MUSEUM
INFORMATION

University Museums are currently closed. We will reopen on February 11, 2015. Download our Spring 2015 Exhibitions and Programs Bulletin here (PDF).

 

Hours:
Wed-Sun 12:00-5:00 pm
Thur - 12:00-8:00 pm
Closed during University breaks and holidays

Main Phone:
302-831-8037

universitymuseums@udel.edu

 

MECHANICAL HALL GALLERY

30 North College Ave.
Newark, DE 19716

Directions

Parking:
Parking for the Mechanical Hall Gallery is in Trabant University Center Garage located between Delaware Avenue and Main St.

Phone:
302-831-8037 (Information)
302-831-8088 (Museum)

 

MINERALOGICAL MUSEUM

255 Academy St.
Newark, DE 19716

Directions

Parking:
Parking for the Mineralogical Museum is in Perkins Garage located on Academy Street.

Phone:
302-831-6557 (Curator)
302-831-8037 (Information)
302-831-4940 (Museum)

 

OLD COLLEGE GALLERY

18 East Main St.
Newark, DE 19716

Directions

Parking:
Parking for the Old College Gallery is in Trabant University Center Garage located between Delaware Avenue and Main St.

Phone:
302-831-8037 (Information)
302-831-6589 (Museum)

 

 

HELP US GO GREEN!

Please join our e-mail list to receive the latest news on our upcoming exhibitions!

 


“ We made the
UD Bucket List!”

MINERALOGICAL MUSEUM

Copper, Ray Mine, Pinal County, Arizona, 1 ½ x 3 ¾ x ½ in.

Sculpted by Nature: Silver and Copper
from the Peter H. Farquhar Collection

September 3 – December 7, 2014

The exceptional specimens on display this fall are examples of the rare occurrence of copper and silver as pure metals. Having taken on a variety of crystalline or wire-like shapes as a result of the conditions of their growth and their internal atomic structures, these specimens may mimic organic tree-like forms or abstract sculptures; they may also form complex, well-defined crystals in geometric shapes. Examples are known from the copper and silver deposits of the Keweenaw Peninsula in Michigan and the silver mines of the Kongsberg district in Norway.

These “sculptures” of natural copper and silver are generously lent by Peter H. Farquhar.

read more/related programs

For a full listing of all University Museums programs for all galleries, please visit our Program Calendar here.

Although the Mineralogical Museum was founded with the gift of the collection of Irenee du Pont, Sr., it has grown to encompass specimens gifted or made possible by many generous donors, including Mrs. David Craven, Alvin B. Stiles and Frederick Keidel. Because of our intimate space, we have chosen to focus on individual displays that illustrate particular mineralogical concepts or themes. These include gem minerals from the du Pont collection mined in the early 20th century, as well as more recent finds of minerals from North America. Newly installed display cabinets with fiber optic lighting provide accurate color balance for specimens from the wire silvers to the vivid orange wulfenites.

REGIONAL MINERALS

The new exhibition of minerals from Delaware, Maryland and Pennsylvania includes both specimens from mines that have not operated in decades and others discovered more recently, such as the calcite from the Roosevelt Quarry, York, Pennsylvania, mined in 2005.  The diversity of the geological environments is reflected in the diversity of the minerals themselves: blue celestines from operating limestone quarries; green pyromorphite from long abandoned lead mines; pyrite from nearby iron mines.



Pyromorphite: Calbeck Fells, Cumbria, England (6 cm x 4 cm x 4 cm)
Irenee du Pont Exhibit

The minerals exhibited here are from the collection of Irenee du Pont, Sr. (1876 – 1963), whose collection was gifted to the University of Delaware in 1964. Du Pont purchased much of his collection from George Kunz, Vice-President of Tiffany & Co., in 1919. This display emphasizes minerals from extinct localities – deposits that have been mined out or even mines that have vanished into later open pit mining operations.

Two boxes of tourmaline crystals are part of a set of four fitted boxes with specimens from the Himalaya Mine, San Diego County, California, acquired from Kunz. The Himalaya Mine opened in 1898 and was the world’s largest producer of tourmalines, largely exported to China for carving as snuff bottles and other small objects.

The lead and bismuth specimens in this display are important rarities, as these elements are almost always found in combination with other elements in minerals and not in their native states.



Rhodochrosite: Santa Isabella Vein, Huallapon Mine, Pasto Bueno, Peru (9 cm x 6 cm x 3.75 cm)
Crystal System Exhibit

All minerals are crystalline, with orderly and repeating arrangements of atoms. Growth occurs by the addition of atoms to the arrangement. If growth takes place in an open space or in soft material, a crystal, reflecting the internal atomic arrangement may form. Although ideal crystals are perfect shapes, many actual crystals are distorted due to variations in growth over time.

Although, there are enormous variations in crystal shapes, they can all be grouped into six crystal systems based on the geometry of the internal structure.



Calcite on sphalerite: Elmwood, Tennessee (21.5 cm x 17.5 cm x 13 cm)
United States – Canada Exhibit

These minerals illustrate the breadth of specimens found in the United States and Canada. Most of the minerals on display were the by-product of mining operations for copper, lead, zinc and other metals. The term “lunch box” specimen can be applied to some, as miners often removed fine crystal specimens during work hours, sparing them from the ore crushers. There have been few ventures strictly for the mining of mineral specimens.



Goethite: Rio Tinto District, Andalusia, Spain (18 cm x 16 cm x 14 cm)
Minerals From Caves Exhibit

Almost all caves are limestone, with light- colored white to beige stalactites and stalagmites. Other unique cave deposits include vivid pink rhodochrosite stalactities in Argentina, deep green banded malachite formations in Republic of Congo and exotic specimens such as this goethite from Spain.



Hematite pseudomorph after magnetite: Altiplano de Payun Matru, Argentina (3.5 cm x 3.5 cm x 12.5 cm)
Pseudomorphs and other Growth Phenomena

A pseudomorph is a “false form” – one mineral adopting the shape of another; the second mineral is said to be a pseudomorph after the first. Pseudomorphs may be formed in different ways;

- A mineral formed under certain conditions may change to another, chemically similar mineral with a different atomic arrangement, if the conditions change. The illustrated hematite is an example of this type
- A mineral may be replaced by another that has such a great chemical difference that it is considered a replacement pseudomorph
- A mineral may coat another, preserving the original shape and forming an encrustation pseudomorph. All of these are illustrated by specimens on exhibition.

Crystals may also deviate from their ideal shapes because of internal defects in atomic arrangement or because of the manner in which the atoms have been bonded to the surfaces of crystal faces during growth. Elongated or twisted crystals sometimes result from these arrangements.

  • University of Delaware   •   Newark, DE 19716   •   USA
    Phone: (302) 831-2792   •   © 2011