right)^{\gamma}=\left(\frac{v_{2} v_{4}}{v_{1} v_{3}}\right)\left(\frac{v_{3}}{v_{4}}\right)^{\gamma} \\
& \therefore\left(\frac{v_{2}}{v_{1}}\right)^{\gamma-1}=\left(\frac{v_{3}}{v_{4}}\right)^{\gamma-1} \\
& \therefore \frac{V_{2}}{V_{1}}=\frac{V_{3}}{V_{4}}
\end{aligned}
$$

3 (20 Points). An automobile tire contains air at 225000 Pa pressure and temperature of 25 C . The stem valve is removed and air flows out adiabatically against a constant external pressure of 1 bar. The final pressure of the air is 1 bar. What is the final temperature? For air, the molar constant volume heat capacity is 2.5 R where R is the ideal gas constant. Please state any assumptions) you invoke.

Given: ideal gas; $\quad P_{i}=225 \times 10^{\circ} \mathrm{Pa} ; \quad T_{i}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}$
$P_{\text {ext }}=1$ bar $P_{f}=1$ bar; adiabatic
1^{S+} "Law": $\quad d u=d q+す w=d w$

$$
\begin{aligned}
& C_{V} d T=-P_{\text {ext }} d V \\
& { }^{n} C_{\text {valobe }} d T=-\int_{\text {ext }} d V \\
& \text { Sext }=\text { constant } \\
& \therefore \quad n C_{u, \text { mover }}\left(T_{f}-T_{i}\right)=-\rho_{\text {ext }}\left(U_{f}-V_{i}\right) \\
& n C_{v, \text { solar }}\left(T_{f}-T_{i}\right)=-P_{\text {ext }}\left(\frac{n R T_{f}}{P_{f}}-\frac{n R T_{i}}{P_{c}}\right) \\
& 2.5\left(T_{f}-T_{i}\right)=\left(\frac{-P_{\text {ext }}}{P_{f}}\right)\left(T_{f}\right)+\left(\frac{P_{\text {int }}}{P_{i}}\right) T_{i} \\
& \text { 2.S } T_{f}-2.5 T_{i}=\left(-\frac{1 \mathrm{bar}}{1 \operatorname{Sar}}\right) T_{f}+\left(\frac{1 \text { bar }}{22 r \times 10^{3} P_{a}}\right)(-) T_{i} \\
& 3.5 T_{f}=2.5 T_{i}+\left(\frac{1 \text { bar }}{225 \times 10^{3} P_{a}}\right)\left(\frac{P_{a}}{b_{a r}}\right) T_{i} \\
& T_{f}=\frac{1}{3.5}\left[25 T_{i}+\left(\frac{1 \mathrm{bar}}{225 \times 10^{3} \mathrm{~Pa}}\right)\left(\frac{10^{5} \mathrm{~Pa}}{1 \mathrm{bar}}\right) \bar{T}_{i}\right] \\
& =\frac{1}{3.5}\left[T_{i}\left(2.5+\frac{100}{225}\right)\right] \\
& T_{f}=0.841 T_{i}=250.8 \mathrm{~K}
\end{aligned}
$$

4 (20 Points) In class, we showed that the ideal Carnot efficiency is $\eta_{\text {Carnot }}=1+\frac{q_{C}}{q_{H}}$. Show how we can arrive at an expression that is a function of temperatures T_{C} and T_{H} only (the final form will include constant numerical values).

$$
\eta_{\text {carnot }}=1+\frac{q_{c}}{q_{H t}}
$$

$$
\begin{aligned}
& q_{c}=n R T_{c} \ln \left(v_{4} / v_{3}\right) \\
& q_{H}=n R T_{H} \ln \left(v_{2} / v_{1}\right)
\end{aligned}
$$

Recalling exam problem 2B:

$$
\begin{aligned}
& P_{2} V_{2}^{\gamma}=P_{3} V_{0}^{\gamma} \\
& P_{1} V_{1}^{\gamma}=P_{4} V_{4}^{\gamma}
\end{aligned}
$$

Taking ratio of these 2 equations:

$$
\begin{aligned}
\left(\frac{V_{2}}{V_{1}}\right)^{\gamma} & =\left(\frac{P_{1} P_{3}}{P_{2} P_{4}}\right)\left(\frac{V_{3}}{V_{4}}\right)^{\gamma} \\
& =\left(\frac{n R T_{H} n R T_{c} V_{2} V_{4}}{n R T_{H} n R T_{c} V_{1} V_{3}}\right)^{\gamma}\left(\frac{V_{3}}{V_{4}}\right)^{\gamma} \\
& =\left(\frac{V_{2} V_{4}}{V_{1} V_{3}}\right)\left(\frac{V_{3}}{V_{4}}\right)^{\gamma} \\
\therefore \quad\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1} & =\left(\frac{V_{3}+\gamma-1}{V_{4}}\right)^{\gamma} \Longrightarrow \frac{V_{2}}{V_{1}}=\frac{V_{3}}{V_{4}}
\end{aligned}
$$

So!

$$
\begin{aligned}
& \eta_{\text {carnot }}=1+\frac{q_{c}}{q_{+}}=1+\left(\frac{n R}{n R^{-}}\right. \\
& \eta_{\text {carnot }}=1-\frac{T_{c}}{T_{1+}}
\end{aligned}
$$

4B. If an automobile engine burns gasoline at a temperature of 1089 K and the ambient temperature is 294 K , what is the theoretical maximum Carnot efficiency of this particular engine?

5 (20 Points) Short answers
A. For differential heat interactions, $d q_{\text {irreversible }}<d q_{\text {reversible }}$: True or False

B. For differential work interactions, $d w_{\text {irreversible }}<d w_{\text {reversible }}$: True or False

C. In a system composed of 3 ideal gases with mole fractions y_{1}, y_{2}, y_{3}, and maintained at total constant pressure P (and temperature T), what is the partial pressure of each species?

$$
P_{1}=y_{1} \rho ; P_{2}=y_{2} \rho ; P_{3}=y_{2} \rho
$$

E. For a function, $G(n, P, T)$, provide an expression for the total differential of $G(n, P, T)$ in terms of appropriate partial derivatives. Make sure to specify what is held constant in each partial derivative using proper notation.

$$
d G(n, P, T)=\left(\frac{\partial G}{\partial n}\right)_{\rho, T} d n+\left(\frac{\partial G}{\partial T}\right)_{\rho, n} d T+\left(\frac{\partial G}{\partial P}\right)_{T, n} d P
$$

If

$$
d \mu(P, T)=\left(\frac{\partial \mu}{\partial T}\right)_{P} d T+(n R T) d(\ln P)
$$

what is $\mu\left(P_{2}, T\right)-\mu\left(P_{1}, T\right)=$?

$$
d \mu(P, T)=\left(\frac{\partial \mu}{\partial T}\right)_{p} d T+n R T d(\ln P)
$$

$\mu\left(P_{2}, T\right)-M(P, T)=\Delta M \subset$ constant temperature

$$
\begin{aligned}
& d M=n R T d(\ln P) \\
& \int d \mu=\mu_{2}\left(p_{3} T\right)-\mu\left(P_{1} T\right)=n R T \ln \left(\frac{p_{2}}{P_{1}}\right) \\
& \Delta M=n R T\left(\ln P_{2}-\ln P_{1}\right)
\end{aligned}
$$

