Directions: Please answer each question to the best of your ability. Make sure your response is legible, precise, includes relevant dimensional units (where appropriate), logically presented (include non-mathematical language if necessary to convey your intent clearly and transparently), and correct/accurate. You are free to use your Equations Handbook, Calculator, and blunt/sharp writing instrument. If you have any doubts) about the meaning/intent of a questions), please ask immediately so you do not wander off on an incorrect path!

1. (5 Points) Consider pressure, P, is a function of a system's volume, V, the system temperature, T, and amount of material (moles) present, N , as:

$$
P(N, V, T)=\frac{N R T}{V}
$$

Treat R as a constant. Evaluate the following integral related to the absolute value of the reversible work for a change in system volume from V_{1} to V_{2} when temperature is fixed for a closed system:

Given:

$$
P(N, v, T)=\frac{N R T}{v}
$$

$$
R=\text { constant }
$$

$R=$ constant
$T=$ constant (fixed)
$N=$ constant (closed system)

1a. (1 Point). What are possible units for the quantity you analyzed in Part 1? Give specific units, not just the type, ie., not "time", or "distance", but units that are more precise and specific.

$$
\text { Joules or Joules/mde or (Newton-meter) of } \ldots . .
$$

2. Consider the following relation for pressure, $\mathrm{P}(\mathrm{N}, \mathrm{V}, \mathrm{T}): P(N, V, T)=\frac{N R T}{V-N b}-\frac{N^{2} a}{V^{2}}$ with N, R, a, and b taken as constants for this problem.

Evaluate:
2a. (2 Points)

2b. (2 Points)

$$
\begin{aligned}
& \left(\frac{\partial P(N, V, T)}{\partial T}\right)_{V}=\frac{N R}{V-N b} \\
& \left(\frac{\partial P(N, V, T)}{\partial V}\right)_{T}=\frac{\partial}{\partial V}\left(N R T(V-N b)^{-1}-\frac{\partial}{\partial V}\left(N^{2} a V^{-2}\right)_{T}\right.
\end{aligned}
$$

$$
=N R T(-1)(v-N b)^{-2}(1)+2 N^{2} a V^{-3}
$$

$$
=\frac{-N R T}{(V-N b)^{2}}+\frac{2 N^{2} a}{V^{3}}
$$

$$
\begin{aligned}
& \left|W_{\text {reversible }}\right|=\left|\int_{V_{1}}^{V_{2}} P(N, V, T) d V\right|
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\left|W_{R T} \int_{V_{1}}^{V_{2}}\left(\frac{V}{v}\right) d V\right| \quad\left|W_{R_{R}}\right|=\left|\operatorname{NRT} \ln \left(\frac{V_{V}}{V_{1}}\right)\right| \\
=\mid
\end{array} \\
& =\left|N_{N T} \int_{V_{1}}^{V_{2}} \frac{d V}{v}\right| \\
& \text { note absolute value sign! }
\end{aligned}
$$

\qquad
Quiz 2 September 16, 2016
1 (2 Points) The Debye model of solids is a useful theoretical model from which to extract the temperature dependence of specific heats at temperatures approaching absolute zero. The specific heat predicted by Debye's model depends on temperature in the following manner:

$$
C=\frac{d U}{d T}=\frac{16 \pi^{5} k_{B}{ }^{4}}{5 h^{3} c_{s}{ }^{3}} T^{3}
$$

where h, c_{s}, k_{B} are constants, and T is absolute temperature. What is the limiting value of specific heat in the limit of $\mathrm{T} \rightarrow 0$ Kelvin? (Note: for solids, constant pressure and constant volume heat capacities will be very similar numerically).

$$
\alpha=\left(\frac{16 \pi^{5} k_{\Omega}^{4}}{5 h^{3} c_{s}^{3}}\right)
$$

From given infos

$$
\lim _{T \rightarrow 0} C_{P}=\lim _{T \rightarrow 0} C_{V}=\lim _{T \rightarrow 0}\left(\alpha T^{3}\right)
$$

2. (2 Points) Provide the correct answer from the right-hand column that completes the left-hand column.

3A (4 Points) For a gas described by the Van der Walls Equation of State (EOS), what amount of work is done during a reversible, isothermal expansion of the gas from V_{1} to V_{2} ? Be careful and watch your sign convention. No numerical value is needed for this question, just the final equation one obtains in terms for the total work.
under Weals EOS!
$p=\frac{n R T}{(v-n b)}-\frac{a n^{2}}{v^{2}}$

$$
\pm w=-P_{\text {ext }} d V
$$

$$
P_{\text {ext }}=P
$$

$T=$ constant

$$
\begin{aligned}
& d \omega=-\left[\frac{n R T}{(V-n b)}-\frac{a n^{2}}{V^{2}}\right] d V \\
& W=-\int_{V_{1}}^{V_{2}}\left(\frac{n R T}{(V-n b)}-\frac{a n^{2}}{V^{2}}\right) d V \\
& \omega=-n R T \ln \left(\frac{V_{2}-n b}{V_{1}-n b}\right)+a n^{2}\left[\frac{-1}{V_{2}}-\frac{-1}{V_{1}}\right] \\
& \omega=-n R T \ln \left(\frac{V_{2}-n b}{V_{1}-n b}\right)+a n^{2}\left[\frac{1}{V_{1}}-\frac{1}{V_{2}}\right]
\end{aligned}
$$

3B. (2 Points) For a gas described by the Ideal Gas Equation of State (EOS), what amount of work is done during a reversible, isothermal expansion of the gas from V_{1} to V_{2} ? Be careful and watch your sign convention. No numerical value is needed for this question, just the final equation one obtains in terms for the total work.

Directions: Please answer each question to the best of your ability. Make sure your response is legible, precise, includes relevant dimensional units (where appropriate), logically presented (include non-mathematical language if necessary to convey your intent clearly and transparently), and correct/accurate. You are free to use your Equations Handbook, Calculator, and blunt/sharp writing instrument. If you have any doubts) about the meaning/intent of a questions), please ask immediately so you do not wander off on an incorrect path!

1. (6 Points) Given below is the pressure-volume ($P-V$) diagram for a cyclical process involving an ideal gas. There are 4 stages of this cycle. The arrows indicate the direction of each stage of the cycle. All stages are reversible. Points $1,2,3,4$, as well as all intermediate points along the curves are equilibrium states. The stages from points $2 \rightarrow 3$ and points $4 \rightarrow 1$ are adiabatic. Obtain expressions for the heat and work interactions involved in each of the 4 stages: $q_{12}, q_{23}, q_{34}, q_{41}, w_{12}, w_{23}, w_{34}, w_{41}$.

This is a famous cycle, the Carnot Cycle. Stage $1 \rightarrow 2!\quad P_{1}, V_{1}, T_{1} \rightarrow P_{2}, V_{2}, T_{1} \therefore$ Isothermal!

$$
d u^{i g}(T)=C_{v}(T) d T=C_{v} d T ; d T=0 \quad \therefore \Delta U=
$$

$$
\text { So: } \begin{aligned}
d q_{12} & =-d \omega_{12}=+n R T_{1} d(\ln v) \\
q_{12} & =-\omega_{12}=n R T_{1} \int_{V_{1}}^{v_{2}} d(\ln V)=n R T_{1} \ln \left(\frac{v_{2}}{v_{1}}\right)
\end{aligned}
$$

Stage $2 \rightarrow 3: \quad P_{2} V_{2}, T_{1} \rightarrow P_{3}, V_{3}, T_{3}$
Not Isothermal, but we are told it is Adiabatic.

$$
\therefore \quad q_{23}=0 \quad \text { Adiabatic. }
$$

$$
d U=d \omega ; d U=C_{v} d T \text { for ideal gas }
$$

$$
\Delta u=W=\int_{T_{1}}^{T_{3}} C_{v} d T=C_{v}\left(T_{3}-T_{1}\right)
$$

Stage $3 \rightarrow 4:$ Isothermal $\rightarrow d U=0$ for ideal gas

$$
\begin{aligned}
\therefore \quad t q_{34} & =-t W_{34}
\end{aligned}=p d V
$$

Stage $4 \rightarrow$ 1: Adiabatic $\rightarrow \quad q_{41}=0$

$$
d w_{41}=d U_{41}=C_{v} d T \Rightarrow W_{41}=C_{v}\left(T_{1}-T_{3}\right)
$$

2 (2 Points) Consider a process that occurs adiabatically and irreversibly, and takes a system from equilibrium state ($\mathrm{P} 1, \mathrm{~V} 1, \mathrm{~T} 1$) to equilibrium state ($\mathrm{P} 2, \mathrm{~V} 2, \mathrm{~T} 2$). What is the internal energy change, ΔU, for this process? Recall that for state functions such as $f(x, y)$, the total differential of $f(x, y)$ can be written as

$$
d f(x, y)=\left(\frac{\partial f}{\partial x}\right)_{y} d x+\left(\frac{\partial f}{\partial y}\right)_{x} d y
$$

Recall that

$$
C_{V}(T)=\left(\frac{\partial U}{\partial T}\right)_{V} \text { and one can consider }-\eta_{J}(T) C_{V}(T) \equiv\left(\frac{\partial U}{\partial V}\right)_{T}
$$ $C_{V}(T), \eta_{J}(T)$, and integral notation.

$$
\begin{aligned}
d u(T, V) & =\left(\frac{\partial u}{\partial T}\right)_{v} d T+\left(\frac{\partial u}{\partial V}\right)_{T} d V \\
& =C_{V}(T) d T-\eta_{J}\left(T C_{V}(T) d V\right.
\end{aligned}
$$

Δu

$$
\int_{T_{1}}^{T_{2}} C_{V}(T) d T-\int_{V_{1}}^{V_{2}} \eta_{\sigma}(T) C_{V}(T) d V
$$

3 (2 Points) Consider two processes involving an ideal gas. In one case, the system undergoes isothermal, reversible expansion from $\mathrm{P} 1, \mathrm{~T} 1, \mathrm{~V} 1$ to $\mathrm{P} 2, \mathrm{~T} 1, \mathrm{~V} 2$. In the second, the system undergoes reversible, adiabatic expansion from $\mathrm{P} 1, \mathrm{~T} 1, \mathrm{~V} 1$, to $\mathrm{P} 2, \mathrm{~T} 2, \mathrm{~V} 2$ '. What can you say about the relationships between the pairs ($\mathrm{P} 1, \mathrm{P} 2$), ($\mathrm{T} 1, \mathrm{~T} 2$), ($\mathrm{V} 1, \mathrm{~V} 2$), and ($\mathrm{V} 2, \mathrm{~V} 2$ ')? Incorporate inequality, equality notation in your discussion.
volumes: since in both cases we have expansion,

For isothermal expansion of ided gas:

$$
\begin{gathered}
\frac{P_{L}}{P_{1}}=\frac{n R T_{2}}{v_{2}} \cdot \frac{V_{1}}{n R T_{1}}=\frac{v_{1}}{v_{2}}<1 \\
\therefore P_{2}<P_{1}
\end{gathered}
$$

Let's Consider Temperatures al isothermal case (no $D T$)
b) adiabatic case: $\quad(d q=0)$

$$
\begin{aligned}
& d U=t q+d W \\
& d U=C_{v} d T \quad(I . G .) \\
& C_{v} d T=t W
\end{aligned}
$$

For gas expansion, $t w<0$ (gas does according to our sign convention)

$$
\begin{array}{r}
\therefore \quad C_{v} d T<0 \\
\therefore \quad \int C_{v} d T<\int 0<0 \\
C_{v}\left(T_{2}-T_{1}\right)<0 \\
T_{2}<T_{1}
\end{array}
$$

To compare V_{2} and V_{2}^{\prime}, we use the fact that both final pressures for Iso and adiabeti processes, are the same:

$$
\text { I.G. } \quad \begin{aligned}
P_{2}^{i s u T} & =P_{2}^{\text {adiabatic }} \\
\frac{n R T_{1}}{V_{2}} & =\frac{n R T_{2}}{V_{2}^{\prime}} \\
\frac{V_{2}^{\prime}}{V_{2}} & =\frac{T_{2}}{T_{1}}
\end{aligned}
$$

but, we found above $T_{2}<T_{1}$,
So

$$
\begin{aligned}
& \frac{V_{2}^{\prime}}{V_{2}}=\frac{T_{2}}{T_{1}}<1 \\
& V_{2}^{\prime}<V_{2}
\end{aligned}
$$

So, to Summarize:

$$
P_{2}<P_{1}, \quad V_{2}>V_{1}, \quad T_{2}<T_{1}, V_{2}^{\prime} \angle V_{2}
$$

Quiz 4 Solutions

1. Given: Joule Coefficient is defined by following thermodynamic relation:

$$
\begin{equation*}
\left.\eta_{\text {Joule }}(T)=\left(\frac{\partial T}{\partial v}\right)_{u}\right)=\frac{1}{C_{v}(T)}\left[P-T\left(\frac{\partial \rho}{\partial T}\right)_{v}\right] \tag{1}
\end{equation*}
$$

a. For Ideal Gas: $\rho V=n R T$

$$
\therefore \quad P=\frac{n R T}{V}
$$

Suse this in equation (1)!

$$
\begin{aligned}
\eta_{\text {Tale }}^{I_{\text {del }} G_{R S}}(T) & =\frac{1}{\frac{1}{C_{V}^{G G}}(T)}\left[\frac{n R T}{V}-T\left(\frac{\partial\left(\frac{n R T}{V}\right)}{\partial T}\right)_{V}\right] \\
& =\frac{1}{C_{V}^{\text {ICc. }}(T)}\left[\frac{n R T}{V}-T\left(\frac{n R}{V}\right)\right] \\
& =\frac{1}{C_{(T)}^{T G}}\left[\frac{n R T}{V}-\frac{n R T}{v}\right]=0
\end{aligned}
$$

Since $\eta_{\text {Joule }}^{\text {Dded } G o s t}(T)=0$, we can see

$$
\begin{aligned}
& d U^{\text {I.G. }}=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
&=C_{V}^{I . G .} d T-C_{V}^{I \cdot G .} \underbrace{\sum_{\text {Joule }}^{I . G}(T)}_{=0 \text { (as shown above) }} d V \\
& \therefore d U^{I . G .}=C_{V}^{I . G .} d T
\end{aligned}
$$

since $C_{v}^{I . C .}(T)$ can be a function of T in mort general case, this problem shows that $U^{\text {I.G. is a }}$ function of T only.
The only question remaining now is how do we get to the equation initially given to us

$$
\begin{aligned}
& \text { to us } \\
& \eta_{J_{\text {ale }}}(T)=\frac{1}{C_{v}(T)}\left[P-T\left(\frac{\partial \rho}{\partial T}\right)_{v}\right] ?
\end{aligned}
$$

We will see this later in the course.
b). $\eta_{\text {Julie }}(T)$ for Won der Wails fluid (EOS)
For $V_{a m}$ der Gals fluid:

$$
p=\frac{n R T}{v-n b}-\frac{a_{n}{ }^{2}}{v^{2}}
$$

$\operatorname{Soj}\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b}$

$$
\begin{aligned}
& \eta_{\text {Joule }}^{V_{\text {ad }}}(T)=\frac{1}{C_{v}(T)}\left[\frac{n R T}{V-n b}-\frac{a_{n}^{2}}{V^{2}}-\frac{n R T}{V-n b}\right] \\
& \left.\eta_{\text {Joule }}^{V_{d} W}(T)=\frac{1}{C_{v}(T)}\left[\frac{-a_{n}^{2}}{V^{2}}\right]\right]
\end{aligned}
$$

$\eta_{\text {souk }}(T)$ is not 0 for $\frac{n m \text {-ideal }}{\text { of fluid }}$ gas
$\eta_{\text {sole }}$ is also a function of n^{n} and V moles toted volume

So: U for non-ideal fluids is not a function of T only.
2. This problem addresses enthalpy change around a Carnot cycle.

Entholpy Change over the cycle is the sum of enthalpy changer for each leg of the cycle.

$$
\Delta H_{\text {cycle }}=\Delta H_{12}+\Delta H_{2 J}+\Delta H_{j 4}+\Delta H_{41}
$$

H is a state function:

$$
\therefore \quad \Delta H_{\text {cycle }}=0
$$

So: $\quad \frac{\Delta H_{12}+\Delta H_{23}}{=\Delta H_{123}}+\Delta H_{34}+\Delta H_{41}=0$

So:

$$
\begin{aligned}
\Delta H_{123} & =-\Delta H_{34}-\Delta H_{41} \\
& =-\left[\Delta H_{34}+\Delta H_{41}\right] \\
& =-\left[\Delta H_{241}\right] \\
\therefore \Delta H_{341} & =-\Delta H_{123}
\end{aligned}
$$

Due to fact that $\Delta H_{\text {cycle }}=0$

Directions: Please answer each question to the best of your ability. Make sure your response is legible, precise, includes relevant dimensional units (where appropriate), logically presented (include non-mathematical language if necessary to convey your intent clearly and transparently), and correct/accurate. You are free to use your Equations Handbook, Calculator, and blunt/sharp writing instrument. If you have any doubts) about the meaning/intent of a questions), please ask immediately so you do not wander off on an incorrect path!

1. (5 Points) Boiling of water at normal conditions ($P=1 \mathrm{~atm}, \mathrm{~T}=100 \mathrm{C}$) is accompanied by a change in water (the system) entropy. For 1 mole of water, compute the change in entropy as it totally boils under conditions stated. Remember that vaporization, because it involves a change (transformation from liquid to vapor) under conditions of equilibrium, is a reversible process. Data in Table 6.1 of Equations Handbook will be of use. Use correct math and words (the latter as needed) to come up with your answer. If you assume anything, state your assumption. Make sure every detail of your logic is clear.

$$
\begin{aligned}
& \text { Boiling is reversible since we have equilibrium }
\end{aligned}
$$

$$
\begin{aligned}
& n=1 \text { mole } \Delta \bar{H}_{\text {vol }}=9.71558 \mathrm{kcae} / \text { mole } \\
& \Delta S=(1 \text { note }) \frac{(9.71558 \mathrm{kce} / \mathrm{mele})}{373.15 \mathrm{~K}}=0.026 \frac{\mathrm{Kof}}{\mathrm{~K}}=0.109 \frac{\mathrm{~kJ}}{\mathrm{~K}}
\end{aligned}
$$

2 (5 Points) We discovered in class discussion that entropy is related to probabilities of 'microstates' in which we can find a system (i.e., each configuration of particle arrangements in a box is a 'microstate'). We arrived at one total \# of states
(of several) very insightful equations to compute entropy: $S=-k_{B} \sum_{i=1} \mathrm{p}_{\mathrm{i}} \ln \left(\mathrm{p}_{\mathrm{i}}\right)$. Recall, p_{i} is the probability of finding the system in 'microstate' i, and the summation runs over all of the possible 'microstates' available to the system. Consider a very simple system that can only be found in one of two states, 1 and 2 . Thus, if we were to perform an experiment to 'look' at the system and find what state it is in, we could only have one of two outcomes (the system can be in one of the two possible states when we look at it with our 'instrument'). If the probability of state 1 is p_{1} and the probability of state 2 is p_{2} (remember, $p_{2}=1-p_{1}$ since the sum of all probabilities must add to 1), what numerical values of p_{1} and p_{2} will maximize entropy of this system? Use correct math and words (the latter as needed) to come up with your answer. If you assume anything, state your assumption. Make sure every detail of your logic is clear.

Take $1^{s t}$ derivative of δ :

$$
\begin{aligned}
\frac{d S}{d p_{1}} & =-k_{B}\left[\ln \left(p_{1}\right)+\frac{p_{1}}{p_{1}}-\ln \left(1-p_{1}\right)-\frac{\left(1-p_{1}\right)}{\left(1-p_{1}\right)}\right] \\
& =-k_{B}\left[\ln \left(p_{1}\right)+1-\ln \left(1-p_{1}\right)-1\right] \\
\frac{d S}{d p_{1}} & =0=-k_{\beta}\left[\ln \left(p_{1}\right)-\ln \left(1-p_{1}\right)\right]
\end{aligned}
$$

So: $\quad \ln \left(p_{1}\right)-\ln \left(1-p_{1}\right)=0$

$$
\begin{aligned}
\ln \left(P_{1}\right) & =\ln \left(1-P_{1}\right) \\
P_{1} & =1-P_{1} \\
2 \rho_{1} & =1 \\
P_{1} & =\frac{1}{2} \\
P_{2} & =1-P_{1}=1-\frac{1}{2} \\
P_{2} & =\frac{1}{2}
\end{aligned}
$$

10 really check for a maximum we need to check $2^{\text {nd }}$ derivative.

$$
\left.\frac{d^{2} s}{d p_{1}^{2}}\right|_{p_{1}=\frac{1}{2}}
$$

$2^{\text {ad }}$ derivative evaluated at value of ρ_{1} where $\frac{d S}{d p_{1}}=0$

$$
\begin{aligned}
\frac{d^{2} s}{d p_{1}^{2}} & =\frac{d}{d p_{1}}\left\{-k_{B}\left[\ln \left(p_{1}\right)-\ln \left(1-p_{1}\right)\right]\right\} \\
& =-k_{B}\left[\frac{1}{p_{1}}+\frac{1}{1-p_{1}}\right]
\end{aligned}
$$

Evaluate $\frac{d^{2} S}{d p_{1}{ }^{2}}$ at $p_{1}=\frac{1}{2}$

$$
\left.\frac{d^{2} s}{d p_{1}^{2}}\right|_{p_{1}=\frac{1}{2}}=-k_{\beta}[2+2]=-4 k_{\beta} \leq 0
$$

\therefore indeed $P_{1}=P_{2}=\frac{1}{2}$ is maximum

Quiz 6

Name \qquad
Thursday October 20, 2016

1. Helium gas in a well-insulated, solid container is initially confined to a volume of 10 L . The constraint holding the gas in the volume is removed, allowing the gas to expand against a Assume vacuum to a final volume of 20L.
Ided Since this system is isolated (solid container $\rightarrow d v=0$; well-insulated $\rightarrow d E=0$) we Gas need to devise a reversible path to compute $\Delta S=\int d S=\int \frac{\text { diner }}{T}$
A. What is the associated entropy change for this process?

For Iso compression $t q_{\text {rev }}=-才 \omega_{\text {rev }}=p d V=n R T d(\operatorname{lnv})$

$$
\begin{aligned}
& t q_{\text {rev }}=-d \omega_{\text {rev }}=p d V=n R T d(\ln V) \\
& \frac{d q_{\text {rave }}}{T}=n R d(\ln v) \Rightarrow D S=\int \frac{d q_{\text {nev }}}{T}=\int n R d(\ln v)=n R \ln \left(\frac{V_{2}}{v_{1}}\right)
\end{aligned}
$$

$$
\Delta S=n a \ln \left(\frac{10 L}{20 L}\right)=n R \ln \left(\frac{1}{2}\right) ; \text { so, for expansion } \Delta S=n R \ln (2)
$$

B. Is this a spontaneous, or irreversible process? Please provide an explanation for your answer.

This is spontaneous process because $\Delta S>0$ and the system is isolated.

$$
\begin{aligned}
& \text { solated. } \\
& (d s)_{u, v}>0 \text { for Isolated } \\
& \text { system. }
\end{aligned}
$$

2. Consider a universe where we can make up a container whose volume can be partitioned into 9 containers (or voxels, "volume elements"). If we have 7 indistinguishable particles of type A and 4 indistinguishable particles of type B, what is the entropy of the mixed system? How does this compare to the case where we only have 2 indistinguishable particles of type B ?
Case 1: $N=9$ containers; 7 A panticler; 4 B particles can ll fit total of 11 particles $M 9$ containers. (undefined scenario)

Case 2: $N=9$ containers; 7 A particles; 2 B particles

$$
\begin{equation*}
S=k_{B} \ln W=k_{0} \ln \left(\frac{9!}{7!2!}\right)=k_{B} \ln (36) \tag{23}
\end{equation*}
$$

$$
=\left(.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) \ln (36)=4.94 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Cant really moke a comparison because the first care is undefined. However what of we had 7 A particles, 1 B particle?

$$
W=\frac{9!}{7!1!1!}=\frac{9 \times 8 \times 7!}{7!}=72
$$

So, S for $B=1$ particle is larger than S for $B=2$ particles

If we thought of the system ans a solution, it seems that S can increase as we go to the limit of infinite dilation.
In fact, this effect is a hidden driving "fore" behind the osmotic effect!

1. (10 Points) One mole of H 20 (liquid) is super-cooled to -2.25 Celsius at 1 bar pressure. The equilibrium freezing temperature at this pressure is 0.0 Celsius. The transformation H 2 O (liquid) $\rightarrow \mathrm{H} 2 \mathrm{O}$ (solid) is suddenly observed to occur. Show that the transformation (i.e., freezing) is spontaneous at this state point. Consider the surroundings to be at constant temperature of -2.25 Celsius. The following information may be useful:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{p}}\left(\mathrm{H}_{2} \mathrm{O}, \text { liquid }\right)=75.3 \mathrm{~J} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\mathrm{C}_{\mathrm{p}}\left(\mathrm{H}_{2} \mathrm{O}, \text { solid }\right)=37.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta \mathrm{H}_{\text {fusion }}=6.008 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 0.0 \mathrm{Celsius}^{2}
\end{gathered}
$$

$$
\begin{gathered}
\Delta H_{\text {fusion }}=6.008 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { at } 0.0 \text { Celsius } \\
T=-2.25^{\circ} \mathrm{C}=270.9 \mathrm{~K} ; \text { normal freezing point }=273.15 \mathrm{~K} \quad(e \quad \text { bar }=P)
\end{gathered}
$$

Supercooled water freezes I reversibly at $T=-2.25^{\circ} \mathrm{C}$
Since Irreversible, overall process has $\Delta S_{\text {riAL }}=\Delta \int_{\text {universe }}>0$

$$
\begin{gathered}
\Delta S_{\text {roma }}=\Delta S_{\text {universe }}=\left(\Delta S_{\text {sytem }}+\Delta S_{\text {surroundings }}\right)>0 \\
\text { system }=\text { water }(1: \text { quid }+ \text { solid })
\end{gathered}
$$

surroundings $=$ everything not water
(All at $p=1$ bar)
I. $\Delta S_{\text {water }}: \quad$ liquid $(270.9 \mathrm{~K}) \xrightarrow[\text { Irreversible }]{ }$ solid (270.9 K)

$$
\begin{aligned}
& \left.\Delta S_{\text {syst }}^{\prime}\right|_{\substack{\text { reversible } \\
\text { liquid }(273.15 k)}} \operatorname{solid}(273.15 \mathrm{k}) \\
&
\end{aligned}
$$

So, $\Delta S_{\text {system }}=\Delta S_{\text {sys }}^{1}+\Delta S_{\text {sys }}^{2}+\Delta S_{\text {sys }}^{3}$

Recall: $d u=T d S-p d V$ (combined 1^{s+} and

$$
d S=\frac{d U+p d V}{T}
$$

At constant pressure, $d S=\frac{d(u+p v)}{T}$

$$
d S=\frac{1}{T} d H
$$

But, $d H=d q_{p}=C_{p} d T=n \bar{C}_{p} d T$
(at constant pressure)
So: $\quad d S=\frac{1}{T} C_{p} d T=\frac{1}{T} n \bar{C}_{p} d T=n \bar{C}_{p} d\left(I_{n} T\right)$
Thus: $\begin{aligned} \Delta S_{\text {syst }}^{1}= & \int_{270.9 k}^{273.15 k} n \bar{C}_{p}^{L} d(\ln T)=n \bar{C}_{p}^{L} \ln \left(\frac{273.15 k}{270.9 K}\right) \\ & \Delta S_{S_{y s}}^{1}=(1 \text { mole })\left(7 S_{1} \frac{J}{\text { mol. } 1 .}\right) \ln \left(\frac{273.15 k}{270.9 K}\right)\end{aligned}$

$$
\begin{aligned}
& \Delta S_{575}^{3}=\int_{273.15 k}^{270.9 k} n \bar{C}_{p}^{\text {solid }} d(1, T)=n \bar{C}_{p}^{\text {sol: }} \mathrm{d} \ln \left(\frac{270.9 k}{273.15 k}\right) \\
& \Delta S_{\text {syst }}^{2}=\frac{1}{T_{f}} \int d q_{\text {fem }}^{\text {harold }}=\frac{1}{T_{f}}\left(-\Delta H_{f}\right)=\frac{-\Delta H_{f}}{T_{f}}=\frac{-n \Delta H_{f}}{T_{f}} \\
& \Delta S_{\text {syst }}^{2}=\frac{(1 \text { mole })(6.008 \mathrm{~kJ} / \mathrm{mol})}{273.15 \mathrm{~K}} \\
& \Delta S_{S y s}=\Delta S_{r, s}^{2}+\Delta S_{r y s}^{2}+\Delta S_{y, s}^{3}=-21.7 \mathrm{~J} / \mathrm{K} \\
& \begin{array}{l}
\text { Third is } \\
\text { entropy of } \mathrm{H}_{2} \mathrm{O}
\end{array} \\
& \text { freezing, negative }
\end{aligned}
$$ as expected.

Now, consider $D \int_{\text {surroundings }}$
Since surroundings are conceptualized as
being of sufficient vastness, they are always at equilibrium. Any process the surroundings undergoes while gaining/loring heat ir reversible?
row.

$$
\Delta S_{\text {surroundings }}=\frac{n \Delta H^{\left.\operatorname{liq-solide}^{(270.9 k}\right)}}{T_{270.9 k}}
$$

However, we need $\Delta \vec{H}^{\text {lig-solid }}$ at 270.9 K ; we are given $\Delta H^{\text {lig-rolid }}$ at 273.15 K . How to get $\Delta H\left(T_{2}\right)$ given $\Delta H\left(T_{1}\right)$? We studied their for "chemical reactions". This approach golfer for any transformation os process.

$$
\begin{aligned}
& T=2009 \mathrm{~K} \quad \mathrm{H}_{\mathrm{O}} \mathrm{O}(\mathrm{lig}) \longrightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{sol}_{\mathrm{ol}} \mathrm{M}\right) \\
& T-273.15 \mathrm{~K} \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{lig}) \stackrel{\mathrm{C}}{\rightleftarrows} \quad \mathrm{H}_{2} \mathrm{O} \text { (rolid) } \\
& \Delta H_{\text {ron }}(270.9 k)=n \Delta H^{\text {lif-rold }}(273.15 k)+\int_{273.15}^{270.9} \Delta \bar{C}_{p} d J \\
& \left.=n \Delta H^{1 i p-501 i d}(273.15 k)+\int_{275.5 k}^{270.9 k}(1 \text { oole })\left(\bar{c}_{p}^{\text {solid }}\right)-(1 \text { mole })\left(\bar{C}_{p}^{\text {ijpudd }}\right)\right] d T
\end{aligned}
$$

$$
\begin{aligned}
& =n \Delta H^{-1 i_{t}-5.1 \mathrm{id}}(273.15 \mathrm{k})+\left(-35.45 \frac{\mathrm{~F}}{\mathrm{~mol} \mathrm{\cdot x}}\right)(\text { Imole })(-2.25 \mathrm{k}) \\
& =(\text { (ade })(6008 \mathrm{~J} / \mathrm{mal})+\left(35.45 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(1 \mathrm{molh})(2.25 \mathrm{~K})
\end{aligned}
$$

$=-5928 \mathrm{~J} \leftarrow$ This is the heat lost by water (system) upan freezing.
So, heat is gaved by surroundings

$$
q_{\text {surrountingr }}=+5928 \mathrm{~J}
$$

$$
\Delta S_{\text {surr }}=\frac{q_{\text {surraudiogs }}}{T}=\frac{5928 \mathrm{~J}}{270.9 \mathrm{~K}}=21.9 \frac{\mathrm{~K}}{\mathrm{~K}}
$$

So: $\quad \Delta S_{\text {TODL }}=\Delta \int_{\text {univerke }}=21.9 \frac{J}{k}-21.7 \frac{J}{k}$

$$
\Delta S_{\text {TOAL }}=0.2 \frac{J}{k}>0
$$

This demonstrates that the procery is indeed Irreversible.
2. (Bonus 5 Points) Under anaerobic conditions, glucose is broken down in muscle tissue to form lactic acid according to the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CHOHCOOH}
$$

Thermochemical data for 298 K are as follow:

	$\Delta H_{f}^{o}\left(k J \mathrm{~mol}^{-1}\right)$	$C_{\text {p,mewu }}^{o}\left(J \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$	$S_{\text {meat }}^{e}\left(J \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	-1273.1	219.2	209.2
$\mathrm{CH}_{3} \mathrm{CHOHCOOH}$	-673.6	127.6	192.1

Calculate $\Delta \mathrm{S}$ for the system (taken to be the reaction components), the surroundings, and the universe at $\mathrm{T}=310 \mathrm{~K}$. State any assumptions you invoke in your solution.

This problem is similar to question 1. It requires similas types of calculations. First, let's write the chemical $r \times n$.

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \frac{T=310 \mathrm{~K}}{\Delta \mathrm{H}_{r \times n}(310 \mathrm{~K})} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CHOHCOOH} \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad \frac{T=298 \mathrm{~K}}{\Delta H_{r \times n}(298 \mathrm{~K})} \quad 2 \mathrm{CH}_{3} \mathrm{CHOHCOOH}
\end{aligned}
$$

First let's $\operatorname{Find} \Delta S_{\text {ran }}$ and $\Delta H_{\text {ran }}$ at 298 K using the given information since that into applies to 298 K and $p=1$ bar.

$$
\begin{aligned}
& \Delta H_{r x n}^{0}=\sum_{i=1}^{\text {realer }} \nu_{i} \Delta H_{f, i}^{0}=2 \Delta H_{f, c H_{c}, \text { chotrcout }}^{0}-(1) \Delta H_{f_{1}}^{0} H_{1, O} \\
& =(2)\left(-673.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)-(1)\left(1273.1^{\mathrm{kJ}}\right)=-74.2^{\mathrm{kJ} / \mathrm{mel}} \\
& \Delta S_{\text {ron }}^{0}=\sum_{i=1}^{\text {seccies }} \nu_{i} \Delta S_{f, d}^{0}=2 \Delta S_{f, \mathrm{CH}_{5} \mathrm{CHOH} \mathrm{COOH} H}^{0}-\left(1 \mid \Delta H_{f, \mathrm{C}_{6} H_{12} O_{\sigma}}^{0}\right. \\
& =(2)(192.1 \mathrm{~J} / \mathrm{k} \text { mol })-(1)\left(209.2 \frac{\mathrm{~J}}{\mathrm{k} \cdot \mathrm{~mol}^{\prime}}\right) \\
& =175.0^{\mathrm{J} / \mathrm{Kmm}}
\end{aligned}
$$

Now, we consider the changes in $\Delta H_{r a n}$ and $\Delta S_{\text {roan }}$ due to temperature change from 298 K to 310 K .

$$
\begin{aligned}
& \Delta H_{r a n}(210 k)=\Delta H_{\text {san }}(2988)+\int_{298 k}^{310 K} \Delta \bar{C}_{p} d T
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { over the } \\
\text { teleature } \\
\text { range. }
\end{array} \\
& \Delta H_{\text {xn }}(30 \mathrm{KK})=-74.2 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+\left(0.036 \frac{\mathrm{~kJ}}{\mathrm{KFnol}}\right)(\mathrm{nk})=-73.7 \frac{\mathrm{~kJ}}{\mathrm{mot}}
\end{aligned}
$$

Now we address entropy change at $310 \times$.

$$
\begin{aligned}
& \Delta S_{\text {om }}(310 k)=\Delta S_{\text {pam }}(2988)+\int_{298 k}^{310 K} \Delta \bar{C}_{p} d(\ln T)
\end{aligned}
$$

$$
\begin{aligned}
& =175.0 \frac{\mathrm{~J}}{\mathrm{kmal}}+\left(360 \frac{\mathrm{~J}}{\text { f.inl }}\right) \ln \left(\frac{310 \mathrm{~K}}{299 \mathrm{KK}}\right)=176.4 \frac{\mathrm{~J}}{\mathrm{mlh}} \\
& \sum \Delta S_{r x n}(301 k)=\Delta S_{\text {system }}(310 \mathrm{~K})
\end{aligned}
$$

Now, we compate $\Delta S_{\text {sarr }}(310 \mathrm{~K})$, which is straight ferward.

$$
\begin{aligned}
& \Delta S_{\text {shrcounding }}(310 \mathrm{~K})=\frac{\Delta H_{\text {sure }}(210 \mathrm{~K})}{T_{\text {Jlok }}}=\frac{+73.7 \frac{\mathrm{~kJ}}{\mathrm{mek}}}{310 \mathrm{~K}} \\
& \Delta S_{\text {surcandiays }}(310 \mathrm{~K})=238 \mathrm{~J} / \mathrm{K} \cdot \mathrm{md} \\
& \Delta S_{\text {Tritt }}(310 \mathrm{~K})=\Delta S_{\text {sptea }}(310 \mathrm{E})+\Delta S_{\text {swronding }}(3101 \mathrm{~K}) \\
& =176.4 \frac{\mathrm{~J}}{\bmod \cdot \mathrm{~K}}+238 \mathrm{~J} / \mathrm{m} \cdot \mathrm{~K} \\
& \Delta S_{\text {torac }}(\text { (10k })=414 \frac{\mathrm{~J}}{\mathrm{~mm} \cdot \mathrm{~K}}
\end{aligned}
$$

CHEM-443, Fall 2016,
Quiz 8

Student Name

November 4, 2016

1 (7 Points). Consider the reversible reaction:

A. Use the following data to determine the equilibrium constant at 25 Celsius.

Substance	CaCO_{3} (solid)	CaO (solid)	CO_{2} (gas)
$u^{0}(\mathrm{~kJ} / \mathrm{mol})$	-1128.8	-604.0	-394.36
ΔH^{0} formation,molar(kJ/mol)	-1206.9	-635.09	-393.51

Solution:

Assumptions: solids are not volatile and gases are ideal. Enthalpies of formation have little temperature dependence (though this will be a big assumption).

For this problem, we know the relation between the equilibrium constant and the standard state free energy change:

$$
\Delta G^{0}(T)=-R T \ln K_{e q}(T)
$$

The Standard free energy change is given by the standard state chemical potentials:

$$
\begin{array}{ll}
\Delta G^{0}(T)=\sum_{i=1,3} v_{i} \mu_{i}=(1) \mu_{C O_{2}}^{o}+(1) \mu_{C a O}^{o}+(-1) \mu_{C a C O_{3}}^{o} & \text { Eqn G. } 58 \\
=\mu_{C O_{2}}^{o}+\mu_{C a O}^{o}-\mu_{C a C O_{3}}^{o} \\
=-394.36 \frac{\mathrm{~kJ}}{\mathrm{~mol}}-604.0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+1128.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \text { in Text } \\
=130.44 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

Thus,

$$
\begin{aligned}
& \Delta G^{0}(T)=-R T \ln K_{e q}(T) \\
& K_{e q}(T)=e^{\frac{-\Delta G^{0}(T)}{R T}}=e^{\frac{-130.44 \frac{k J}{m o l}}{(0.008314 k J / m o l-K)(298.15 K)}} \\
& =e^{-52.6}=1.43 \times 10^{-23} \approx 0!
\end{aligned}
$$

B What is the equilibrium pressure of CO_{2} ? State any assumptions you make.

The equilibrium constant is more specifically written as:

$$
\begin{aligned}
& K_{e q}(T)=\frac{p_{\mathrm{CO}_{2}}}{p_{C O_{2}}^{o}}=\frac{p_{C O_{2}}}{1 \text { bar }}=1.43 \times 10^{-23} \\
& p_{\mathrm{CO}_{2}}=\left(1.43 \times 10^{-23}\right)(1 \text { bar })=1.43 \times 10^{-23} \text { bar } \approx 0!
\end{aligned}
$$

2 (3 Points) Using your knowledge of the various thermodynamic potentials we have discussed in class and you have read about in your assigned readings, provide a derivation of a relationship between the Helmholtz Free Energy, A, and state variables T, V, n, P for a van der Wails fluid. Show all work, make sure all mathematical manipulations are correct. Assume constant temperature.

We know the total differential of the Helmholtz Free Energy:

$$
\begin{aligned}
& d A(T, V)=-p d V-S d T \\
& C d T=0(\text { constant } T) d A(T, V)=d A(V ; T)=-p d V \\
& \hat{u}^{\text {indicates } T \text { is held }} \begin{array}{l}
\text { constant while } V \text { allowed } \\
\text { to vary }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
p & =\frac{n R T}{v-n b}-\frac{a_{n}^{2}}{v^{2}} \quad(v d \omega \text { EOS }) \\
d A(v ; T) & =-\left[\frac{n R T}{V-n b}-\frac{a_{n}^{2}}{v^{2}}\right] d V
\end{aligned}
$$

Do obtrin $A(V ; T)$ as a function of V at a particular T, integrate

$$
\begin{gathered}
A(v ; T)=\int\left[\frac{-n R T}{v-n b}+\frac{a n^{2}}{v^{2}}\right] d V \\
A(v ; T)=-n R T \ln (v-n b)-\frac{a_{n}^{2}}{V}+C
\end{gathered}
$$

\qquad
Quiz 9, Fall 2016

1. (4 Points) An ideal solution of 5.0 moles of benzene and 3.25 moles of toluene is placed in a piston and cylinder assembly. At 298K, the vapor pressure of the pure substances are $P^{\text {sat }}$ (benzene) $=96.4$ Torr and $P^{\text {sat }}$ (toluene) $=28.9$ Torr.
A. The system is initially at pressure of 760 Torr (temperature $=298 \mathrm{~K}$). The pressure is reduced. At what pressure does the vapor phase first appear?
B. What is the composition of the vapor phase at the point discussed in part A?

Solution:

$$
P_{\text {total }}=x_{\text {benzene }} P_{\text {benzene }}^{\text {saturation }}+x_{\text {toluene }} P_{\text {toluene }}^{\text {saturation }}
$$

$$
\begin{aligned}
\text { A. } & =(0.606)(96.4 \text { Torr })+(0.394)(28.9 \text { Torr }) \\
& =69.8 \text { Torr }
\end{aligned}
$$

Thus, need to reduce to 69.8 Torr to form first bubble of vapor.
B. Use Raoult's relation:

$$
\begin{aligned}
& y_{\text {benzene }} P_{\text {Total }}=x_{\text {benzene }} P_{\text {benzzene }}^{\text {saturation }} \\
& y_{\text {benzene }}=\frac{x_{\text {benzene }} P_{\text {benzenene }}^{\text {sation }}}{P_{\text {Totalal }}} \\
& =\frac{(0.606)(96.4 \mathrm{Torr})}{(69.8 \mathrm{Torr})} \\
& =0.837
\end{aligned}
$$

2. (4 Points) A). Using the following data, estimate the vaporization enthalpy of ethanol. State any approximations you use. B). Compare your result to the heat of vaporization at the normal boiling point of ethanol. Data in Table 6.1 of your Handbook may be helpful.

P $(\mathrm{mm} \mathrm{Hg})$	40	100	400	760	1520	3800	7600	15200	30400	45600
T ${ }^{\circ} \mathrm{C}$	19.0	34.9	63.5	78.4	97.5	126.0	151.8	183.0	218.0	242.0

Table data obtained from CRC Handbook of Chemistry and Physics 44th ed.

Solution:
Using the Clausius-Clapeyron equation with the assumption that the vapor is ideal gas and the vaporization enthalpy is constant over the temperature range given in the data set:
$d(\ln \mathrm{P})=\frac{\dot{\Delta} \mathrm{H}_{\mathrm{v}}}{\mathrm{R}} \frac{d T}{\mathrm{~T}^{2}}$
$\ln \mathrm{P}+\mathrm{C}_{1}=-\frac{\Delta \mathrm{H}_{\mathrm{v}}}{\mathrm{RT}}+C_{2}$
$\ln \mathrm{P}=-\left(\frac{\Delta \mathrm{H}_{\mathrm{v}}}{\mathrm{R}}\right) \frac{1}{T}+b$
Thus, plot $\ln (P)$ versus $(1 / T)$. The slope multiplied by $-R$ is the vaporization enthalpy (red diamonds are the fit to the experimental data shown as black circles)

Number of observations
Mean of independent variable
Mean of dependent variable
Standard dev. of ind. variable
Standard dev. of dep. variable Correlation coefficient
$=10$
$=0.00262101$
$=7.610287$
$=0.0005038954$
$=2.389071$
$=-0.9994531$

Regression coefficient (SLOPE) $=-4738.612$
Standard error of coefficient $=55.42907$
t - value for coefficient $=-85.48964$
Regression constant (INTERCEPT) $=20.03024$
Standard error of constant $=0.1476768$
t - value for constant $=135.6357$
Analysis of variance

| Source | d.f | Sum of squares | | Mean Square F |
| :--- | :---: | :--- | :--- | :--- | :--- |
| Regression | 1 | 51.31278 | 51.31278 | 7308.478 |
| Residual | 8 | 0.05616795 | 0.007020994 | |
| Total | 9 | 51.36895 | | |

$y=20.03-4738.6$ * x
Δ Hvap $=-4738.6^{*}-8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})=39.4 \mathrm{~kJ} / \mathrm{mol}$

This value is in remarkably good agreement with the experimentally measured value of $38.56 \mathrm{~kJ} / \mathrm{mol}$ quoted in your book. Considering uncertainties in the experimental data and regression, these numbers are quite close.

3. (2 Points). Using the following form of the Clausius-Clapeyron Equation:

$$
\left(\frac{d P}{d T}\right)_{\text {coexistence }}=\frac{\Delta \bar{S}}{\Delta \bar{V}}
$$

explain why the slope of the solid-liquid equilibrium line (on a P-T phase diagram) is negative for water and positive for most all other fluids.

Solution:
For solid to liquid transition, the change in molar entropy is positive for all fluids. So the numerator is positive in all cases. For water, since the density of ice is lower than that of liquid water (icebergs float), the molar volume of ice is higher (inverse of density) than that of liquid water. Thus, in the case of water, the denominator is negative, thus leading to negative slope. In the case of most other fluids, the denominator is positive, as the numerator is, thus giving positive slope.

$$
\begin{aligned}
& \left(\frac{d P}{d T}\right)_{\text {coexistence }}^{\text {ice-water }}=\frac{\Delta \bar{S}_{i c e-w a t e r}}{\Delta \bar{V}_{\text {ice-water }}}=\frac{+}{-}=\text { negative } \\
& \left(\frac{d P}{d T}\right)_{\text {coexistence }}^{\text {solid-liquid,general }} \quad=\frac{\Delta \bar{S}_{\text {solid-liquid }}}{\Delta \bar{V}_{\text {solid-liquid }}}=\frac{+}{+}=\text { positive }
\end{aligned}
$$

CHEM443 Fall 2016
Quiz 10

Name \qquad
December 2, 2016

Problem 1 (10 Points)
Consider a binary mixture of two substances A and B that exists as separate phases a and β.

In terms of any relevant variables from those shown in the graph, what is the ratio of moles of phase alpha to moles of phase beta (or the inverse, either one is fine).

Solution:

$$
\text { apply mole balance on species } A
$$

At point 1 shown in graph: $n_{A}=Z_{A} n^{\text {TrAD }}=Z_{A} n^{\alpha}$
Atpoint in questions

$$
n_{A}=x_{A} n^{\alpha}+y_{A} n^{\beta}
$$

Conservation of moles of A :

$$
Z_{A}\left[n^{\alpha}+n^{\beta}\right]=x_{A} n^{\alpha}+y_{A} \eta^{\beta}
$$

$$
\begin{aligned}
& \left(z_{A}-x_{A}\right) \eta^{\alpha}=\left(y_{A}-z_{A}\right) n^{\beta} \\
& \frac{n^{\alpha}}{n^{\beta}}=\frac{y_{A}-z_{A}}{z_{A}-x_{A}}=\frac{l_{\beta}}{l_{\alpha}} \\
& \text { hever 'R}{ }^{\prime} l^{\prime \prime}
\end{aligned}
$$

