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I. FUGACITY

In this discussion, we consider one way to incorporate non-ideality into our physical model of fluids and solids. It

is to be appreciated that once we leave the realm of ideality, we are relegated to considering models of physical

reality. Thus, we need to always be careful of our interpretations arising from such models which, despite our best

intentions, are always approximations of actual physical reality. Moreover, we are required to bear in mind the

assumptions, approximations, and limitations associated with such models. With this preface we now consider an

alternate description of the chemical potential of a pure species and a species in various mixtures (liquids and gases).

A. Pure Gases and Gas Mixtures

1. Pure Gas

The total differential of Gibb’s Free energy for a pure fluid is given by:

dG = V dp − SdT + µdN (1)

Dividing this extensive property by the moles of pure fluid, we have the total differential of the molar Gibb’s Free

Energy or the chemical potential:

dµ = dḠ = V̄ dp − S̄dT (2)

For constant temperature, this reduces to:

dµ = dḠ = V̄ dp (3)

For an ideal gas, the molar volume is: V̄ = RT
p

. This leads to:

dµ = dḠ = RT d(ln p) (4)

We now take inspiration from Equation 4 for an ideal gas to introduce a new function, the fugacity of pure species

”i” which will contain all the non-ideality of the fluid.
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dµ = dḠ = RT d(ln f) (5)

• Note that fugacity is not pressure

• Fugacity is a function of pressure

• Fugacity is a direct measure of the chemical potential of a real, non-ideal fluid! Fugacity is chemical potential!

• Equivalence of a species’ chemical potentials in various phases at equilibrium coexistence is the same as the

equivalence of fugacities in various phases at equilibrium coexistence.

• limit(p → 0) f(p) = p . Thus, f ig = p.

Now, for an ideal gas the chemical potential at a particular temperature, T, and pressure, p, relative to some reference

state chemical potential, µref (T, pref ), at a reference state pressure of pref is:

µig(T, p) = µig,ref (T, pref) + RT ln

(

p

pref

)

(6)

We can compute the same for the real gas, rg:

µrg(T, p) = µrg,ref (T, pref) + RT ln

(

f

f ref

)

(7)

Taking the difference between Equations 7 and 6 gives:

µrg(T, p) − µig(T, p) = µrg,ref (T, pref ) − µig,ref (T, pref) + RT ln

(

f pref

f ref p

)

(8)

If we take the reference state to be an ideal gas state (low pressure reference state), the first two terms on the right

hand side of Equation 8 cancel one another, and pref = f ref ; this leads to

µrg(T, p) − µig(T, p) = RT ln

(

f

p

)

(9)

Equation 9 allows us to define the fugacity coefficient for a pure species as:

φpure gas(T, p) =
f

p
(10)
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• Fugacity coefficient of a pure species at a temperature, T, and pressure, P is defined as φpure gas(T, p) = f

p

We can thus rewrite Equation 9 as:

µrg(T, p) = µig(T, p) + RT ln (φpure gas) (11)

If we now reference the ideal gas chemical potential to a reference state with pressure = 1 bar (p0 = 1bar), we can

rewrite the previous equation as :

µrg(T, p) = µig(T, p0) + RT ln

(

p

p0

)

+ RT ln (φpure gas) (12)

Finally, we can combine the second and third terms on the right-hand side of equation 12 to obtain the following

relation which we will return to later in our discussion of activity.

µrg(T, p) = µig(T, p0) + RT ln

(

(φpure gas)
p

p0

)

(13)

2. Gas Mixtures

We can follow an analogous route as we did for the pure gas in our treatment of the chemical species of a species ”i”

in a mixture of real gases.

For an ideal gas species ”i” in an ideal gas mixture (mixture of ideal gases) at a temperature, T, and pressure, P,

relative to a pure gas reference state at pref and the same temperature, we can write the chemical potential as:

µ
ig
i (T, p) = µ

ig
i (T, pref , pure) + RT ln

(

pi

pref

)

(14)

For a real (non-ideal) gas (superscripted as rg in the following) species in a non-ideal gas mixture, we can write

analogously, making use of our definition of fugacity as presented in the section on pure gases, as:

µ
rg
i (T, p) = µ

rg
i (T, pref , pure) + RT ln

(

f̂i

f
ref
i

)

(15)

Here, f̂i is the fugacity of species in the non-ideal gas mixture. Again, the reference state is a pure fluid state; thus

we omit the hat on the fugacity of species in the denominator of fraction of which we take the natural log.
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Taking the difference of Equations 15 and 14, we obtain:

µ
rg
i (T, p) − µ

ig
i (T, p) = µ

rg
i (T, pref , pure) − µ

ig
i (T, pref , pure) + RT ln

(

f̂i pref

f
ref
i pi

)

(16)

Taking the reference state to be an ideal gas state, we can make the simplifications as for the pure gas case to obtain:

µ
rg
i (T, p) − µ

ig
i (T, p) = RT ln

(

f̂i

pi

)

(17)

Since pi = yi pTotal = yi p,

µ
rg
i (T, p) − µ

ig
i (T, p) = RT ln

(

f̂i

yi p

)

(18)

We now define the fugacity coefficient for species ”i” in a gas mixture (non-ideal) as φ̂i = f̂i

yi p
.

This allows us to write Equation 18 as:

µ
rg
i (T, p) = µ

ig
i (T, p) + RT ln

(

φ̂i

)

(19)

The chemical potential of the ideal gas species at temperature T and total pressure p can be written in terms of the

chemical potential of the pure ideal gas at a reference pressure p0 as we did before:

µ
rg
i (T, p) = µ

ig
i (T, p0) + RT ln

(

pi

p0

)

+ RT ln
(

φ̂i

)

(20)

which can be written as:

µ
rg
i (T, p) = µ

ig
i (T, p0) + RT ln

(

(

φ̂i

) pi

p0

)

(21)

Equation 21 is analogous to Equation 13; we will return to Equations 13 and 21 in our discussion of activity.

B. Pure Liquids and Liquid Mixtures

1. Pure Liquid

Unlike the pure ideal gas, there is no liquid analogue, so we define the pure liquid fugacity by analogy to the pure

non-ideal gas case:
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dµ
pure liquid
i = RT d ln

(

fpure liquid
)

(22)

We will not say more about this relation, but will use it later in our discussion of general vapor-liquid equilibria.

2. Real Liquid Mixtures

We have seen that the chemical potential of a species ”i” in an ideal mixture at a temperature T and total pressure

p is:

µis
i (T, p) = µi(T, p, pure) + RT ln(xi) (23)

Using Equation 22, we can write an analogous expression for a real solution as:

µrs
i (T, p) = µi(T, p, pure) + RT ln

(

f̂i

fi

)

(24)

Taking the difference between Equations 24 and 23, we obtain:

µrs
i (T, p) = µis

i (T, p) + RT ln

(

f̂i

xi fi

)

(25)

We define the activity coefficient as γi = f̂i

xi fi
to allow us to write Equation 25 as:

µrs
i (T, p) = µis

i (T, p) + RT ln (γi) (26)

Inserting Equation 23 for µis
i (T, p), we obtain:

µrs
i (T, p) = µi(T, p, pure) + RT ln(xi) + RT ln (γi) (27)

which can also be expressed as:

µrs
i (T, p) = µi(T, p, pure) + RT ln (xi γi) (28)
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Equation 28, along with Equations 13 and 21, will be central to our discussion of activity further below. To summarize

our discussion up to this point:

• We have defined the fugacity for pure gases and liquids, as well as for species ”i” in a gas and liquid mixture.

• Fugacity is a direct measure of the chemical potential of a species in a mixture.

• Fugacity coefficient of a pure gas or liquid: φpure gas(T, p) = f
p

• Fugacity coefficient of species ”i” in non-ideal gas mixture: φ̂i = f̂i

yi p

• Activity coefficient of species ”i” in non-ideal liquid mixture: γi = f̂i

xi fi

II. VAPOR-LIQUID EQUILIBRIA

Using the definitions of the various coefficients in the last section, we can generalize the idea of chemical potential

equalization at equilibrium to fugacity equalization at equilibrium. Thus, our expression for vapor-liquid equilibrium

using fugacities is:

f̂ l
i (T, p, x) = f̂v

i (T, p, y) (29)

In Equation 29, we have included the temperature, pressure, and composition dependence of the fugacities. Using

the definitions of activity and fugacity coefficients ( for the liquid and vapor fugacities, respectively), we obtain:

γi xi f l
i (T, p) = yi p φ̂i(T, p) (30)

We now make use of Equation 30 to derive a practical expression for vapor-liquid equilibria at low to moderate

pressures which are common for most applications.

To obtain the fugacity of pure liquid ”i” at temperature T and pressure p, we use two steps. First, we consider the

change from zero pressure to the saturation pressure at the temperature of interest. We then transition from the

saturation pressure to the pressure of interest.

For a pure gas, since we can relate the fugacity to the fugacity coefficient, we consider the fugacity coefficient.

d
(

µrg
− µig

)

= RT d ln (φ) =
(

V̄ rg
− V̄ ig

)

dp (31)
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Recall that the compressibility factor, Z, is Z = V̄ rg

V̄ ig . Thus, Equation 31 becomes:

RT d ln (φ) = RT (Z − 1)
dp

p
(32)

d ln (φ) = (Z − 1)
dp

p
(33)

We can use Equation 33 to integrate from p=0 to the saturation pressure of the fluid at the desired temperature. At

p=0, φ = 1 and ln(φ) = 0. Thus, upon integrating we obtain:

∫ psat

0

d ln (φ) =

∫ psat

0

(Z − 1)
dp

p
(34)

Thus, the fugacity coefficient at the saturation pressure, psat is given by:

ln
(

φsat
)

=

∫ psat

0

(Z − 1)
dp

p
(35)

Once we know φsat, we know the fugacity of the liquid at the saturation pressure:

fsat,liquid = fsat,vapor = φsat psat (36)

Now, we can integrate from the saturation pressure to the desired pressure to obtain the liquid fugacity needed in

Equation 30.

dµliq = RT d ln(f liq) = V̄ liq dp (37)

ln(f liq) − ln(fsat,liquid) =
V̄ liq

RT

∫ p

psat

dp (38)

f liq = fsat,liquid exp

(

V̄ liq (p − psat)

RT

)

(39)

Using Equation 36, we obtain:

f liq = φsat psat exp

(

V̄ liq (p − psat)

RT

)

(40)

Equation 30 can now be revisited, using the expression for the pure liquid fugacity at the temperature and pressure

of interest given by Equation 40:
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γi xi φsat
i psat

i exp

(

V̄ liq (p − psat)

RT

)

= yi p φ̂i(T, p) (41)

Finally, we make two major approximations:

• For low pressures up to 1 bar, the exponential can be taken as unity (equilibrium pressures are not that far from

saturation pressures of pure species)

• Taking the vapor to be ideal gas, the fugacity coefficients are unity

This gives finally,

γi xi psat
i = yi p (42)

Equation 42 is sometimes referred to as a modified Raoult’s Law. The non-ideality of the liquid phase is totally

contained in the activity coefficient, while the vapor is considered to be ideal. One can construct T-xy and P-xy phase

diagrams using this expression for liquid non-ideality if one is given information about the activity coefficients and

their temperature, pressure, and composition dependence.

A. Activity

Returning to Equations 13, 21, and 28, we note a similarity in the form of each of the relations:

µrg(T, p) = µig(T, p0) + RT ln

(

(φpure gas)
p

p0

)

(43)

µ
rg
i (T, p) = µ

ig
i (T, p0) + RT ln

(

(

φ̂i

) pi

p0

)

(44)

µrs
i (T, p) = µi(T, p, pure) + RT ln (xi γi) (45)

Each of these expression for the chemical potential of a species ”i” (Equation 43 for a pure species, and Equations 44

and 45 for species ”i” in gas and liquid mixtures, respectively) has the following general form:
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µreal
i (T, p) = µi(reference state) + RT ln (ai) (46)

This defines the activity of species ”i”, ai with respect to some reference, or standard, state. The activity contains the

non-ideality of the mixture (enthalpy and entropy of mixing). Since it is usually introduced in the context of liquid

mixtures, we first consider the condensed phase (liquid) case.

For a species ”i” in a liquid mixture, the activity is defined as:

ai = γi xi (47)

=
xi f̂

liquid
i

fi xi

(48)

ai =
f̂

liquid
i

fi

(49)

Equation 49 is a general definition of the activity of a species ”i” in a liquid mixture. To generalize to any mixture,

we can write

ai =
f̂mixture

i

fi

(50)

Finally, we allow for the denominator to represent an arbitrary reference, or standard, state to obtain our final

expression defining the activity generally in terms of fugacities:

ai =
f̂mixture

i

f0

i

(51)

where the superscript ”0” refers to the standard state. Equation 51 is our general definition of activity.

With this definition of activity, we can now quickly write new expressions for the activity coefficients for liquid and

gas mixtures:

• Liquid Mixture: γ
liquid
i = ai

xi
=

f̂
liquid

i

xi f0

i

• Gas Mixture: γ
vapor
i = ai

yi
=

f̂
vapor

i

yi f0

i

=
φ̂

vapor

i
yi p

yi f0

i

=
φ̂

vapor

i
p

f0

i

• For the gas mixture introduced in the previous line, we can consider, for the moment, two reference (standard)

states.
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Pure ideal gas standard state at p0: γ
vapor
i =

φ̂
vapor

i
p

p0 = φ̂
vapor
i

p

p0

Pure ideal gas standard state at the pressure of interest, p:

γ
vapor
i =

φ̂
vapor

i
p

p
= φ̂

vapor
i

p

p
= φ̂

vapor
i

Using the relations for the activity, activity coefficient, and knowledge of the meaning of fugacity (i.e, its relation to

chemical potential), we are equipped to handle various cases for treating vapor-liquid equilibria. In effect, this allows

us to treat all cases in a general way.

For example, if we have an ideal vapor above a non-ideal liquid mixture, the activity of a species in the liquid mixture

is:

a
liquid
i =

f̂
liquid
i

f0

i

(52)

Here, we make use of the fact that f̂
liquid
i = f̂

vapor
i and f̂

vapor
i = φ̂

vapor
i yi p = yi p (recall that φ̂

vapor
i = 1 for

ideal vapor) to write:

a
liquid
i =

f̂
liquid
i

f0

i

=
f̂

vapor
i

f0

i

=
yi p

f0

i

(53)

If we take the standard state for the liquid as being the pure liquid at its saturation (vapor pressure), then we have

f0

i = f
sat,liquid
i = f

sat,vapor
i = φ

sat,vapor
i psat

i = (1) psat
i , the last equality being since the vapor is ideal (for pure

”i” and when it is in the ideal gas mixture). This gives us finally for the activity of species ”i” in the liquid mixture:

a
liquid
i =

f̂
liquid
i

f0

i

=
f̂

vapor
i

f0

i

=
yi p

psat
i

(54)

Making use of the fact that yi p is the partial pressure of ”i” in the ideal gas mixture above the non-ideal solution,

we can write:

a
liquid
i =

f̂
liquid
i

f0

i

=
f̂

vapor
i

f0

i

=
pi

psat
i

(55)

The last expression is Equation 9.48 in your text book, though in this presentation, we have formally derived it within

the rigorous context of fugacities. Note that Equation 9.48 in your text is presented based on the same approximations

and standard states we have used in the present discussion, thus both are equivalent.
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