
i

Combined Refraction/Diffraction Model

REF/DIF 1
Version 3.0

Documentation and User’s Manual

James T. Kirby, Robert A. Dalrymple and Fengyan Shi

Center for Applied Coastal Research
Department of Civil and Environmental Engineering

University of Delaware, Newark, DE 19716

Research Report NO. CACR-02-02

September 2002

Supercedes Version 2.5 (Report No. 94-22, 1994)

i

Contents

1 INTRODUCTION 1

1.1 Legal Information . 1

1.1.1 Limits to Liability . 1

1.1.2 The GNU Public License . 1

1.2 Notes on Using REF/DIF 1 in the NOPP Nearshore Community Model System. 6

1.3 Document and Source Code Generation using NOWEB 6

2 THEORETICAL BACKGROUND 6

2.1 Wave Models . 8

2.1.1 Mild slope equation . 8

2.1.2 Diffraction models . 9

2.1.3 Nonlinear combined refraction/diffraction models 9

2.1.4 Wave-current interaction models . 10

2.2 Assumptions . 12

2.3 Energy Dissipation . 13

2.3.1 General form . 13

2.3.2 Laminar surface and bottom boundary layers . 13

2.3.3 Turbulent bottom boundary layer . 13

2.3.4 Porous sand . 13

2.3.5 Wave breaking . 14

2.4 Wave Climate . 14

2.4.1 Monochromatic waves . 14

2.4.2 Discrete directional waves (not presently recommended) 15

2.4.3 Directional spectrum (not presently recommended) 15

2.5 Model Output . 16

2.5.1 Complex Amplitude . 16

2.5.2 Wave Heights and Angles . 16

2.5.3 Radiation Stresses and Forcing Terms . 16

2.5.4 Wave-Induced Mass Flux . 17

2.5.5 Velocity Moments for Bottom Stress Calculation 18

2.6 Numerical Development . 18

2.6.1 Crank-Nicolson Technique . 18

2.6.2 Initial and Lateral Boundary Conditions . 19

2.6.3 Subgrids . 19

2.6.4 Damping of Spurious Computational Modes . 19

ii

3 USER’S MANUAL 20

3.1 REF/DIF 1 Revision History. 20

3.1.1 Changes Appearing in Version 2.0 . 20

3.1.2 Changes Appearing in Version 2.1 . 21

3.1.3 Changes Appearing in Version 2.2 . 21

3.1.4 Changes Appearing in Version 2.3 . 21

3.1.5 Changes Appearing in Version 2.4 . 21

3.1.6 Changes Appearing in Version 2.5 . 21

3.1.7 Changes Appearing in Version 3.0 . 23

3.2 Overview of Operating Manual . 24

3.3 Program Outline and Flow Chart . 24

3.4 Special Installation Instructions . 28

3.5 Computational Grids and Grid Interpolation . 28

3.5.1 Grid Subdivision . 30

3.5.2 User-specified Subgrids . 32

3.6 User Specification of Complex Amplitude on First Grid Row 35

3.7 Program Input: Model Control and Wave Data . 36

3.8 Program Input: Reference Grid and Subgrid Data . 42

3.9 Program Output . 43

3.9.1 Output log file . 43

3.9.2 Stored Output . 48

4 EXAMPLE CALCULATIONS 50

4.1 Waves Around an Artificial Island . 51

4.1.1 Setting up the Model . 52

4.1.2 The Input Data Files . 55

4.1.3 Model Results . 56

4.2 Wave Focussing by a Submerged Shoal . 59

4.2.1 The Input Data Files . 61

4.2.2 Model Results . 62

4.3 Waves Interacting with a Rip-Current . 64

4.3.1 Setting Up the Model . 64

4.3.2 Model Results . 67

4.4 Obliquely Incident Waves on a Plane Beach . 70

iii

5 REF/DIF 1 Program Listing 71

5.1 Refraction-Diffraction Model REF/DIF 1, Version 3.0. 72

5.2 INREF. 77

5.2.1 Read file names from namelist. 81

5.3 INWAVE. 87

5.4 MODEL. 92

5.5 GRID. 99

5.6 CON. 103

5.7 FDCALC. 105

5.7.1 FDCALC statement functions. 107

5.8 CTRIDA. 119

5.9 DISS. 120

5.10 RAND1. 121

5.11 RDFACT. 122

5.12 BNUM. 122

5.13 ACALC. 123

5.14 WVNUM. 124

5.15 Calculate wave forcing . 126

5.16 SPLINE1 . 134

5.17 SPLINT1 . 135

6 ADDITIONAL MODEL COMPONENTS 136

6.1 master.f . 136

6.2 param.h . 137

6.3 common.h . 137

6.4 pass.h . 137

7 PROGRAMS FOR GENERATING AND POST-PROCESSING DATA FILES 138

7.1 indat-createv26.f . 139

7.2 datgenv26.f . 144

7.3 surface.f . 157

7.4 refdifplot.m . 160

8 FREQUENTLY ASKED QUESTIONS 162

9 REFERENCES 164

iv

List of Figures

1 REF/DIF 1: refdif1 program level . 25

2 REF/DIF 1: model subroutine level . 26

3 Reference grid notation. 29

4 Sample grid subdivision . 31

5 Interpolation of depth data . 33

6 User-defined subgrids . 34

7 Sample title page 1 . 44

8 Sample title page 2 . 45

9 Artificial island geometry . 51

10 Locations for wave height measurements . 52

11 Representation of the island geometry in the program. 53

12 Measurement points in relation to reference grid. 54

13 Artificial island example: contours of instantaneous surface elevation. 57

14 Artificial island example: contours of wave height. 58

15 Bottom contours and computational domain for the experiment of Berkhoff et al (1982).

Experimental data on transects 1-8. 60

16 Results for waves propagating over a submerged shoal: surface elevation contours. 62

17 Results for waves propagating over a submerged shoal: wave height contours. 63

18 Pattern of orthogonals and wave crests for waves in presence of rip currents: refraction ap-

proximation. (from Arthur, 1950) . 65

19 Wave pattern on an ebb-tidal jet. (from Hales and Herbich, 1972) 66

20 Waves interacting with a rip current. Shoreline at right. Surface displacement contours. . . . 68

21 Waves interacting with a rip current. Shoreline at right. Wave height contours. 69

v

1 INTRODUCTION

REF/DIF 1 is presently used by hundreds of researchers, practicing engineers and planners worldwide. The

program is freely distributed through the web site

http://chinacat.coastal.udel.edu/ kirby/programs/refdif/refdif.html,

and links to various activities using the program are provided. The program is provided without warranty and

under the copyright model of the Free Software Foundation, as detailed below.

Work on the present upgrade of REF/DIF 1 is supported by the National Ocean Partnership Program

(NOPP) through the project “Development and Verification of a Comprehensive Community Model for Physi-

cal Processes in the Nearshore Ocean”, described at http://chinacat.coastal.udel.edu/ kirby/NOPP/index.html.

The main goal in the upgrade to Version 3.0 has been to provide compatibility between REF/DIF 1 and

the Nearshore Community Model system. Similar compatibility is being provided for the spectral model

REF/DIF S (Chawla et al, 1998), and a time dependent refraction/diffraction model developed by Kennedy

and Kirby (2002). Each of these models will be documented independently and will be provided as free

standing programs and as Nearshore Community Model components.

1.1 Legal Information

This section provides information pertaining to copyright and warranty. This information pertains to the

free-standing REF/DIF 1 program and to the Nearshore Community Model framework as a whole.

1.1.1 Limits to Liability

REF/DIF 1 is provide as is, without representation as to its fitness for any purpose, and without warranty of

any kind, either express or implied, including without limitation and implied warranties of merchantability

and fitness for a particular purpose. The University of Delaware shall not be liable for any damages, in-

cluding special, indirect, incidental, or consequential damages, with respect to any claim arising out of or in

connection with the use of this software, even if it has been or is hereafter advised of the possibility of such

damages.

1.1.2 The GNU Public License

REF/DIF 1 has been developed by James T. Kirby, Robert A. Dalrymple and Fengyan Shi for the purpose

of computing the combined refraction/diffraction of monochromatic surface water waves in the coastal envi-

ronment. The program is copyright (C) 2002 by James T. Kirby, Robert A. Dalrymple and Fengyan Shi. The

particulars of the GNU Public License follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The ”Program”, be-

1

low, refers to any such program or work, and a ”work based on the Program” means either the Program

or any derivative work under copyright law: that is to say, a work containing the Program or a por-

tion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter,

translation is included without limitation in the term ”modification”.) Each licensee is addressed as

”you”.

Activities other than copying, distribution and modification are not covered by this License; they are

outside its scope. The act of running the Program is not restricted, and the output from the Program is

covered only if its contents constitute a work based on the Program (independent of having been made

by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an appropriate copy-

right notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the

absence of any warranty; and give any other recipients of the Program a copy of this License along

with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer

warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on

the Program, and copy and distribute such modifications or work under the terms of Section 1 above,

provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files

and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is

derived from the Program or any part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must cause it,

when started running for such interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a notice that there is no warranty (or

else, saying that you provide a warranty) and that users may redistribute the program under these

conditions, and telling the user how to view a copy of this License. (Exception: if the Program

itself is interactive but does not normally print such an announcement, your work based on the

Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are

not derived from the Program, and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those sections when you distribute them as

2

separate works. But when you distribute the same sections as part of a whole which is a work based on

the Program, the distribution of the whole must be on the terms of this License, whose permissions for

other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by

you; rather, the intent is to exercise the right to control the distribution of derivative or collective works

based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a

work based on the Program) on a volume of a storage or distribution medium does not bring the other

work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of the

following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be

distributed under the terms of Sections 1 and 2 above on a medium customarily used for software

interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a

charge no more than your cost of physically performing source distribution, a complete machine-

readable copy of the corresponding source code, to be distributed under the terms of Sections 1

and 2 above on a medium customarily used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corresponding source

code. (This alternative is allowed only for noncommercial distribution and only if you received

the program in object code or executable form with such an offer, in accord with Subsection b

above.)

The source code for a work means the preferred form of the work for making modifications to it. For

an executable work, complete source code means all the source code for all modules it contains, plus

any associated interface definition files, plus the scripts used to control compilation and installation of

the executable. However, as a special exception, the source code distributed need not include anything

that is normally distributed (in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs, unless that component itself

accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,

then offering equivalent access to copy the source code from the same place counts as distribution of

the source code, even though third parties are not compelled to copy the source along with the object

code.

3

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under

this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,

and will automatically terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants

you permission to modify or distribute the Program or its derivative works. These actions are prohibited

by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any

work based on the Program), you indicate your acceptance of this License to do so, and all its terms

and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically

receives a license from the original licensor to copy, distribute or modify the Program subject to these

terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the

rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason

(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions

of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may not distribute the Program

at all. For example, if a patent license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then the only way you could satisfy

both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the

balance of the section is intended to apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims

or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of

the free software distribution system, which is implemented by public license practices. Many people

have made generous contributions to the wide range of software distributed through that system in

reliance on consistent application of that system; it is up to the author/donor to decide if he or she is

willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of

this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by

4

copyrighted interfaces, the original copyright holder who places the Program under this License may

add an explicit geographical distribution limitation excluding those countries, so that distribution is

permitted only in or among countries not thus excluded. In such case, this License incorporates the

limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License

from time to time. Such new versions will be similar in spirit to the present version, but may differ in

detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of

this License which applies to it and ”any later version”, you have the option of following the terms and

conditions either of that version or of any later version published by the Free Software Foundation.

If the Program does not specify a version number of this License, you may choose any version ever

published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions

are different, write to the author to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.

Our decision will be guided by the two goals of preserving the free status of all derivatives of our free

software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR

THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-

ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-

VIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO

THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO-

GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-

AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-

AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT

NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES

SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

5

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

1.2 Notes on Using REF/DIF 1 in the NOPP Nearshore Community Model System.

REF/DIF 1 has been commonly used as a wave-driver in conjunction with a number of wave-induced

nearshore circulation models. At present, a comprehensive community model is under development with

the support of the National Ocean Partnership Program (NOPP). As this code is developed, small adjust-

ments will be needed in the REF/DIF 1 program in order to accomodate the needs of the overall modelling

system. Changes which are transparent to the users of REF/DIF 1 as a stand-alone program will not trigger

a revision of the program documentation. Notes on using REF/DIF 1 in the context of the comprehensive

system will appear here.

The NOPP model system is now undergoing preliminary development and documentation, and will be

described separately.

1.3 Document and Source Code Generation using NOWEB

The program source and documentation for REF/DIF 1 are maintained using NOWEB, which is described

at http://www.eecs.harvard.edu/ nr/noweb/.

2 THEORETICAL BACKGROUND

The propagation of water waves over irregular bottom bathymetry and around islands involves many pro-

cesses – shoaling, refraction, energy dissipation and diffraction. Until recently, only very approximate mod-

els existed to predict the wave behavior due to these effects. This manual describes the weakly nonlinear

combined refraction and diffraction model initialy developed by Kirby and Dalrymple (1983a), which incor-

porates all of the effects mentioned above.

The practical analysis of the refraction of water waves has generally been carried out in the past using ray

tracing techniques. This technique does not include wave diffraction, and therefore it is inaccurate whenever

diffraction effects are important. Often due to complexities in the bottom topography, wave tracing diagrams

have many intersecting wave rays which leads to difficulties in interpretation, as the theory predicts infinite

wave heights at these locations. Recently, finite difference refraction models have been developed which have

the advantage of providing wave heights and directions on a model grid rather than on irregularly spaced rays

(see, for example, Dalrymple (1988, 1991)).

The diffraction of water waves around simple structures such as an offshore breakwater has been obtained

analytically for a constant water depth, Sommerfeld (1896). Diagrams of the wave heights in the vicinity of

such a structure have been presented by the Corps of Engineers (1973, also Wiegel, 1962). For a cylindrical

6

structure, MacCamy and Fuchs (1954) presented the constant depth solution. These solutions give not only

the wave height transmitted past the structure, but also the scattered, or reflected, wave radiating away from

the structure. Generalized versions of these diffraction problems, using numerical techniques and the Green’s

function method, have yielded very powerful procedures for wave force calculation for cases where the drag

force is much smaller than the inertia force.

In order to incorporate diffractive effects, the general practice has been to suspend refraction in areas

where diffraction is dominant and only permit diffraction there, using Sommerfeld’s analytic solution for a

flat bottom. Far from the diffraction area, refraction is resumed. This ad-hoc technique clearly is inaccurate,

but does permit the inclusion of diffraction in an approximate way.

Combined refraction/diffraction models include both effects explicitly, thus permitting the modelling of

waves in regions where the bathymetry is irregular and where diffraction is important. Regions where wave

rays cross due to local focussing or where caustics are caused by other means are treated correctly by the

models and no infinite wave heights are predicted. The models, developed in parabolic form, do not predict

the waves which are scattered upwave; that is, waves which are reflected directly back the way they came

are not modelled and are neglected. This means, in general, wave reflection phenomena are not reproduced

correctly.

Combined refraction/diffraction models are uniquely suited for the calculation of wave heights and wave

direction in areas where one or both of these effects are present. Examples include the determination of wave

heights in a bay given the offshore wave heights, periods and directions, and determination of the amount

of wave energy penetrating an island chain, or calculation of the sheltering and hence the disturbance of the

littoral processes by an island situated near a shoreline. They are not intended to replace diffraction theories

currently in use for wave force calculations.

The weakly nonlinear combined refraction and diffraction model described here, denoted REF/DIF 1, is

based on a Stokes expansion of the water wave problem and includes the third order correction to the wave

phase speed. The wave height is known to second order (Liu and Tsay (1984)). It should be noted that it

is not a complete third order theory, as all the third order terms are not retained. Known ambient currents,

which effect the height and direction of wave propagation, are input for the model and enable it to predict

waves where currents may be strong.

The application of the theoretical model to practical situations involves the use of a parabolic approxima-

tion, which restricts the model to cases where the wave propagation direction is within ±60◦ of the assumed

wave direction, and the use of finite difference techniques for the wave amplitude, which results in tridiagonal

matrices, which are computationally very fast to invert.

The REF/DIF 1 model is described in detail in this manual, which also documents the application of the

model to actual examples and provides explicit descriptions of the input and output.

7

2.1 Wave Models

2.1.1 Mild slope equation

The problem of water waves propagating over irregular bathymetry in arbitrary directions is a three-dimensional

problem and involves complicated nonlinear boundary condition. Very few solutions to the three dimensional

problem exist and those that do are only for flat bottoms. In one horizontal dimension, sophisticated mod-

els by Chu and Mei (1970) and Djordjevic and Redekopp (1978) predict the behavior of Stokes waves over

slowly varying bathymetry. In order to simplify the problem in three dimensions, Berkhoff (1972), noted

that the important properties of linear progressive water waves could be predicted by a weighted vertically

integrated model. (The vertical integration reduces the problem to only the two horizontal dimensions, x and

y.)

Berkhoff’s equation is known as the mild slope equation. It is written in terms of the surface displacement,

η(x, y). The equation, in terms of horizontal gradient operator, is

∇h · (CCg∇hη) + σ2Cg
C
η = 0 (1)

Here,

C =
√

(g/k) tanh kh, the wave celerity,

Cg = C{1 + 2kh/ sinh2kh}/2, the group velocity,

where the local water depth is h(x, y) and g is the acceleration of gravity. The local wave number, k(x, y), is

related to the angular frequency of the waves, σ, and the water depth h by the linear dispersion relationship,

σ2 = gk tanh kh (2)

The model equation (1) is an approximation; however, it is quite good even for moderately large local

bottom slopes (see Booij, 1983). In both deep and shallow water, it is exact. Numerous authors have applied

the mild slope model to various examples, primarily using finite element techniques. See, for example,

Jonsson and Skovgaard (1979), Bettess and Zienkiewicz (1977), and Houston (1981).

For the linear mild slope equation, Radder (1979) developed a parabolic model, which had several ad-

vantages over the elliptic form presented by Berkhoff. First, the boundary condition at the downwave end

of the model area is no longer necessary and, secondly, very efficient solution techniques are available for

the finite difference form of the model. Radder used a splitting matrix approach, which involves separating

the wave field into a forward propagating wave and a backward propagating wave, and then neglecting the

backward scattered wave (which is justified in most applications as only the forward propagating wave is used

for design). Radder’s approximation for derivatives transverse to the wave direction results in a restriction on

his parabolic model: the waves must propagate within 45◦ of the assumed wave direction. Booij (1981) also

developed a splitting of the elliptic equation, but his procedure included more terms in the approximation to

8

the lateral derivative and therefore his procedure enables the parabolic model to handle waves propagating

within 60◦ of the assumed direction. Booij’s procedure is usually used in the REF/DIF 1 model.

More recently, Kirby (1986b) has developed an extension to the Booij approximation based on a Minimax

principle, which further extends the range of validity of the model equations. The wave-current version of

the resulting model is included here as an option, and may be chosen by modifying the choice of coefficients

in the FDCALC (see equations 12 and 13).

2.1.2 Diffraction models

In contrast to the mild slope model which is valid for varying bathymetry, researchers in the area of wave

diffraction were developing models for constant bottom applications. For example, Mei and Tuck (1980)

developed a simple parabolic equation for wave diffraction and applied it to the diffraction of waves by a

slender island. Their equation is
∂A

∂x
=

i

2k

∂2A

∂y2
(3)

where A is a complex amplitude related to the water surface displacement by

η = Aei (kx−σt) (4)

Yue and Mei (1980), using a multiple scales approach, developed a nonlinear form of this equation, which

accurately predicts the propagation of a third order Stokes wave. A striking result of their numerical exper-

iments was the development of Mach stem reflection due to the reflection of obliquely incident waves from

a breakwater. This phenomenon is uniquely a nonlinear effect and not predictable from a linear refraction

theory.

The parabolic model described below combines the essential features of the two approaches described

above. The variable depth features of the mild-slope equation (along with extensions to include effects of

wave-current interaction) are retained, but the model is developed in parabolic form and in terms of a complex

amplitude A.

2.1.3 Nonlinear combined refraction/diffraction models

Kirby (1983), using a Lagrangian approach, and Kirby and Dalrymple (1983a), with a multiple scales tech-

nique, developed the predecessor to the REF/DIF 1 model, which bridged the gap between the nonlinear

diffraction models and the linear mild slope equation. This model can be written in several forms depending

on the application. The hyperbolic form, for time dependent applications, and the elliptic form, for steady

state problems, require the use of boundary conditions on all sides of the model domain. This is a difficult

requirement, as the reflected wave at a boundary is not generally known a priori. These models, however,

have the advantage that there is no restriction on the wave direction.

A detailed comparison of results of the weakly-nonlinear model of Kirby and Dalrymple(1983a) to labo-

ratory data was shown by Kirby and Dalrymple (1984). The laboratory test, conducted at the Delft Hydraulics

9

Laboratory by Berkhoff, Booij and Radder (1982), consisted of determining the wave amplitude over a shoal

on a sloping bottom. While results predicted by ray tracing techniques were shown by Berkhoff, Booij and

Radder to be very poor, the agreement between the weakly-nonlinear model and the laboratory data was ex-

cellent. Comparisons between linear and nonlinear parabolic models clearly showed the importance of the

nonlinear dispersion terms in the governing equations.

2.1.4 Wave-current interaction models

Booij (1981), using a Lagrangian approach, developed a version of the mild slope equation including the

influence of current. This model is a weak current model in that the currents are assumed to be small and

any products of currents are neglected as small. Kirby (1984) presented the corrected form of this mild slope

model. A nonlinear correction and the ability to handle strong currents were added by Kirby and Dalrymple

(1983b) and results for waves interacting with a current jet were obtained. Their equation is

(Cg + U)Ax + V Ay + i(k̄ − k)(Cg + U)A+
σ

2

{

(

Cg + U

σ

)

x

+

(

V

σ

)

y

}

A

−
i

2σ

(

(p− V 2)Ay
)

y
− σ

k2

2
D|A |

2
A = 0 (5)

where p = CCg and k̄ = reference wave number, taken as the average wave number along the y axis, and

U is the mean current velocity in the x coordinate direction and V is in the y direction. The nonlinear term

includes D, which is

D =
(cosh 4kh+ 8 − 2 tanh2 kh)

8 sinh4 kh

Kirby (1986a) rederived the above equation for a wide angle parabolic approximation, which allows the

study of waves with larger angles of wave incidence with respect to the x axis. This more accurate equation

was used as the basis for earlier versions of REF/DIF 1. The equation has been extended to include the

more accurate minimax approximation (Kirby, 1986b) for the present version of REF/DIF 1. The revised

governing equation is given by

(Cg + U)Ax − 2∆1V Ay + i(k̄ − a0k)(Cg + U)A+

{

σ

2

(

Cg + U

σ

)

x

− ∆1σ

(

V

σ

)

y

}

A

+ i∆′

[

(p− V 2)

(

A

σ

)

y

]

y

− i∆1

{[

UV

(

A

σ

)

y

]

x

+

[

UV

(

A

σ

)

x

]

y

}

+
iσk2

2
D|A |

2
A+

w

2
A+

−b1
k







[

(p− V 2)

(

A

σ

)

y

]

yx

+ 2i

(

σV

(

A

σ

)

y

)

x







+ b1β







2iωU

(

A

σ

)

x

+ 2iσV

(

A

σ

)

y

− 2UV

(

A

σ

)

xy

+

[

(p− V 2)

(

A

σ

)

y

]

y







−
i

k
b1 {(ωV)y + 3(ωU)x}

(

A

σ

)

x

− ∆2

{

ωU

(

A

σ

)

x

+
1

2
ωUx

(

A

σ

)}

+ ikωU(a0 − 1)

(

A

σ

)

= 0 (6)

10

where

β =
kx
k2

+

(

k(p− U2)
)

x

2k2(p− U2)
(7)

∆1 = a1 − b1 (8)

∆2 = 1 + 2a1 − 2b1 (9)

∆′ = a1 − b1
k

k
(10)

and w is a dissipation factor discussed in the next section. The coefficients a0, a1 and b1 depend on the

aperture width chosen to specify the minimax approximation; see Kirby (1986). The combination

a0 = 1

a1 = −0.5

b1 = 0 (11)

recovers Radder’s approximation, while the choices

a0 = 1

a1 = −0.75

b1 = −0.25 (12)

recover the approximation of Booij (1981). The values of a0, a1 and b1 used for the Minimax approximation

depends on the range of angles to be considered; Kirby (1986b) found that the values for a maximum angular

range of 70◦ gave reasonable results over the range of angles typically used. The corresponding coefficient

values for this choice are

a0 = 0.994733

a1 = −0.890065

b1 = −0.451641 (13)

Equation (6) is the model equation used in REF/DIF 1. At present, the model still utilizes the Padé approxi-

mation form based on the coefficients in (12); testing is underway to extend the model to the minimax model

with coefficients (13).

In the previous two equations, the dispersion relationship relating the angular frequency of the wave, the

depth and the wave number is changed to reflect the Doppler shift due to currents. The new form of eq. (2) is

(ω − kU)2 = gk tanh kh (14)

where the absolute frequency, ω, is related to the intrinsic frequency, σ, by

ω = σ + kU (15)

where the assumption that the wave is primarily travelling in the x direction has been used.

11

2.2 Assumptions

The REF/DIF 1 model, in parabolic form, has a number of assumptions inherent in it and it is necessary to

discuss these directly. These assumptions are:

1. Mild bottom slope. The mathematical derivation of the model equations assumes that the variations

in the bottom occur over distances which are long in comparison to a wave length. For the linear

model, Booij (1983) performed a comparison between an accurate numerical model and the mild slope

model for waves shoaling on a beach. He found that for bottom slopes up to 1:3 the mild slope model

was accurate and for steeper slopes it still predicted the trends of wave height changes and reflection

coefficients correctly.

2. Weak nonlinearity. Strictly, the model is based on a Stokes perturbation expansion and is therefore

restricted to applications where Stokes waves are valid. A measure of the nonlinearity is the Ursell

parameter which is given as

U = HL2/h3 (16)

When this parameter exceeds 40, then the Stokes solution is no longer valid. In order to provide a

model which is valid in much shallower water, a heuristic dispersion relationship developed by Hedges

(1976) is provided as an option in the model. This relationship between the frequency and the water

depth is

σ2 = gk tanh (kh(1 + |A |/h)) (17)

In shallow water, this equation matches that of a solitary wave, while in deep water it asymptotically

approaches the linear wave result, neglecting real amplitude dispersive effects. For this reason, a model

with a dispersion relationship which is a smooth patch between the Hedges form (valid in shallow

water) and the Stokes relationship (valid in deep water) is used. This hybrid model is described in

Kirby and Dalrymple (1986b). There are, as a result of the different dispersion relationships possible,

three options in REF/DIF 1: (1), a linear model, (2), a Stokes-to-Hedges nonlinear model, and (3),

a Stokes model. Of these options, the second will cover a broader range of water depths and wave

heights than the others.

3. The wave direction is confined to a sector ±70◦ to the principal assumed wave direction, due to the use

of the minimax wide angle parabolic approximation of Kirby (1986b).

12

2.3 Energy Dissipation

2.3.1 General form

Energy dissipation in the model occurs in a number of ways depending on the situation being modelled. An

energy loss term, due to Booij (1981) and expanded by Dalrymple et al. (1984a), permits the model to treat

bottom frictional losses due to rough, porous or viscous bottoms, surface films, and wave breaking. The

linear form of the mild slope equation with dissipation is

∂A

∂x
=
i

k

∂2A

∂y2
+ wA (18)

where the dissipation factor,w, is given by a number of different forms depending on the nature of the energy

dissipation. The factor w is the energy dissipation divided by the energy and has the units of time−1.

2.3.2 Laminar surface and bottom boundary layers

At the water surface and at the bottom, boundary layers occur due to the action of viscosity. For a contam-

inated surface, resulting from surface films (natural or otherwise), a significant amount of damping occurs,

which is dependent on the value of the fluid viscosity. From Phillips (1966), the surface film damping is

w =
σk
√

(ν/2σ)(1 − i)

tanh kh
(19)

where ν is the kinematic viscosity. The term under the square root sign is related to the thickness of the

boundary layer, which is generally small. At the bottom, the boundary layer damping is

w =
2σk

√

(ν/2σ)(1 − i)

sinh 2kh
(20)

By setting the input switch, iff(3)=1 in the REF/DIF 1 model, surface and bottom damping are computed at

all locations in the model.

2.3.3 Turbulent bottom boundary layer

In the field, the likely wave conditions are such that the bottom boundary layer is turbulent. In this case,

an alternative specification of the energy dissipation must be provided. Utilizing a Darcy-Weisbach friction

factor, f, the dissipation term can be shown to be

w =
2σkf |A |(1 − i)

3π sinh 2kh sinh kh
(21)

See Dean and Dalrymple (1984). In order to implement this damping term, the value of f = 0.01 was

assumed. In REF/DIF 1, if the input data switch iff(1)=1, then turbulent damping is computed at all locations.

2.3.4 Porous sand

Most sea bottoms are porous and the waves induce a flow into the bed. This results in wave damping due to

the Darcy flow in the sand. For beds characterized by a given coefficient of permeability, Cp, the damping

can be shown to be

13

w =
gkCp(1 − i)

cosh2 kh
(22)

The coefficient of permeability, Cp, has the units of (m2) and is of order 4.5 x 10−11 m2. Liu and Dalrymple

(1984) show, for very permeable sands, that the damping is inversely related to Cp and a different w term

must be used. However, this case is not likely to occur in nature. Porous bottom damping is computed in

REF/DIF 1 when iff(2) = 1.

2.3.5 Wave breaking

For wave breaking, the model is more complicated. Dally et al. (1985) showed that the rate of loss of

wave energy flux is dependent on the excess of energy flux over a stable value. This model has been tested

for laboratory data for a number of different bottom slopes and predicts the wave height in the surf zone

extremely well. Kirby and Dalrymple (1986a) show that the dissipation due to wave breaking is given as

w =
KCg

(

1 − (γh/H)2
)

h
(23)

where K and γ are empirical constants, determined by Dally et al. to be equal to 0.017 and 0.4 respectively.

Here, the wave height,H = 2|A |. By using this dissipation model and a breaking index relation (H > 0.78h)

to determine the onset of breaking, the REF/DIF 1 model is able to represent waves both outside and inside

of a surf zone. The wave breaking algorithm is always active in the model.

Large surface piercing islands and causeways which would have surf zones are handled by the ‘thin film’

technique of Dalrymple, Kirby and Mann (1984b) and Kirby and Dalrymple (1986a). This procedure permits

the easy computation of wave heights around arbitrarily shaped islands by replacing islands with shoals of

extremely shallow depth (1 cm). The wave breaking routine reduces the wave heights over the shoal to less

than one half centimeter, which results in a wave which carries negligible energy and therefore no longer

affects any physical processes. Thus, the REF/DIF 1 model does not distinguish between islands and deeper

water computationally. However, the model output clearly shows the influence of the islands, as will be

shown in section 3. Examples of wave breaking and the combined refraction/diffraction model appear in

Kirby and Dalrymple (1986a) and Dalrymple et al. (1984b).

2.4 Wave Climate

2.4.1 Monochromatic waves

While the REF/DIF 1 model is typically used with monochromatic wave trains propagating in one given

direction, there is no intrinsic restriction to this case. As an example, for a given frequency, the wave di-

rection is determined by the initial wave height distribution provided by the user on the offshore grid row,

corresponding to x = 0. As this row is parallel to the y axis, the wave is generally prescribed as

A(0, y) = A0e
i`y (24)

14

where A0 is the given wave amplitude and ` is the wave number in the y direction. The ` is related to the

wave number k by the relationship, ` = k sin θ, where θ is the angle made by the wave to the x axis. This

case is obtained by using the data switches, iwave and nwavs set to one.

2.4.2 Discrete directional waves (not presently recommended)

For several waves with different directions at a given frequency, the following relationship could be used for

the initial wave condition:

A(0, y) =
nwavs
∑

n=1

Ane
i`ny (25)

The REF/DIF 1 model is equipped to calculate the wave field produced by this boundary condition for a

large number of user-supplied Ans and θns (up to 50). This mode is accessed by iwave=1 and nwavs set to

the number of discrete waves to be used.

2.4.3 Directional spectrum (not presently recommended)

Often, a cos2n θ directional spread is used with a given frequency component. This can be done with

REF/DIF 1 by specifying iwave equal to 2 and nwavs to the value of n. The total energy at frequency,

σ, is

E(σ) =

∫ 2π

0

En cos2n(
θ − θo

2
) (26)

In order to avoid the problem of waves propagating at large angles to the propagation direction, θ0, the

directional distribution of energy is automatically truncated to include only those directions which contain

more than 10% of the total energy.

To prescribe the initial conditions for the model, the directional distribution is discretized into 31 compo-

nents, each with an amplitude characteristic of the waves in that particular directional band. These discrete

waves are then assigned random phases and summed as in Eq. (21).

Note that this directional spectrum is for a given frequency, and not for a continuous distribution of

frequencies as in a true directional spectrum. At the present time, the REF/DIF 1 model can only calculate

waves at a single frequency per calculation. The model will compute numerous frequencies per computer run

(set nfreqs greater than one); however, they are not superimposable, as the wave-wave interactions between

different frequencies are not included. Using the linear mode (ntype=0) and superimposing the results will

provide a linear approximation to a directional spectrum.

The problem of computing the shoreward evolution of a directional spectrum of refracting, diffracting and

breaking waves is addressed in the model REF/DIF S (Chawla et al, 1998). This model is an enhancement

to REF/DIF 1 which allows for the simultaneous computation of many wave components as a simulation of

a random sea.

15

2.5 Model Output

2.5.1 Complex Amplitude

The complex amplitude A is output as a complex variable.

2.5.2 Wave Heights and Angles

Wave heights are calculated using H = 2|A|. Spatial smoothing of wave height is carried out if |ismooth| =

1. Wave angles are calculated by

θ = arctan

(

kx

kx + k̄

)

where k̄ represents the weighted average of k along the transverse y direction. (kx, ky) represent wave

number components in Cartesian coordinates (x, y).

2.5.3 Radiation Stresses and Forcing Terms

For a depth-integrated, time-averaged circulation model such as SHORECIRC, the radiation stress Sαβ is

defined as

Sαβ =

∫ ζ

−h0

(pδαβ + puwαuwβ)dz − δαβ
1

2
ρgh2 (27)

where uwα is the horizontal shortwave-induced velocity; h represents mean water surface elevation.

The generalized radiation stress tensor is given by

Sαβ = eαβSm + δαβSp (28)

where

eαβ =

[

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

]

(29)

The scalars Sm and Sp are defined as

Sm =

∫ ζ

−h0

ρu2
wdz (30)

Sp = −

∫ ζ

−h0

ρw2
wdz +

1

2
ρgη̄2 (31)

where η = ζ − h.

Outside the surfzone the results for sinusoidal waves are used and thus (30) and (31) may be written as

Sm =
1

16
ρgH2(1 +G) (32)

Sp =
1

16
ρgH2G (33)

where

G =
2kh

sinh 2kh
(34)

16

Inside the surfzone those results are augmented with the contribution from the roller using the results

from Svendsen (1984). Thus Sm and Sp are determined as

Sm = ρgH2 c
2

gh

[

B0 +
A

H2

h

L

]

(35)

and

Sp =
1

2
ρgH2B0 (36)

where A is the roller area and B0 is the wave shape parameter defined by

B0 =
1

T

∫ T

0

(η

H

)2

dt (37)

For a time-averaged 3D circulation model, radiation stresses are defined by the surface stress Ssαβ and the

body stress Sbαβ as following

Ssαβ = δαβ p̄ = −δαβρw2
w (38)

Sbαβ = ρuwαuwβ (39)

The body stress and surface stress may be evaluated by

Sbαβ =
1

h

∫ ζ̄

−h

ρuwαuwβdz (40)

Ssαβ = −
1

h

∫ ζ̄

−h0

ρwwwwdz (41)

Outside the surfzone Sbαβ and Ssαβ can be determined using sinusoidal wave theory

Sbαβ = eαβ
1

16

1

h
ρgH2(1 +G) (42)

Ssαβ = δαβ
1

16

1

h
ρgH2(G− 1) (43)

Inside the surfzone Sbαβ and Ssαβ can be written as

Sbαβ = eαβρgH
2 c

2

gh2

[

B0 +
A

H2

h

L

]

(44)

Ssαβ = δαβ
1

2

1

h
ρgH2(B0 − 1) (45)

For the depth-integrated, time-averaged circulation model, the short wave forcing terms are calculated by

Fα =
∂Sαβ
∂β

(46)

2.5.4 Wave-Induced Mass Flux

Outside the surfzone, the wave volume flux is given by

Qwα = B0
gH2

C

kα
k

(47)

where kα is the wave number vector in direction xα and C is the value of the phase velocity.

Inside the surfzone, the wave volume flux is given by Svendsen (1984)

Qwα =
H2C

h

(

B0 +
Ah

H2L

)

kα
k

(48)

17

2.5.5 Velocity Moments for Bottom Stress Calculation

2.6 Numerical Development

2.6.1 Crank-Nicolson Technique

The parabolic model is conveniently solved in finite difference form. In order to accomplish this, the study

area bathymetry must be input as a grid with the (x, y) directions, divided into rectangles of ∆x and ∆y

sizes. The complex amplitude A(x, y) will then be sought at each grid and therefore we can keep track of

A by denoting its location, not by (x, y), but by (i, j) where x = (i − 1)∆x and y = (j − 1)∆y. Now we

have to determine the values of A(i, j) which satisfy Eq.(6) for all i between 1 andm and for all j between 1

and n. The procedure involves expressing all the derivatives in the (x, y) directions in terms of the complex

amplitude at various grid points. For example, the forward difference representation of

∂A

∂x
=
Ai+1,j −Ai,j

∆x
at location i, j (49)

If a forward difference is used for the x direction and a central difference representation centered at i is used

for the second derivatives in the lateral direction for all the derivatives in Eq. (6), then an explicit finite

difference equation results for Ai+1,j . This equation can be solved directly for all the Ai+1,j , j = 1, 2, 3...n,

for a given i, provided appropriate lateral boundary conditions are prescribed. This explicit representation

is not as accurate as an implicit scheme and therefore an implicit Crank-Nicolson procedure is used for the

amplitude calculations. For a given i row, the Crank-Nicolson scheme can be written

aAi+1,k+1 + bAi+1,j + cAi+1,j−1 = dAi,j+1 + eAi,j + fAi, j − 1 (50)

where the coefficients a, b, c, d, e, f involve variable, complex and nonlinear terms. The amplitudes on the

left hand side of this equation are unknown, while the terms on the right hand side are known, from either

the previous calculation or from the initial boundary condition on j = 1 and n. This equation is solved for

all the Ai+1,j , j = 2n− 1 and i fixed, at once by a tridiagonal matrix solution procedure (Carnahan, Luther

and Wilkes, 1969), adapted for complex-valued coefficients. Due to the nonlinearity of the finite difference

equation, nonlinear terms are approximated on a first pass by using theAi,j values. Once theAi+1,j terms are

computed, the equation is solved again forAi+1,j using now the just- calculated values in the nonlinear terms.

This two-pass iterative method insures that the nonlinearities in the model are treated accurately (Kirby and

Dalrymple, 1983a). The solution proceeds by moving one grid row in the x direction (incrementing i by one)

and, using the two-pass implicit-implicit technique, determining the complex amplitude Ai+1,j for all the

values of j on this row. Marching in the wave direction these calculations are repeated until all the Ai,j are

known for all i and j. While it appears that the Crank-Nicolson procedure could be time consuming, given

that there is a matrix inversion for each grid row, the coefficient matrix size is only 3 by n and the matrix

inversion procedure is, in fact, very fast. The procedure is economical on storage as only the values for the

rows i and i+ 1 are necessary at each calculation.

18

2.6.2 Initial and Lateral Boundary Conditions

The initial condition is vital for the parabolic model. The furthest seaward grid row, corresponding to i = 1,

is taken as constant depth and the incident wave(s) is prescribed here. This wave is then propagated over the

bathymetry by the model. The various initial conditions were discussed in the section, Wave Climate.

As in the solution of any differential equation in a domain, the lateral boundary conditions are important.

There are several ways to treat the boundaries; however, none of the presently existing boundary conditions

result in the total transmission of scattered waves. Therefore, for the REF/DIF 1 model, a totally reflecting

condition is generally used for each side (j = 1 and n). This requires that the specification of the model grid

be done with care, as the reflection of the incident wave from the lateral boundaries can propagate into the

region of interest rapidly and result in erroneous results.

In general, the width of the model should be such that no reflection occurs until far downwave of the re-

gion of interest. As a precaution, a graphical representation of the computed wave field should be examined to

determine where the reflection from the boundaries is important. By using the switch, ibc, partially transmit-

ting boundaries can be used (Kirby, 1986c). In general, this boundary condition will result in less reflection

in the model domain; however, since some reflection will occur, it is recommended that runs be carried out

with the reflecting boundary conditions in order to assess the regions potentially affected by reflection from

the model boundaries.

2.6.3 Subgrids

In order to reduce the amount of data input and yet provide the user the ability to prescribe the fine scale

bathymetry in areas of interest, REF/DIF 1 utilizes a coarse scale user-specified reference grid and a fine

scale subgrid, which can have many times the resolution of the reference grid. The principal purpose of the

subgrid is to provide enough computational points to the numerical model to preserve accuracy. The user

specifies the number of subgrid divisions in the y direction with the parameter nd. If nd=1, then the subgrid

spacing in the y direction is the same as the reference grid. If nd=2, then the model uses twice as many

computational points in the y direction as there are in the reference grid. In the propagation direction, x,

the model will automatically determine the subgrid spacing if ispace has been set to unity. Otherwise, the

user provides the subgrid spacing using the input, mr, which permits variable spacing in the x direction. For

subgrids, the input flag, isp, must be set to one and an array, isd, must be specified.

2.6.4 Damping of Spurious Computational Modes

When the large angle parabolic approximation is used as a basis for the computation of wave fields around

islands, the presence of wave breaking, and resulting sharp lateral variations in wave height, leads to the

generation of high-wavenumber spectral components in the computed complex amplitudeA in the lateral (y)

direction. Kirby (1986a) has shown that these components have propagation velocities which can become

large in an unbounded fashion; as a result, they can propagate across the grid, filling the computational

19

domain with high-wavenumber noise.

Previous versions of REF/DIF 1 have attempted to control the high frequency noise generated by the

breaking process using smoothing filters, which are applied to the computed complex amplitude in between

each computational row. In version 2.5 of REF/DIF 1, this procedure was replaced by a new algorithm

described by Kirby et al (2002). The damping is built into the computational algorithm and is turned on

automatically if breaking has started anywhere in the computational domain.

3 USER’S MANUAL

This section provides the operating manual for the program REF/DIF 1. Section 4 provides sample docu-

mentation and calculations for example problems. A separate Fortran program datgenv26.f is provided which

generates the input data files for these as well as a number of additional examples. In addition, the programs

indat-createv26.f, which assists the user in constructing the indat.dat file, is provided.

3.1 REF/DIF 1 Revision History.

3.1.1 Changes Appearing in Version 2.0

Several changes have been made to the program released as Version 1.0 of REF/DIF 1. These changes are

outlined here for convenience.

Directional spectra application

The routine used to specify a directional spectrum as the initial condition for the wave calculations has

been extensively revised and tested. The present model is based on a Mitsuyasu-type spreading factor and

apportions wave directions and energy density in randomly-sized directional bins. In addition, the original

random number generator supplied with Version 1.0 was found to not be sufficiently random, and a new

version is supplied with Version 2.0.

ibc - Open Boundary Condition Parameter

Version 2.0 contains an option to use open lateral boundary conditions, which are designed to be rea-

sonably transparent both to entering and exiting waves, if the topography near the boundary is reasonably

uniform. The theory for these conditions are contained in the reference Kirby(1986c). It is recommended

that initial runs for a particular site be done with the default reflective conditions in order to see the magnitude

of the boundary effects and then to use the open conditions for final runs. The open boundary condition is

invoked by choosing a value of ibc=1 in the input data.

icur - No Currents Parameter

A new parameter icur is included in the input data, and determines whether or not the program is to read

in current values from the input data files. This change provides the option of not having to include zero

current values on input whenno currents are being considered.

20

3.1.2 Changes Appearing in Version 2.1

Version 2.1 represents a minor modification. The change consists of a revision of the input file format struc-

tures for the file indat.dat. The formats for this file have been replaced by free format read statements, so that

the user can enter data separated by comments without regard to the column structure. Note that data entered

in the previously defined formats will still be read properly, so existing indat.dat files will still work properly.

3.1.3 Changes Appearing in Version 2.2

Version 2.2 includes a revised version of a dissipation filter which is used to damp out noise after the onset of

breaking in the numerical computations. This filter has been found to be much more suitable in applications

to field situations than was the original filter.

In addition, Version 2.2 also provides the capability to input the first row of complex amplitude A from

a new external data file wave.dat. The procedures for specifying wave.dat are described in section 2.4 of the

manual.

3.1.4 Changes Appearing in Version 2.3

Version 2.3 provides a provision to save the last subdivided row of complex valued amplitudes computed on

the last model grid row in file owave.dat. This option is potentially useful if the user wants to perform a run

in several segments. owave.dat could then be used to store the intermediate calculation required to initialize

a subsequent model run. The provision for using this option is described in section 2.5. Use of this option

does not affect any internal model calculations.

3.1.5 Changes Appearing in Version 2.4

Version 2.4 incorporates two revisions to the basic model scheme. The first revision is an extension to the

model equations to handle the Minimax approximation of Kirby (1986b) as well as the Padé large angle

approximation (Booij, 1981; Kirby, 1986a). This algorithm is not used yet in the released version of the

program.

The second revision is the replacement of the add-on noise filtering algorithm with an algorithm that

functions as an imbedded part of the model equation and finite-difference approximation, as described by

Kirby (1993). Additionally, several inconsistencies appearing in input error checking have been corrected. A

more robust algorithm for computing wave angles (due to Medina (1991)) has been added.

3.1.6 Changes Appearing in Version 2.5

A substantial number of changes appear in Version 2.5. These changes represent a combination of data format

changes and enhanced post-processing, with the addition of several new computed output variables. Since

the use of Matlab is becoming more widespread, we have included a .m script which we are presently using

to present computed results.

21

Many of the changes in version 2.5 were made in order to include the model in the Littoral Remote Sens-

ing System (LRSS) developed for the U. S. Navy. In cases where the changes in data formats were consistent

with the vast majority of available Fortran 77 compilers (as in the use of namelist formats), the changes were

made directly in REF/DIF 1. In cases where the standard required the use of a non-typical format (as in

the use of the machine-independent binary HDF formats for large arrays), then the data transfer to and from

LRSS is handled using a pre- and post-processing layer. The intent is that the normal user of REF/DIF 1

should not need access to any tools beyond the usual Fortran compiler. We caution that namelist is not a

standard Fortran 77 feature; however, we have not found any compilers yet which do not provide this feature.

Revision to indat.dat file structure.

The most readily apparent change to the long-term user of REF/DIF 1 is the change to the use of namelist

to structure the indat.dat data file. The structure of the file and the meaning of each input variable are

described in section 2.7, and the file for each example is given in Chapter 3.

The program datgen.f supplied with older versions of the program has been updated and renamed to dat-

genv25.f. The new version produces the namelist formatted indat.dat file. Since long term users are likely

to have their own versions of old indat.dat files, we have also provided a new program indat-convertv25.f

which converts old indat.dat files to new indat.new files (which should then be renamed). A quick test of

the integrity of this new data file convention could be made by using the old datgen to generate an indat.dat,

converting it to indat.new, and then comparing it to the file indat.dat generated by the new datgenv25. The

two resulting files should be identical.

Use of param.h file to dimension arrays.

Changing dimensions in REF/DIF 1 in the past has involved a careful search through a number of sub-

routines to get all parameter statements revised properly. This has not been a pleasant process. In addition,

the specification of several array variables in namelist makes it necessary that the dimension of the array in

the program generating the data be the same as the dimension in the program reading the data.

For this reason, we have isolated the parameter statement in a file param.h, which is then used to dimen-

sion all of the programs. This file may be edited in isolation, after which all programs which are to be used

(pre- and post-processing as well as REF/DIF 1) should be recompiled. (For UNIX users, this updating is

automated by the included Makefile).

Stored output data files.

Prior to version 2.5, output was directed to two files. outat.dat was used primarily to store the complex

22

amplitude data, which could later be used to construct either a wave height field or an image of the instanta-

neous surface. Data was stored at the reference grid spacing. In instances where a large amount of internal

subdividing was being done, this procedure was inadequate for the construction of a picture of the surface,

since the surface undulations are not resolved at the reference grid spacing.

The remainder of output data in older versions was directed either to the screen or to a file rundat.dat.

This included header information and error log as well as x location, reference phase, height and wave angle

at each reference grid point. It has been difficult to use this information conveniently, since the appearance

of a warning or error message in the output could disturb the file format.

As a result, the output from REF/DIF 1 has been almost completely restructured in Version 2.5. Values

of wave height, wave angle, water depth and (in the near future) radiation stress components are stored in

separate files at the reference grid resolution. The complex amplitude data needed to construct a surface

image is stored at the computational resolution. The program surface.f interpolates this data onto a regularly

spaced rectangular grid and stores the surface image. These files are described in section 2.9. Finally, the

user may store an estimate of the magnitude of the bottom velocity in a file bottomu.dat.

3.1.7 Changes Appearing in Version 3.0

Changes to version 3.0 stem from an increase in the number of variables provided as output, and from initial

work to make the program compatible with the NOPP Nearshore Community Model modeling system. Some

of the philosophy of that system is discussed in Section 1.2.

The provisions in version 2.5 aimed at providing compatibility with the LRSS system have been dropped.

This has eliminated the separate need for the files infile1.f and infile2.f, and the single option infile1.f is now

imbedded where needed in the main code. All references to the LRSS HDF libraries have been eliminated,

along with the alternate Makefile.

23

3.2 Overview of Operating Manual

This section provides a description of the program structure (section 3.3), followed by some notes on prob-

lems which are likely to be encountered during the installation and use of the program on different computer

systems (section 3.4). Section 3.5 presents the two levels of grid information used by the program. Section

3.6 describes the option of reading in the first row of complex amplitude valuesA from an additional external

data file wave.dat. The input data file structure is then discussed. The program reads data in two essentially

separate groups. The first group of data establishes the size of the model grid and gives the wave conditions

to be studied; this group is discussed in section 3.7. The second group of data gives the reference grid data

values and defines any user-specified subgrids; this is discussed in section 3.8. The structure of the program

output is discussed in section 3.9.

A listing of the program is included in sections 5 and 6. Section 7 provides listings of several pre- and

postprocessing programs provided with the distribution of REF/DIF 1.

3.3 Program Outline and Flow Chart

The model REF/DIF 1 is organized in one main program WaveModule and fourteen subroutines. The pro-

gram does not contain calls to any external package, and should be free standing on any system. The program

should be a legal code for any compiler which accepts the full FORTRAN 77 standard language. A possible

exception would be the appearance of namelist statements, which are not part of the FORTRAN 77 standard

but which are provided by all compilers we have checked.

REF/DIF 1 is structured in two levels; a main level, which reads in and checks input data and then starts

the operation of the wave model level, and the model level itself, which performs the actual finite difference

calculations. The flow charts for the two levels are given in Figures 1 and 2. A short description of each

routine in the model follows.

1. WaveModule: Main program (now defined to be a subroutine) controls the calls to inref and inwave to

read in data, and to model, which performs the actual calculations. No calculations are performed by

this routine.

2. inref : Called by WaveModule. inref reads in data controlling reference grid dimensions and the grid

interpolation scheme from logical device number iun(5), and reads in the reference grid values of depth

dr, x-direction velocity ur and y-direction velocity vr from logical device number iun(1). Some data

checking is performed. If data is read in in English units, inref converts it to MKS units using the dconv

factor. Output files are initialized. A description of the data files may be found in sections 2.6-2.8 of

this manual. At the end of the subroutine, control is returned to refdif1.

3. inwave : Called by WaveModule. inwave reads in data specifying the initial wave field along the first

row of reference grid points. Data is read from logical device number iun(5). Conversion to MKS units

is performed for data read in in English units. Control is returned to refdif1.

24

Figure 1: REF/DIF 1: refdif1 program level

25

Figure 2: REF/DIF 1: model subroutine level

26

4. model : Called from WaveModule. model controls execution of the computational part of the program.

For each frequency component specified in the input, model performs the following series of operations:

(a) Initialize program by calculating the incident wave field on the first grid row.

(b) Then, for each grid block in the reference grid:

• Call grid to perform the grid interpolation specified in the input data.

• Call con to calculate constants on the interpolated grid.

• Call fdcalc to perform the numerical integration of the parabolic equation over the interpo-

lated subgrid.

The model execution is then complete. Control is returned to refdif1.

5. grid : Called by model. grid performs the required interpolation over a single grid block of the reference

grid as specified in the input data.The interpolation is performed as described in section 2.3. grid

checks to see whether a user-specified subgrid feature should be read in, and reads it in from logical

unit number iun(2) if needed. The interpolated depth grid is then corrected for tidal offset, and checked

for surface-piercing features. These features are modified using the ”thin-film” approach; see Kirby

and Dalrymple (1986a). Control is returned to model.

6. con : Called by model. con calculates various constants for the reference grid created by grid. Control

is returned to model.

7. fdcalc : Called from model. fdcalc performs the integration of the governing parabolic equation over

the grid defined in grid. The coefficients of the finite difference form of the parabolic equation are

developed according to the Crank-Nicolson method. A complete description of the equations and the

treatment of nonlinearities may be found in Kirby (1986a) and Kirby and Dalrymple (1986b). The

sequence of steps in fdcalc is as follows:

(a) An implicit step is performed to update complex amplitudeA along an entire grid row.

(b) The model checks for the start or stop of breaking on the updated row.

(c) If the status of breaking changes, the model recomputes the breaking wave dissipation coefficient.

(d) Then, if nonlinearity is being used or breaking status at any point along the row has changed, the

model computes a new estimate of A on the updated row based on values obtained during the

previous iteration.

This series of operations is performed for each row in the subdivided ir grid block, until the end of the

grid defined in grid is reached. Control is then returned to model, which passes on to the next (ir+1)

reference grid block.

27

8. ctrida: Utility routine which is called by fdcalc to perform the double sweep elimination to solve the

implicit set of equations.

9. diss: Called by con. diss calculates frictional dissipation coefficients based on values of the switches

read in by inref.

10. wvnum : Called by model, grid and con. wvnum performs a Newton-Raphson solution of the linear

wave-current dispersion relation to obtain values of the wavenumber k.

11. rand1: Called by model. This function is a simple random number generator used to initialize the

random wave phases if the directional spreading model is being used.

12. acalc: Called by model. acalc normalizes the directional spectrum energy density over a 90◦ sector.

13. bnum: Called by acalc. bnum computes the Bernoulli number n!/k!(n− k)!

14. fact: Called by bnum. fact computes the factorial n! of an integer n.

3.4 Special Installation Instructions

Several features of the program REF/DIF 1 may require some modification or customizing during program

installation on various systems. REF/DIF 1 is written using the features of FORTRAN 77. No use is made

of vectorized solution techniques, so the program should be useable on a wide range of systems with little or

no modification.

If the program is to be used on machines with no upward limit placed on the size of the compiled,

executable code, only one variable has to be checked during the initial installation of the program. This is the

logical device number for the controlling input date file. This number may vary from system to system. It

appears in the program as:

iun(5): logical device number for controlling input data file. (initialized near the top of subroutine inref).

The supplied version of REF/DIF 1 has this value set to iun(5)=5. All output is directed to data files with

pre-chosen unit numbers.

Many systems require that access to disk files be initialized and terminated by the use of open and close

statements in the program code. Since the parameter list of the open statement varies from system to system,

the user should take care that the open statements are compatible with the system software being used. The

open statements appear near the top of refdif1 and inref. The corresponding close statements appear near the

end of refdif1.

3.5 Computational Grids and Grid Interpolation

The reference grid terminology is defined in Figure 3. The grid consists of a mesh of points with dimensions

mr x nr in x and y. The values of mr and nr must be less than or equal to the parameters ixr and iyr whose

28

Figure 3: Reference grid notation.

values are set in the parameter statement in param.h. Reference grid data of depth dr and ambient current

components ur and vr are defined at the grid points. The program assumes that the x, y coordinate system

is established with the origin at grid point (ir,jr)=(1,1). In this manual, we make the distinction between the

terms “grid row ” ir, which is the row of points jr = 1, nr at location ir, and “grid block” ir, which is the

physical space between grid rows ir and ir+1.

The reference points are separated by spacings dxr and dyr which are uniform in the x and y directions.

The spacings dxr and dyr may have arbitrary, independent values.

Values of dr, ur and vr constitute the “reference grid data”. Section 2.8 describes the required input data

file for these quantities.

The computational grid for any particular application should be chosen with care. Since REF/DIF 1 tries

to use at least 5 points per wavelength, the length of the computational domain in the propagation direction

is restricted (with the given parameter statements) to just over 200 wavelengths. This range can be extended

by increasing ixr and/or ix in the parameter statements. The width of the model domain should be chosen

29

such that interference from the boundaries does not affect the study area. If the reflective boundary conditions

are used, the extent of boundary influence is usually obvious, particularly when viewing 2-dimensional plots

of the amplitude envelope |A(x, y)|.

3.5.1 Grid Subdivision

The only major feature of REF/DIF 1 which is not described in Chapter 1 is the ability to subdivide the given

reference grid into a more finely subdivided computational grid. This would usually be done in cases where

the reference grid spacing is too large to be used directly for calculations. In this case, the user may specify

how the reference grid is to be subdivided, or the user may tell the program to attempt its own subdivisions.

The maximum reference grid dimensions have been set fairly arbitrarily and may be changed by modi-

fying the parameter statements at the beginning of each routine in the program. The grid is large enough to

comply with typical grids for various tidal computational models, which may be used to specify the ambient

currents, and get small enough so that data values do not occupy too much internal storage. It is anticipated

that the spacings dxr and dyr, if based on such a model, may be too large for an accurate integration of

the parabolic model to be performed. Consequently, the model has been arranged so that the reference grid

block between any two adjacent reference grid rows may be subdivided down to a finer mesh in order to

provide sufficient resolution in the computational scheme. This subdivision process is performed internally

in the program (with an exceptional feature to be described below), and may be controlled by the user or the

program.

Remember that the computational scheme proceeds by marching in the x-direction, and, therefore, the

only reference grid information required at any particular step is the data on row ir, where computation starts,

and on row ir+1, where computation ends. The fine, subdivided mesh is set up on the intervening grid block.

An example of a particular subdivision of a grid block is shown in Figure 4. Here, the choices of x-direction

subdivision md(ir)=5 and nd=2 are illustrated, with md and nd being the number of spaces each reference

grid cell is divided into, rather than the number of extra points being inserted.

Several restrictions are placed on the choice of nd and md’s. First, the maximum dimensions of the

subdivided grid cell is given by the parameters ix and iy. This implies that any md can be at most (ix-1) and

nd can be at most (iy-1)/(nr-1). The maximum number of added spaces may be increased by increasing ix

and iy in the parameter statements. Further, the y-subdivision specified by nd is applied uniformly along

each grid row for the full extent to the reference grid. No provision is made for variable grid spacing in the

y-direction. Grid spacing in the x-direction is arbitrary, so md’s may differ arbitrarily for each grid block.

The user must specify the single value of nd in the input data. Two choices may be made regarding md’s,

however.

1. The user may let the program calculate md. The program proceeds by calculating an average wavenum-

ber along the reference grid row, and uses this to estimate the wavelength in the grid block. The program

then chooses a subdivision so that at least 5 grid points per wavelength will occur in the grid block.

30

Figure 4: Sample grid subdivision

31

The program checks to see that this desired number of subdivisions does not exceed the maximum. If

it does, the program reduces the number to the maximum and prints a warning message indicating that

the grid block can not be subdivided finely enough. Computed results in this case must be regarded

as being suspect. The number of subdivisions used is indicated on the output. The user chooses this

option by setting the switch ispace=0 on input.

2. The user may specify each value of md(ir) from ir=1 to (mr-1). This is done by setting the switch

ispace=1 on input, and the values of md are then read in from the input data file. Note that this choice

is necessary if the user-defined subgrids discussed below are to be used, since the user will be inputting

subgrids with pre-specified spacings. As it is presently written, the program will only print a warning

if it encounters subgrids with ispace=0 chosen; extensive garbling of input data may result.

After the subdivided grid block is established, the program uses this grid as the actual computation grid.

New values of depth d and ambient current u and v are calculated at the extra grid points by fitting a twisted

surface to the reference grid using linear interpolation. An example of the resulting bottom topography for a

single grid cell is shown in Figure 5.

3.5.2 User-specified Subgrids

In some applications, an important topographic feature may be present at a subgrid scale within the reference

grid. Examples include artificial islands, shoals, borrow pits, etc., which are superimposed on an otherwise

slowly-varying topography which is represented by the sort of grid resolution appropriate to tidal models. An

illustration of such a feature is shown in Figure 6, where a poorly resolved feature occupies portions of four

reference grid cells. For cases such as this, the program includes the option for the user to input user-defined,

subdivided grid cells in order to specify these features at the level of the computational grid.

The use of user-defined subgrids implies that the user will be choosing the grid spacing of the subgrids.

Since grid spacings must be uniform across a grid block, the user should choose the option, ispace=1 and

specify the values of md in the input file, indat.dat. Then, the program will look for a data array of the correct,

pre-specified dimension when it reads the subgrid data from the file, subdat.dat (unit number iun(2)).

Several aspects of the subgrid data should be noted. Data for depth d and current velocities u and v need

to be specified at each of the subgrid points. These data are input in the same units, and with the same datum

for depth as the data for the reference grid. Also, note that the subgrid includes the points on its boundaries;

for example, the single subgrid shown in Figure 6 has a dimension of 6 by 6.

The data values on the outer borders of the subgrids should be setup to match with the linearly inter-

polated values in the region external to the user-defined subgrid. If the data do not vary linearly along the

subgrid boundaries, there may be some mismatch between the subgrid boundaries and the external region.

An exception to this rule occurs when two subgrids adjoin each other. Then, care should be taken that the

data along the common boundary match. These common boundary point data are duplicated in the input data,

since each subgrid data set includes the boundaries.

32

Figure 5: Interpolation of depth data

33

Figure 6: User-defined subgrids

34

Instructions and formats for creating the subgrid data file subdat.dat are included in section 2.8.

3.6 User Specification of Complex Amplitude on First Grid Row

This section discusses the option of inputing the values of complex amplitude A for the first grid row from

an external data file. This option is invoked by setting the data value iinput=2 in line 8 of indat.dat. (See the

following section). In the event that the option is chosen, the data should be stored in a file wave.dat. The

format for writing data to the file should be similar to:

complex a(iy)

write(*,*)(a(j),j=1,n)

The data will be read in by the model subroutine. The data is read in after grid subdivision in the y

direction, and hence n rather than nr data values need to appear in the file wave.dat. An insufficent number

of data points will simply trigger an “end of file” type of error during the read process.

The user may have any number of reasons for wanting to compute A externally to the program. Several

possibilities are:

• Running tests with complex initial conditions (as in waves through a breakwater gap, etc).

• Testing a directional distribution model which is different from the model chosen here.

• Specifying a nearly planar wave field which has height and angle variations along the y direction.

To serve as an example, consider the case where you wish to specify a wave field having varying height

2a(y) and direction θ(y) along an offshore boundary having nonuniform depth h(y). Assuming that the local

wavenumber k(y) has been determined from the dispersion relation

2π

T
= (gk tanh kh)1/2 (51)

where T is the wave period, then the complex amplitude A can be specified by

A(y) = a(y)eiψ(y) (52)

where the phase function ψ(y) is given by

ψ(y) =

∫ y

y=0

k(y) sin θ(y)dy (53)

The discrete values A(j) are then simply given by

A(j) = A(yj); j = 1, · · · , n (54)

35

3.7 Program Input: Model Control and Wave Data

This section discusses the structure of the input data file indat.dat, which is read in through logical device

number iun(5). This file contains all the information needed to control the operations of the program, and all

of the input wave data. Reference grid values of depth dr and currents ur and vr are treated in the following

section.

Data is read from iun(5) in both the inref and inwave subroutines. The data is arranged in several lists and

put in the indat.dat file using the namelist convention. The various namelist groups are defined according to

the following prototype namelist statement.

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, ismooth, dxr, dyr, dt,
1 ispace, nd, iff, isp, iinput, ioutput
1 /inmd/ md
1 /fnames/ fname1,fname2,fname3,fname4,fname5,fname6,
1 fname7,fname8,fname9,fname10,fname11,fname12,
1 fname13,fname14,fname15,fname16,fname17,
1 fname18,fname19,fname20,fname21,fname22,
1 fname23,fname24,fname25,fname26
1 /waves1a/ iwave, nfreqs
1 /waves1b/update_interval,num_data,
1 freqs, tide, nwavs, amp, dir
1 /waves1c/ thet0, freqs, tide, edens, nwavs, nseed
1 /waves2/ freqin, tidein

The definition of each input variable follows.

ingrid namelist group

• mr, nr :

Reference grid dimensions. Maximum values are ixr, iyr respectively.

• :

iu is switch for physical units; iu=1, MKS; iu=2, English. Program defaults to iu=1 if an error is made

on input.

• ntype:

ntype is switch for nonlinearity; ntype=0, linear model; ntype=1, composite model; ntype=2, Stokes

wave model.

• icur:

icur is switch for input current data. icur=0, no currents input; icur=1, currents input.

icur defaults to a value of zero if an input error is detected.

• ibc:

ibc is the boundary condition switch. ibc=0, closed boundaries; ibc=1, open boundaries.

ibc defaults to a value of zero if an input error is detected.

36

• ismooth:

A value of ismooth=1 causes the program to attempt a smoothing operation applied to the output

waveheight, wave angle, radiation stresses and forcing term calculations. This is intended to mimic the

fact that these quantities, when computed as statistical averages in a random sea state, would not have

the localized spatial variability that they have in a representative monochromatic sea. The averaging is

intended to provide a more realistic estimate of the model output in the context of a random sea state.

The chosen averaging window is, however, ad hoc and is likely to be optimal only in a limited range of

conditions. This option is not viewed as a substitute for running a real spectral model such as REF/DIF

S

• dxr, dyr :

Reference grid x-spacing and y-spacing, which are assumed to be uniform over the entire reference

grid.

• dt:

Depth tolerance value.

• ispace, nd:

ispace is switch controlling subdivisions; ispace=0, program attempts its ownx subdivisions. ispace=1,

user specifies x subdivisions.

• nd:

nd is the number of y-direction subdivisions (needed in either case).

• iff(1), iff(2), iff(3):

Dissipation switches; iff(1)=1;turn on turbulent boundary layer; iff(2)=1; turn on porous bottom damp-

ing; iff(3)=1; turn on laminar boundary layers. No damping if all values are zero.

• isp:

Switch for user-specified sub-grid specifications. isp=0, no subgrids to be read; isp=1, subgrids will be

read.

• iinput:

iinput specifies whether the program or the user will generate the first row of complex amplitude A

values. If iinput=1, the program constructs A based on the input conditions specified as follows. If

iinput=2, the user must specify A in an external data file wave.dat.

• ioutput:

ioutput specifies whether the last computed row of complex amplitudes A are to be stored in file

owave.dat. A value of ioutput=1 skips this option. ioutput=2 turns the option on.

inmd namelist group

37

• md(ixr):

If ispace=1, the x-direction subdivisions are inserted here (one for each reference grid block). The

array md must be dimensioned according to the value of ixr in the main program, regardless of how

many values actually are being used.

fnames namelist group

• fname1: indat.dat, automatically assigned to the namelist input data file, indat.dat.

• fname2: refdat.dat, depth and u,v on the reference grid

• fname3: subdat.dat, user-specified subgrids.

• fname4: wave.dat, user-specified complex amplitude on row 1 (for iinput = 2).

• fname5: refdif1.log, run log for refdif1 program.

• fname6: height.dat, wave heights at reference grid locations. This file is always generated.

• fname7: angle.dat, wave directions θ in degrees at reference grid points. This file is always generated.

• fname8: depth.dat, tide-corrected depths at reference grid locations. This file is always generated.

• fname9: surface.dat, complex amplitude data for constructing an image of the instantaneous water

surface at the computational resolution. If REF/DIF 1 is given a null string as the input for this file

name, no file is generated.

• fname10: sxx.dat, Sxx components at reference grid locations.If REF/DIF 1 is given a null string as

the input for this file name, no file is generated.

• fname11: sxy.dat, Sxy components at reference grid locations. If REF/DIF 1 is given a null string as

the input for this file name, no file is generated.

• fname12: syy.dat, Syy components at reference grid locations. If REF/DIF 1 is given a null string as

the input for this file name, no file is generated.

• fname13: fx.dat, depth-integrated wave forcing in x direction at reference grid locations. If REF/DIF 1

is given a null string as the input for this file name, no file is generated.

• fname14: fy.dat, depth-integrated wave forcing in y direction at reference grid locations. If REF/DIF 1

is given a null string as the input for this file name, no file is generated.

• fname15: qx.dat, short wave flux in x direction at reference grid locations. If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

38

• fname16: qy.dat, short wave flux in y direction at reference grid locations. If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

• fname17: bottomu.dat, magnitude of bottom velocity at reference grid points. If REF/DIF 1 is given a

null string as the input for this file name, no file is generated.

• fname18: not used at present.

• fname19: ibrk.dat wave breaking index. If REF/DIF 1 is given a null string as the input for this file

name, no file is generated.

• fname20: owave.dat, complex amplitude on last row (for ioutput = 2).If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

• fname21: sxxb.dat, body stress part of local radiation stresses Sxx. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname22: sxyb.dat, body stress part of local radiation stresses Sxy. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname23: syyb.dat, body stress part of local radiation stresses Syy. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname24: sxxs.dat, surface stress part of local radiation stresses Sxx. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname25: sxys.dat, surface stress part of local radiation stresses Sxy. The values are always zero. If

REF/DIF 1 is given a null string as the input for this file name, no file is generated.

• fname26: syys.dat, surface stress part of local radiation stresses Syy. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

If iinput=1, the rest of indat.dat is as follows:

waves1a namelist group

• iwave:

iwave is switch for wave field type. iwave=1, discrete wave components. iwave=2, directional spread-

ing model (not presently recommended).

• nfreqs:

nfreqs is the number of frequency components to be run. Maximum is value of ncomp in param.h.

The remainder of the file depends on the choice of iwave.

For iwave=1:

waves1b namelist group

39

• freqs(ncomp):

Wave period for each frequency component. ncomp values must be given.

• tide(ncomp):

Tidal offset for each frequency component. ncomp values must be given.

• nwavs(ncomp):

Number of wave components for each frequency. ncomp values must be given.

• amp(ncomp,ncomp):

Amplitude (not height) for each component wave.

• dir(ncomp,ncomp):

Direction in degrees relative to x axis for each wave component.

For iwave=2:

waves1c namelist group

• thet0:

The central direction for the model spectrum.

• freqs(ncomp), tide(ncomp):

As above.

• edens(ncomp):

Variance density (m2 or ft2) for each frequency component.

• nwavs(ncomp):

Directional spreading factor (the factor n in cos2n(θ/2).

• nseed:

The seed value for the random number generator (between 0 and 9999).

For iinput=2, the remainder of the data file is:

waves2 namelist group

• freqin, tidein:

Wave period and tidal offset for the single frequency component.

Examples of indat.dat data files are given in the example problem section. Several things must be kept in

mind while constructing a namelist - oriented data file. namelist does not allow a part of an array to be read

or written. It is therefore imperative that the number of values being entered into any dimensioned variable

in a namelist group be equal to the dimension of that variable in REF/DIF 1. It is thus highly recommended

40

that any program being used to construct the indat.dat file should use the param.h file to specify parameters.

In any event, the user should consult the datgenv26.f or indat-createv26.f programs to get a feel for how the

file is constructed. The file may also be easily constructed by hand.

In constructing the indat.dat in the provided programs, we have followed the most restrictive convention

that was found, which is that the items in a namelist group must be read in in the order in which they are

specified in the namelist statement. Most compilers will allow an arbitary ordering of variables within each

namelist group.

41

3.8 Program Input: Reference Grid and Subgrid Data

This section describes two files which provide arrays of data on the various grids.

Reference Grid Data File

This file (usually named refdat.dat but freely chosen as fname1 on input) is accessed as logical device

number iun(1). Its contents consist of the arrays of depth dr, x-velocity ur, and y-velocity vr at the reference

grid points. This file is accessed only once per model run, and its entire contents are read in by subroutine

inref. If icur = 0, only the depth data dr need to be specified.

Data for this file should be written in the following format:

do 1 ir=1, mr
write(unit,#) (dr(ir, jr), jr=1, nr)

1 continue

(then, if icur=1)

do 2 ir=1, mr
write(unit,#) (ur(ir, jr), jr=1, nr)

2 continue

do 3 ir=1, mr
write(unit,#) (vr(ir, jr), jr=1, nr)

3 continue
format(501f10.4)

The data may be in either MKS or English units; set the units switch iu in the iun(5) data file indat.dat

accordingly.

Subgrid Data File

This file (named subdat.dat) is accessed as logical device number iun(2). If no user-defined subgrids are

to be read in, this file may be omitted. The file consists of two parts; an integer array of 1’s and 0’s indicating

which reference grid cells are to be defined by the user, and then a sequence of groups of arrays of d, u and v,

one group for each subgrid.

The integer array isd is dimensioned (mr-1) by (nr-1), with one point for each spacing in the reference

grid. The array contains a 0 if that cell is not to be user-defined, and a one if it is. For example, the

(mr,nr)=(7,6) reference grid shown in Figure 6 has four cells which are to be read in as user-defined subgrids.

The array isd should be written in the data file first, using the format:

do 1 ir=1,mr-1
write(unit,#)(isd(ir,jr),jr=1,nr-1)

42

1 continue
format(15I4)

Now, a group of arrays of d, u and v must be entered into the data file, with one group corresponding to

each value of 1 in isd. The program accesses the data file by x-row (ir) and then by y-column (jr). For the

above example, the subgrid array groups should thus be stored in the order of the coordinate pairs (4,3), (4,4),

(5,3), (5,4). The dimensions of each subgrid are given by m=md(ir)+1 and ns=nd+1. The borders of adjacent

subgrids share the same common boundary points.

Each group of subgrid data should be written using a format similar to:

write(unit,#)((d(i,j),j=1,ns),i=1,m)

(then, if icur=1)

write(unit,#)((u(i,j),j=1,ns),i=1,m)
write(unit,#)((v(i,j),j=1,ns),i=1,m)

format(20f10.4)

using the appropriate value of m for the grid block in question. Data may be in MKS or English units,

depending on the value of iu in the input data file. The integer array isd is read by inref, and the individual

subgrids are read by grid.

3.9 Program Output

This section discusses output of two forms: output sent to a log file, and array output stored in disk files.

3.9.1 Output log file

Log file output consists of three types: title and header information which is printed in order to identify the

run and the operating perameters, runtime error messages (either warnings or terminal error messages), and

information about calculations on each grid row. The default name for the file is refdif1.log.

Header Information

At the start of each run, a set of two title pages are printed. Page 1 identifies the program and then prints

out messages identifying the parameters which set up the model run, as read in by subroutine inref. A sample

title page 1 is shown in Figure 7.

Title page 2 gives the input wave conditions which were read in by inwave. A sample title page 2 is given

in Figure 8.

43

Refraction-Diffraction Model for
Weakly Nonlinear Surface Water Waves

REF/DIF 1, Version 2.5

Center for Applied Coastal Research
Department of Civil Engineering
University of Delaware
Newark, Delaware 19716

James T. Kirby and Robert A. Dalrymple, November 1994
0

input section, reference grid values

reference grid dimensions mr=100
nr=100

reference grid spacings dxr= 5.0000
dyr= 5.0000

physical unit switch iu=1, input in mks units

icur=1, current values read from data files

ibc=0, closed (reflective) lateral boundaries

ispace =0 chosen, program will attempt its own reference grid subdivisions

y-direction subdivision according to nd= 1

ntype = 1, stokes model matched to hedges model

switches for dissipation terms

0 turbulent boundary layer
0 porous bottom
0 laminar boundary layer

isp=0, no user defined subgrids
iinput = 1, program specifies initial row of a

Figure 7: Sample title page 1

44

input section, wave data values

iwave=1, discrete wave amps and directions

the model is to be run for 1 separate frequency components

frequency component 1

wave period= 8.0000sec., tidal offset= 0.0000

wave component 1, amplitude = 0.5000, direction= 0.0000

Figure 8: Sample title page 2

Dimensional quantities are printed on the title page in the units used for input. Title page 1 gives an

indication whether quantities are in MKS or English units.

Run-time Error Messages

REF/DIF 1 performs some data checking and checking of calculations during a run. This checking

may result in warnings or terminal errors which are beyond calculation errors which would lead to standard

FORTRAN error messages. A list of possible errors and the resulting messages follow.

1. Reference grid dimensions were specified as being too large on input. mr > ixr and/or nr > iyr.

Message: dimensions for reference grid too large; stopping.

Action: Program stops.

Error occurs in: inref

2. User specifies a y-direction subdivision nd which will cause the number of y grid points n to exceed

the maximum iy.

Message: y-direction subdivision too fine. maximum number of y grid points will be exceeded. Exe-

cution terminating.

Action: Program stops.

45

Error occurs in: inref

3. User specifies an x-direction subdivision on one of the grid blocks ir which exceeds the maximum

amount (ix-1). As a result, the dimension of the subdivided grid will be too large.

Message: x-direction subdivision too fine on grid block “ir”, execution terminating.

Action: program stops

Error occurs in: inref

4. A depth value occurs in the reference grid which differs from the average of its neighbors by more than

the tolerance value dt specified on input. This is basically a data checking feature. Printed values are

in meters.

Message: Depth “dr” (m) at reference grid location “ir, jr” differs from the average of its neighbors by

more than “dt” (m). Execution continuing.

Action: None by program. Data in file refdat.dat should be corrected if wrong.

Error occurs in: inref

5. An ambient current value occurs which implies that the flow would be supercritical at the given loca-

tion. This serves as both a check for anomalously large current values, and an indicator of possible

subsequent computational problems.

Message: ambient current at reference grid location “ir,jr” is supercritical with froude number =

“froude number”, execution continuing

Action: None by program. Data in file refdat.dat should be corrected if wrong.

Error occurs in: inref

6. If the user specifies that predetermined subgrids are to be read in, while at the same time telling the

program to performs its own subdivisions, the computed dimensions of the subgrid may be different

than those of the subgrid included in the input. Runs requiring user-specified subgrids should choose

the ispace=1 option. If an incompatible set of dimensions occurs, the program will either garble the

input array or run out of data.

Message: Warning: input specifies that user will be supplying specified subgrids (isp=1), while pro-

gram has been told to generate its own subgrid spacings (ispace=0). possible incompatibility in any or

all subgrid blocks.

Action: None by program. Should restart unit with correct ispace,isp values.

Error occurs in: inref

7. While calculating its own subdivision spacings, the model may try to put more division in a reference

grid block than is allowed by by dimension ix. If this occurs, the program uses the maximum number

46

of subdivisions allowed (ix-1), but prints a message indicating that the reference grid spacing is too

large with respect to the waves being calculated. This problem may be circumvented by increasing the

size of ix in parameter statements.

Message: model tried to put more spaces than allowed in grid block “ir”

Action: Program performs fixup and continues. Model resolution and accuracy may be poor, and a

finer reference grid or increased value of ix in the parameter statements should be used.

Error occurs in: grid

8. While using the Stokes wave form of the model, ntype=2 the model may encounter large values of the

Ursell number, indicating that the water is too shallow for that model to be appropriate. The cutoff

point recognized by the program is (A/h)/(kh)2 = 0.5.

Message: Warning: Ursell number = “u” encountered at grid location “i,j” should be using Stokes-

Hedges model (ntype = 1) due to shallow water

Action: The program should be re-run with the composite nonlinear model.

Error occurs in: fdcalc

9. The Newton-Raphson iteration for wavenumber k may not converge in the specified number of steps.

This may occur for waves on strong opposing currents.

Message: WAVENUMBER FAILED TO CONVERGE ON ROW “I”, COLUMN “J”

K = last iterated value of wavenumber

D = depth

T = period calculated from last iterated value of k

U = x-direction velocity

F = value of objective function (should be =0 for convergence)

Action: Program continues with last iterated value of k. Computed results are of questionable accuracy.

Error occurs in: wvnum

Log of Calculations

For each frequency component, the program starts a new page of output and indicates the number of the

component in the input stack. The model then prints the x position, the value of the reference phase function

and the number of x direction subdivisions used for each reference grid row.

47

3.9.2 Stored Output

The program stores a set of data files with a resolution of the reference grid points. Each of these files is

written using a common format statement and may be read using the format:

do i=1,mr

read(unit,100)(variable(i,j),j=1,nr)

end do

100 format(200(f10.4))

The available files are:

height.dat: wave height.

depth.dat: water depth with tide correction included.

angle.dat: wave angle in degrees.

sxx.dat, sxy.dat, syy.dat: radiation stresses (not available yet).

bottomu.dat: magnitude of bottom velocity (if requested).

It should be noted that the wave directions given on output are meaningless if multiple direction compo-

nents are being used, and, for single component runs, become meaningless if the waves become short crested

or the crests become significantly curved.

Finally, a file surface.dat is generated if isurface is set to one. This file provides the same type of infor-

mation that was put in outdat.dat in older versions of the program, with the exception that the present version

stores data for every computational point in the domain.

1. n

2. y(j), j=1, n

Then, for each x-position in the computational grid, the program stores the following information.

3. x,

4. aeiψ(i,j), j=1, n

48

Since it is not usually known a priori how many steps will be taken in the x direction, this file is ended

by writing in a negative value of x. This file is processed by the program surface.f to give data on a regularly

spaced grid.

An anotated listing of the REF/DIF 1 program code is given in Appendix A. Various preprocessing and

postprocessing programs are also listed in Appendix B (for normal usage) and Appendix C (for LRSS usage).

49

4 EXAMPLE CALCULATIONS

This chapter presents calculations performed using the combined refraction-diffraction model REF/DIF 1.

The problems studied here were chosen as representative tests of various features of the model. Further

examples illustrating the use of the computational schemes upon which the program is based may be found

in the technical report by Kirby (1983).

Each section of this chapter describes in full the model’s application to a specific problem. Following

a description of the problem and an indication of the type of results desired, the input data files for the

program are displayed and explained. These data files are then used to run the program REF/DIF 1 with

no job-specific modifications to the program involved. Program output is then presented in such a way as to

adequately indicate the results, although, in application, individual users may wish to alter the nature of the

presentation of output data.

The output for the various examples has been presented using some plotting programs which are external

to the main body of the supplied program REF/DIF 1. These specialized programs have been included in

order to provide some guidance in reading the data files generated by the main program. However, plotting

routines are likely to vary from one computer system to another. The extra programs are therefore likely to

be extensively machine-specific to the systems on which the computations were performed.

Section 3.1 presents calculations of waves around an artificial, surface piercing island. This example

makes particular use of the breaking wave, thin film, and shallow water dispersion relation capabilities of the

model.

Section 3.2 provides calculations for waves propagating over a submerged, elliptic shoal resting on a plane

beach. This example has been studied experimentally and provides a means for checking the accuracy of the

model calculations. It also provides an example of the type of results provided by a combined refraction-

diffraction model in a situation where ray tracing predicts a strong convergence of wave rays, with resulting

singularities in the prediction of wave height.

Section 3.3 provides example calculations for the case of waves shoaling on a plane beach and interacting

with a rip current. This example illustrates the wave-current interaction feature of the model.

50

4.1 Waves Around an Artificial Island

The first example involves the calculation of the wave field around an artificial, surface piercing island of the

type used in offshore operations. The island is circular with a base radius of 400ft and a crest elevation of

80ft above the flat seabed. The island radius at the crest is 160ft, leading to a side slope of 1 : 3. The water

depth around the island is taken to be 60ft. The island geometry is shown in Figure 9.

Figure 9: Artificial island geometry

51

Figure 10: Locations for wave height measurements

The wave conditions to be studied are given by:

• Wave height: H = 28ft

• Wave period: T = 10sec.

• No currents

The model was run with a depth of 60ft away from the island and a tidal offset of 0.0ft. The required set

of wave predictions consisted of wave height at 12 locations as indicated in Figure 10. The spacing between

the points are in units of the base radius rb = 400ft. Note that, since the model does not calculate reflected

waves, the predicted wave heights at points 1 and 2 will be identical. Therefore, computations may be started

arbitrarily close to the leading edge of the island base, in the absence of any current field distorted by the

island’s presence.

4.1.1 Setting up the Model

First, the island topography was established. Note that the region of the island above the water line is not

treated explicitly in the computations. We therefore represented the island in the input data as a right circular

cone with a peak height of 153.33ft and a base radius of 400ft. The model will truncate the island in order

to create a “thin film” over the exposed portions (see Figure 11).

52

Figure 11: Representation of the island geometry in the program.

Next, the reference grid spacing was chosen. Since the physical region to be modelled is small, we picked

a reference grid with fine enough resolution so that no subdivision of the reference grid will be required.

Using a wave period of 10 seconds and a depth of 60ft, we use the dispersion relationship

4π2

T 2
= gk tanh kh (55)

to calculate kh = .97, giving a wave length of L = 389ft. L is just slightly less than rb = 400ft. The

grid spacings dxr and dyr = 20ft were chosen for the reference grid, giving approximately 20 points per

wavelength away from the island. We use 100 x 100 storage locations for the reference grid, indicating a

model of approximately 5rb by 5rb in x and y. We sited the island center at x = 460ft and y = 10ft, where

x and y are measured from the computational grid corner. The island and measurement points are shown in

relation to the grid in Figure 12.

53

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

ir

jr

o o o o

o o o o

o o o

Figure 12: Measurement points in relation to reference grid.

54

4.1.2 The Input Data Files

One run of the model was performed using the specified input conditions. The input data file indat.dat for

the run follows. The reference grid data was stored in file refdat.dat.

$fnames
fname2 = ’refdat.dat ’
fname3 = ’subdat.dat ’
fname4 = ’wave.dat ’
fname5 = ’owave.dat ’
fname6 = ’surface.dat ’
fname7 = ’bottomu.dat ’
fname8 = ’angle.dat ’
fname9 = ’ ’
fname10 = ’refdif1.log ’
fname11 = ’height.dat ’
fname12 = ’sxx.dat ’
fname13 = ’sxy.dat ’
fname14 = ’syy.dat ’
fname15 = ’depth.dat ’
$end
$ingrid
mr = 100
nr = 100
iu = 2
ntype = 1
icur = 0
ibc = 0
dxr = 20.00000
dyr = 20.00000
dt = 10.00000
ispace = 0
nd = 1
iff = 0, 0, 0
isp = 0
iinput = 1
ioutput = 1
$end
$waves1a
iwave = 1
nfreqs = 1
$end
$waves1b
freqs = 10.00000
tide = 0.0000000E+00
nwavs = 1
amp = 14.00000
dir = 0.0000000E+00
$end

55

4.1.3 Model Results

The output for the artificial island run is presented in two forms. First, Table 1 provides values of wave

heights at the measurement locations indicated in Figure 12.

ir jr Height (ft)
3 1 28
43 1 17.3
63 1 14.4
83 1 16.9
23 21 23.5
43 21 19.1
63 21 20.9
83 21 18.6
43 41 32.1
63 41 29.7
83 41 23.5

Table 1: Calculated wave heights at measurement locations.

In addition to this, we have constructed contour plots of instantaneous surface elevation and wave height;

these are shown in Figures 13 and 14, respectively. Contour elevations for wave height are in increments of 5

ft.

56

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

x

y

Figure 13: Artificial island example: contours of instantaneous surface elevation.

57

0 500 1000 1500 2000
0

200

400

600

800

1000

1200

1400

1600

1800

x

y

 20

 25

 15 10

 5
 15

 10

 15

 10
 20

 25

 30

 30

 30

 30

 25 30

 30

 25

Figure 14: Artificial island example: contours of wave height.

58

4.2 Wave Focussing by a Submerged Shoal

In this example, we study the propagation of an initially plane wave over a submerged shoal resting on a

plane beach. This example has been chosen for several reasons:

1. A carefully controlled set of waves measurements has been made in the laboratory for this case (see

Berkhoff et al (1982); Kirby (1986a)).

2. The wave pattern represents the case of ray crossing in the refraction method, and thus the computed

results indicate present method’s utility in situations where ray tracing breaks down.

3. The example gives a thorough test of the accuracy of the large angle and composite nonlinearity for-

mulations.

The topography to be studied is shown in Figure 15. Details of the calculation of the topography may be

found in Kirby (1986a).

For the case of an incident plane wave, we have performed a run of the model using input data correspond-

ing to the experiment of Berkhoff et al (1982). The run was done using the full model with the Stokes-Hedges

composite nonlinearity.

59

Figure 15: Bottom contours and computational domain for the experiment of Berkhoff et al (1982). Experi-
mental data on transects 1-8.

60

4.2.1 The Input Data Files

The input data file indat.dat for the present case follows.

$fnames

· · · same as previous example · · ·

’
$end
$ingrid
mr = 100
nr = 100
iu = 1
ntype = 1
icur = 0
ibc = 0
dxr = 0.2500000
dyr = 0.2500000
dt = 10.00000
ispace = 0
nd = 1
iff = 0, 0, 0
isp = 0
iinput = 1
ioutput = 1
$end
$waves1a
iwave = 1
nfreqs = 1
$end
$waves1b
freqs = 1.000000
tide = 0.0000000E+00
nwavs = 1
amp = 2.3200000E-02
dir = 0.0000000E+00
$end

The supplied program datgenv25.f may be used to generate the depth grid refdat.dat.

61

4.2.2 Model Results

The output files depth.dat, height.dat, surface.dat for this example have been used to construct plots of

instantaneous surface elevation and wave height. In this case, wave heights have been non-dimensionalized

using the incident wave height. The resulting plots are shown in Figures 16 and 17. The plots show the effect

of wave focussing over the shoal area, and show that the prediction of the wave field beyond the shoal does

not involve the problem of caustic (or singularity) formation common to ray-tracing algorithms used to model

similar situations.

0 5 10 15 20 25
0

5

10

15

20

x (m)

y
(m

)

Figure 16: Results for waves propagating over a submerged shoal: surface elevation contours.

Comparisons of the predictions of this model using both the Stokes wave nonlinearity and the composite

model of Kirby and Dalrymple (1986b) are given in Kirby and Dalrymple (1986b); a comparison to laboratory

data is also included and shows that the model is quite accurate in predicting the wave field.

62

0 5 10 15 20 25
0

5

10

15

20

x (m)

y
(m

)

 0.4 0.3 0.2

 1

 0.25

 0.25
 2

 0.5

 1 1

 1 1.25

 1

Figure 17: Results for waves propagating over a submerged shoal: wave height contours.

63

4.3 Waves Interacting with a Rip-Current

An example of waves which are normally incident on a planar beach and interact with a steady rip current

flowing offshore from the beach has been included here in order to show the effects of wave-current interac-

tion in the model. This example was first used by Arthur (1950) to illustrate the effects of currents and depth

changes acting together on results of ray tracing schemes. However, it also provides an important example

of the usefulness of the combined refraction-diffraction scheme, since it represents a case where ray tracing

breaks down due to the crossing of wave rays.

The velocity field studied by Arthur is shown together with computed wave orthogonals in Figure 18.

Denoting a coordinate x′ pointed offshore (the opposite of the x we will be using), the velocity distribution

is given by

U = 0.02295x′e−(x′/76.2)2/2e−(y/7.62)2/2 (56)

V = −0.2188[2− (x′/76.2)2]e−(x′/76.2)2/2erf(y/76.22)sign(y) (57)

where the velocities are in m/sec. In terms of x′, the bottom topography is given by

h(x′) = 0.02x′ (58)

Arthur ran his calculations for a wave period of T = 8 seconds.

A photograph of the wave field created in a laboratory study of waves interacting with an ebb tidal jet

is shown in Figure 19. This photograph, taken from a paper by Hales and Herbich (1972), is provided for

guidance in interpreting the contour plot of surface elevations provided below.

4.3.1 Setting Up the Model

We choose a grid spacing of dxr = 5m and dyr = 5m. We choose mr = 100 and nr = 100, giving an offshore

and longshore extent of 495m. The most-shoreward grid row is established 5m from shore, giving a depth

range of 10m to 0.1m. Arthur’s wave period is retained, and we use an initial wave amplitude of 0.1m. The

input conditions are a single, normally incident wave, no user specified grid subdivision, and one frequency

component.

64

Figure 18: Pattern of orthogonals and wave crests for waves in presence of rip currents: refraction approxi-
mation. (from Arthur, 1950)

65

Figure 19: Wave pattern on an ebb-tidal jet. (from Hales and Herbich, 1972)

66

The input data file for the present case follows.

$fnames

· · · same as previous example · · ·

’
$end
$ingrid
mr = 100
nr = 100
iu = 1
ntype = 1
icur = 1
ibc = 0
dxr = 5.000000
dyr = 5.000000
dt = 10.00000
ispace = 0
nd = 1
iff = 0, 0, 0
isp = 0
iinput = 1
ioutput = 1
$end
$waves1a
iwave = 1
nfreqs = 1
$end
$waves1b
freqs = 8.000000
tide = 0.0000000E+00
nwavs = 1
amp = 0.5000000
dir = 0.0000000E+00
$end

The input data files may be constructed for this test case using the program datgenv25.f

4.3.2 Model Results

Results for this case are limited to plots of surface contours and wave height contours. These plots were

constructed using the information stored in the data files depth.dat, height.dat, surface.dat. The plots are

given in Figures 20 and 21. Note that the plots only cover the region 51 ≤ ir ≤ 100, 26 ≤ jr ≤ 75, in order

to show greater detail in the wave pattern over the rip current. The plots show a shoaling, plane wave which

approaches the beach with no distortion until the wave begins to interact with the rip current. The rip causes

a focussing of waves and the formation of discontinuities in the wave crests, as in the photograph in Figure

19.

67

250 300 350 400 450 500

150

200

250

300

350

x (m)

y
(m

)

Figure 20: Waves interacting with a rip current. Shoreline at right. Surface displacement contours.

68

250 300 350 400 450 500

150

200

250

300

350

x (m)

y
(m

)

Figure 21: Waves interacting with a rip current. Shoreline at right. Wave height contours.

69

4.4 Obliquely Incident Waves on a Plane Beach

70

5 REF/DIF 1 Program Listing

This section provides the listing for the Fortran code for REF/DIF 1, which has been produced using the

noweb documentation standard. noweb provides a programming environment which allows the programmer

to specify the operation of a block of code in full, typeset detail, after which the actual Fortran or C code

is spelled out. This procedure places a high premium on the use of a highly structured and modularized

programming technique.

71

5.1 Refraction-Diffraction Model REF/DIF 1, Version 3.0.

REF/DIF 1 calculates the forward scattered wave field in regions with slowly varying depth and current,

including the effects of refraction and diffraction. The program is based on the parabolic equation method.

Physical effects included in the present version include:

1. Parabolic approximation:

(a) Minimax approximation given by Kirby (1986b).

2. Wave nonlinearity: choice of

(a) Linear.

(b) Composite nonlinear: approximate model of Kirby and Dalrymple (1986b).

(c) Stokes nonlinear: model of Kirby and Dalrymple (1983a).

3. Wave breaking:

(a) Model of Dally, Dean and Dalrymple(1985).

4. Absorbing structures and shorelines:

(a) Thin film model surrounded by a natural surfzone (Kirby and Dalrymple, 1986a).

5. Energy dissipation: any of

(a) Turbulent bottom friction damping.

(b) Porous bottom damping.

(c) Laminar boundary layer damping.

6. Lateral boundary conditions: either of

(a) Reflective condition.

(b) Open boundary condition (Kirby, 1986c).

7. Input wave field: either of

(a) Model specification of monochromatic or directional wave field.

(b) Input of initial row of data from disk file.

8. Output wave field:

(a) Standard output.

(b) Optional storage of last full calculated row of complex amplitudes.

72

The documentation of present program is contained in:

Combined Refraction/Diffraction Model REF/DIF 1, Version 3.0, Documentation and User’s Manual

James T. Kirby, Robert A. Dalrymple and Fengyan Shi

Report No. CACR-02-02, Center for Applied Coastal Research

Department of Civil and Environmental Engineering, University of Delaware, March 2002.

c©2002 James T. Kirby, Robert A. Dalrymple and Fengyan Shi

This program is free software; you can redistribute it and/or modify it under the terms of the GNU Gen-

eral Public License as published by the Free Software Foundation; either version 2 of the License, or (at your

option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY of FITNESS FOR A PARTICULAR PURPOSE. See

the GNU general Public License for more details.

You should have recieved a copy of the GNU General Public License along with this program; if not,

write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA or

get it from http://www.gnu.org/copyleft/gpl.html.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

〈refdif 〉≡

subroutine WaveModule()

c Define array dimension bounds.

include ’param.h’

c Internal common blocks.

include ’common.h’

c Common block data passing to Master program.

include ’pass.h’
integer i,j

c --- master_start=0 or 1 for initialization

73

if(Master_Start.eq.1) then
write(*,*) ’wave module initialization ...’
else
write(*,*) ’call wave module ...’

endif

c Constants which provide for conversion between MKS and English units
c on input and output.

dconv(1)=1.
dconv(2)=0.30488
dconv2(1)=1.
dconv2(2)=14.594

c Read control parameters and reference grid data.

call inref

c Read control parameters and initializing wave data.

if(Master_Start.ge.0)then
call inwave
close(1)
endif

c Pass program control to subroutine |model|.

c For each frequency component specified in |inwave|, |model|
c executes the model throughout the entire grid and then
c reinitializes the model for the next frequency.

if(Master_Start.le.0)then
call model
endif

c All done. Close output data files if |open| and |close| statements are
c being used.

c Log file.

close(5)

c Wave height.

if(fname6.ne.’ ’) close(26)

c Wave angle.

if(fname7.ne.’ ’) close(7)

c Water depth.

if(fname8.ne.’ ’) close(8)

74

c Water surface.

if(fname9.ne.’ ’) close(9)

c Radiation stresses.

if(fname10.ne.’ ’) then
close(10)
close(11)
close(12)
endif

c Depth-integrated forcing.

if(fname13.ne.’ ’) then
close(13)
close(14)
endif

c Total wave-induced mass flux.

if(fname15.ne.’ ’) then
close(15)
close(16)
endif

c Bottom velocity moments.

if(fname17.ne.’ ’) then
close(17)
close(18)
endif

c Breaking index.

if(fname19.ne.’ ’) close(19)

c Stored complex amplitude on last row.

if(fname20.ne.’ ’) close(20)

c local radiation stresses

if(fname21.ne.’ ’) close(21)
if(fname22.ne.’ ’) close(22)
if(fname23.ne.’ ’) close(23)
if(fname24.ne.’ ’) close(24)
if(fname25.ne.’ ’) close(25)
if(fname26.ne.’ ’) close(27)

c All done.

return

75

end

76

5.2 INREF.

Subroutine reads in and checks dimensions and values for large scale reference grid. Wave parameters for the

particular run are read in later by subroutine inwave.

The following unit (device) numbers are assumed:

• fname1: indat.dat, automatically assigned to the namelist input data file, indat.dat.

• fname2: refdat.dat, depth and u,v on the reference grid

• fname3: subdat.dat, user-specified subgrids.

• fname4: wave.dat, user-specified complex amplitude on row 1 (for iinput = 2).

• fname5: refdif1.log, run log for refdif1 program.

• fname6: height.dat, wave heights at reference grid locations. This file is always generated.

• fname7: angle.dat, wave directions θ in degrees at reference grid points. This file is always generated.

• fname8: depth.dat, tide-corrected depths at reference grid locations. This file is always generated.

• fname9: surface.dat, complex amplitude data for constructing an image of the instantaneous water

surface at the computational resolution. If REF/DIF 1 is given a null string as the input for this file

name, no file is generated.

• fname10: sxx.dat, Sxx components at reference grid locations.If REF/DIF 1 is given a null string as

the input for this file name, no file is generated.

• fname11: sxy.dat, Sxy components at reference grid locations. If REF/DIF 1 is given a null string as

the input for this file name, no file is generated.

• fname12: syy.dat, Syy components at reference grid locations. If REF/DIF 1 is given a null string as

the input for this file name, no file is generated.

• fname13: fx.dat, depth-integrated wave forcing in x direction at reference grid locations. If REF/DIF 1

is given a null string as the input for this file name, no file is generated.

• fname14: fy.dat, depth-integrated wave forcing in y direction at reference grid locations. If REF/DIF 1

is given a null string as the input for this file name, no file is generated.

• fname15: qx.dat, short wave flux in x direction at reference grid locations. If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

• fname16: qy.dat, short wave flux in y direction at reference grid locations. If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

77

• fname17: bottomu.dat, magnitude of bottom velocity at reference grid points. If REF/DIF 1 is given a

null string as the input for this file name, no file is generated.

• fname18: not used at present.

• fname19: ibrk.dat wave breaking index. If REF/DIF 1 is given a null string as the input for this file

name, no file is generated.

• fname20: owave.dat, complex amplitude on last row (for ioutput = 2).If REF/DIF 1 is given a null

string as the input for this file name, no file is generated.

• fname21: sxxb.dat, body stress part of local radiation stresses Sxx. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname22: sxyb.dat, body stress part of local radiation stresses Sxy. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname23: syyb.dat, body stress part of local radiation stresses Syy. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname24: sxxs.dat, surface stress part of local radiation stresses Sxx. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

• fname25: sxys.dat, surface stress part of local radiation stresses Sxy. The values are always zero. If

REF/DIF 1 is given a null string as the input for this file name, no file is generated.

• fname26: syys.dat, surface stress part of local radiation stresses Syy. If REF/DIF 1 is given a null string

as the input for this file name, no file is generated.

Variable definitions.

78

mr, nr reference grid dimensions (max ixr, iyr)
dxr, dyr grid spacing for reference grid
iu physical unit descriptor (1=mks, 2=english)

default value is 1, mks units
dt depth tolerence value (to check for anomalous depth values)

ispace switch to control grid subdivision.
=0, program attempts its own subdivisions
=1, user specifies subdivisions

nd y direction subdivision (ispace = 0 or 1)
(must be .lt.iy/nr − 1)

md(mr − 1) x direction subdivisions (if ispace = 1)
(must be .le.ix− 1)

ntype nonlinearity control parameter
=0, linear model
=1, Stokes matched to Hedges in shallow water
=2, Stokes throughout

icur switch to tell program if current data is to be used and read on input
=0, no input current data
=1, input current data to be read
program defaults to icur = 0

ibc boundary condition switch
=0, use closed lateral boundaries
=1, use open lateral conditions
program defaults to ibc = 0

ismooth artificial smoothing switch
=0, no additional artificial smoothing
=1, a fairly wide averaging window is applied to output results

dr depths at reference grid points
> 0, submerged areas
< 0, elevation above surface datum

ur x velocities at reference grid points
(only entered if icur = 1)

vr y velocities at reference grid points
(only entered if icur = 1)

Data is entered in namelist format from the data file indat.dat.

Subroutine is called from WaveModule and returns control to calling location, unless a fatal error is

encountered during input data checking.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, October 1984. Version 2.6 Revised February-August 2002.

〈refdif 〉+≡
subroutine inref

include ’param.h’

include ’common.h’

79

include ’pass.h’

integer i,j

namelist/ingrid/mr, nr, iu, ntype, icur, ibc, ismooth, dxr,
1 dyr, dt, ispace, nd, iff, isp, iinput, ioutput
1 /inmd/ md
1 /fnames/fname2,fname3,fname4,fname5,fname6,
1 fname7,fname8,fname9,fname10,fname11,fname12,
1 fname13,fname14,fname15,fname16,fname17,fname18,
1 fname19,fname20,fname21,fname22,fname23,fname24,
1 fname25,fname26

if(Master_Start.ge.0)then

c Constants.

g=9.80621

c Specify name of namelist data file.

fname1=’indat.dat’
open(unit=1,file=fname1)

80

5.2.1 Read file names from namelist.

〈refdif 〉+≡

read(1,nml=fnames)

c Open standard input and output files.

c open(unit=2,file=fname2)

endif
c ------------ skip above after the first call wave module

open(unit=5,file=fname5)

c Open optional output files.

c Store wave height?

if(fname6.ne.’ ’) open(26, file=fname6)

c Store wave angle?

if(fname7.ne.’ ’) open(7, file=fname7)

c Store water depth?

if(fname8.ne.’ ’) open(8, file=fname8)

c Store water surface?

if(fname9.ne.’ ’) open(9, file=fname9)

c Store depth-integrated radiation stresses?

if(fname10.ne.’ ’) then
open(10, file=fname10)
open(11, file=fname11)
open(12, file=fname12)
endif

c Store depth-integrated forcing?

if(fname13.ne.’ ’) then
open(13, file=fname13)
open(14, file=fname14)
endif

c Store total wave-induced mass flux?

if(fname15.ne.’ ’) then
open(15, file=fname15)
open(16, file=fname16)
endif

81

c Store bottom velocity moments?

if(fname17.ne.’ ’) then
open(17, file=fname17)
open(18, file=fname18)
endif

c Store breaking index?

if(fname19.ne.’ ’) open(19, file=fname19)

c Store complex amplitude on last row?

if(fname20.ne.’ ’) open(20, file=fname20)

c Store radiation stresses for 3d circulation model

if(fname21.ne.’ ’) open(21, file=fname21)
if(fname22.ne.’ ’) open(22, file=fname22)
if(fname23.ne.’ ’) open(23, file=fname23)
if(fname24.ne.’ ’) open(24, file=fname24)
if(fname25.ne.’ ’) open(25, file=fname25)
if(fname26.ne.’ ’) open(27, file=fname26)

c print headers on output

write(5,120)

write(5,106)

if(Master_Start.ge.0)then

c Read control data from unit 1.

read(1,nml=ingrid)

if(ispace.eq.1) read(1,nml=inmd)

write(5,107) mr,nr,dxr,dyr

if(iu.eq.1) write(5,114) iu
if(iu.eq.2) write(5,115) iu

if(icur.eq.0) write(5,200)
if(icur.eq.1) write(5,201)

if(ibc.eq.0) write(5,202)
if(ibc.eq.1) write(5,203)

if(ispace.eq.0)write(5,108)
if(ispace.eq.1)write(5,109)

write(5,119) nd

82

if(ntype.eq.0) write(5,110)
if(ntype.eq.1) write(5,111)
if(ntype.eq.2) write(5,112)

c Check input from unit 1.

if((mr.gt.ixr).or.(nr.gt.iyr)) then
write(5,*) ’dimensions for reference grid too large, stopping’

c call exit(1) ! not good for intel compiler
stop

end if

if((iu.ne.1).and.(iu.ne.2)) iu=1

dt=dt*dconv(iu)
dxr=dxr*dconv(iu)
dyr=dyr*dconv(iu)

if(dt.eq.0.) dt=2.

if(nd.gt.ifix(float(iy-1)/float(nr-1))) then
write(5,102)

c call exit(1) ! not good for intel compiler
stop

endif

if(ispace.eq.1) then
test=0.
do 1 i=1,mr-1
if(md(i).gt.(ix-1)) then
write(5,103) i
test=1.

endif
1 continue

if(test.eq.1.) then
c call exit(1) ! not good for intel compiler

stop
endif
endif

endif
c --------------- skip above after the first call wave module

do 7 i=1,mr
do 7 j=1,nr

dr(i,j)=Depth_Wave(i,j)
ur(i,j)=Intp_U_Wave(i,j)
vr(i,j)=Intp_V_Wave(i,j)

7 continue

c Check for large depth changes and large currents in reference grid data.

83

do 8 i=2,mr-1
do 8 j=2,nr-1
dcheck=(dr(i+1,j)+dr(i-1,j)+dr(i,j-1)+dr(i,j+1))/4.
if(abs(dcheck-dr(i,j)).gt.dt) write(5,104) dr(i,j), i,j,dt

8 continue

if(icur.eq.1) then
do 9 i=1,mr
do 9 j=1,nr
if(dr(i,j).le.0.0) go to 9
fr=(ur(i,j)*ur(i,j)+vr(i,j)*vr(i,j))/(g*dr(i,j))
if(fr.gt.1.) write(5,105) i,j,fr

9 continue

endif

c Establish coordinates for reference grid.

do 10 ir=1,mr
xr(ir)=float(ir-1)*dxr

10 continue

do 11 jr=1,nr
yr(jr)=float(jr-1)*dyr

11 continue

c Establish |y| coordinates for interpolated grid.

n=nd*(nr-1)+1
dy=dyr/float(nd)

do 12 j=1,n
y(j)=float(j-1)*dy

12 continue

c Check friction values.

c |iff(1)=1|, turbulent boundary layer damping everywhere

c |iff(2)=1|, porous bottom damping everywhere

c |iff(3)=1|, laminar boundary layer damping everywhere

do 13 i=1,3
if((iff(i).ne.0).and.(iff(i).ne.1)) iff(i)=0

13 continue

write(5,116)(iff(i),i=1,3)

c Specify whether or not user specified subgrids are to be read in during
c model operation.

c |isp=0|, no subgrids specified

84

c |isp=1|, subgrids to be read in later from unit 3.

if(isp.eq.0) write(5,117)

if(isp.eq.1) then
write(5,118)
open(unit=3,file=fname3)
endif

if((isp.eq.1).and.(ispace.eq.0))write(5,113)

if(isp.eq.0)then

do 14 ir=1,mr
do 14 jr=1,nr
isd(ir,jr)=0

14 continue

else

C CHECK UNIT NUMBER HERE> SUBDAT NEEDS TO BE OPENED< TOO>

do 15 ir=1,mr-1
read(3,100)(isd(ir,jr),jr=1,nr-1)

15 continue

endif

c Input done, return to main program.

return

100 format(15i4)
101 format(501(f10.4))
102 format(’ y-direction subdivision too fine.’/

1’ maximum number of y grid points will be exceeded.’/
1’ execution terminating.’)

103 format(’ x-direction subdivision too fine on grid block’
1,2x,i3/’ execution terminating’)

104 format(’ depth’,2x,f7.2,’(m) at reference grid location’,
12(2x,i3)/’ differs from the average of its neighbors by’,
1’ more than’,2x,f7.2,’(m).’/’ execution continuing’)

105 format(’ ambient current at reference grid location’
1,2(2x,i3),’ is supercritical with froude number =’,f7.4/
1’ execution continuing’)

106 format(’0’///20x,’input section, reference grid values’///)
107 format(’ reference grid dimensions mr=’,i3/

1 ’ nr=’,i3///
1 ’ reference grid spacings dxr=’,f8.4/
1 ’ dyr=’,f8.4)

108 format(’ ’/’ ispace =0 chosen, program will attempt its own ’,
1’reference grid subdivisions’)

109 format(’ ’/’ ispace =1 chosen, subdivision spacings will be’,
1’ input as data’)

85

110 format(’ ’/’ ntype = 0, linear model’)
111 format(’ ’/’ ntype = 1, stokes model matched to hedges model’)
112 format(’ ’/’ ntype = 2, stokes model’)
113 format(’ warning: input specifies that user will be supplying’,

1’ specified subgrids (isp=1),’/
1’ while program has been told to generate its own subgrid’,
1’ spacings (ispace=0).’/
1’ possible incompatibility in any or all subgrid blocks’)

114 format(’ ’/’ physical unit switch iu=’,i1,
1’, input in mks units’)

115 format(’ ’/’ physical unit switch iu=’,i1,
1’, input in english units’)

116 format(’ ’//’ switches for dissipation terms’//
1’ ’,i1,’ turbulent boundary layer’/
1’ ’,i1,’ porous bottom’/
1’ ’,i1,’ laminar boundary layer’)

120 format(//////20x,’Refraction-Diffraction Model for’/
120x,’Weakly Nonlinear Surface Water Waves’///
120x,’REF/DIF 1, Version 2.6, March 2002’///
120x,’Center for Applied Coastal Research’/
120x,’Department of Civil Engineering’/
120x,’University of Delaware’/
120x,’Newark, Delaware 19716’///
110x,’James T. Kirby, Robert A. Dalrymple and Fengyan Shi’///
120x,’Copyright (C) 2002 James T. Kirby’/
120x,’REF/DIF 1 comes with ABSOLUTELY NO WARRANTY,’/
120x,’and is copyrighted under the provisions of the GNU’/
120x,’General Public License.’)

117 format(’ ’/’ isp=0, no user defined subgrids’)
118 format(’ ’/’ isp=1, user defined subgrids to be read’)
119 format(’ ’/’ y-direction subdivision according to nd=’,i3)
200 format(’ ’/’ icur=0, no current values read from input files’)
201 format(’ ’/’ icur=1, current values read from data files’)
202 format(’ ’/’ ibc=0, closed (reflective) lateral boundaries’)
203 format(’ ’/’ ibc=1, open lateral boundaries’)

end

86

5.3 INWAVE.

Read in wave parameters.

Variable definitions:

iinput determine method of specifying the first row of computational values
=1, input values from indat.dat according to value of iwave
=2, input complex amplitude values from file wave.dat

ioutput determine whether last row of complex amplitudes are stored in separate file owave.dat
=1, extra data not stored
=2, extra data stored in file owave.dat

if iinput = 1:
iwave input wave type

=1, input discrete wave amplitudes and directions
=2, read in dominant direction, total average energy density, and spreading factor

nfreqs number of frequency components to be used (separate model run for each component)
freqs wave frequency for each of nfreqs runs
tide tidal offset for each of nfreqs runs

if iwave = 1
nwavs number of discrete wave components at each of nfreqs runs
amp initial amplitude of each component
dir direction of each discrete component in + or - degrees from the x-direction

if iwave = 2 (not presently recommended)
edens total amplitude variance density over all directions at each frequency
nsp = n spreading factor in cos2n(θ) directional distribution (stored in nwavs)
nseed Seed value for random number generator. Integer value between 0 and 9999.

if iinput = 2:
freqs Wave frequency for one run.
tide Tidal offset for one run.

All data is entered using the namelist convention.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, Oct 1984, Sept 1989, Jan 1991, July 1994, November 1994, February 2002.

〈refdif 〉+≡

subroutine inwave

include ’param.h’

include ’common.h’

include ’pass.h’

namelist /waves1a/ iwave, nfreqs

87

1 /waves1b/ update_interval,num_data,
1 freqs, tide, nwavs, amp, dir
1 /waves1c/ thet0, freqs, tide, edens, nwavs, nseed
1 /waves2/ freqin, tidein

real dis(numdata)

integer i,j

pi=3.1415927

c Values of |iinput|, |ioutput| already entered in namelist statement in
c |inref|.

if((iinput.ne.1).and.(iinput.ne.2))then
write(5,*)’ invalid value chosen for iinput, check indat.dat’
stop
endif

if((ioutput.ne.1).and.(ioutput.ne.2))then
write(5,*)’ invalid value chosen for ioutput, check indat.dat’
stop
endif

if(iinput.eq.1)then
write(5,*)’ iinput = 1, program specifies initial row of a’

c Enter |iwave|, |nfreqs| for |iinput = 1|.

read(1, nml=waves1a)

write(5,102)

c Enter data for case of |iinput=1, iwave=1|.

if(iwave.eq.1) then

read(1, nml=waves1b)
write(5,103)

endif

c Enter data for case of |iinput=1, iwave=2|.

if(iwave.eq.2) then

read(1, nml=waves1c)
write(5,104)

endif
write(5,105) nfreqs

if(iwave.eq.2) then

88

thet0=thet0*pi/180.
endif

c For each frequency, enter the wave period and tidal offset.

do 3 ifreq=1,nfreqs

do itime=1,num_data

write(5,107) ifreq,freqs(ifreq,itime),tide(ifreq)

c Convert angles to radians.

freqs(ifreq,itime)=2.*pi/freqs(ifreq,itime)
tide(ifreq)=tide(ifreq)*dconv(iu)

c If |iwave = 1|, read the number of discrete components.

if(iwave.eq.1) then

do 1 iwavs=1,nwavs(ifreq)

write(5,106) iwavs,amp(ifreq,itime),dir(ifreq,itime)

dir(ifreq,itime)=dir(ifreq,itime)*pi/180.
amp(ifreq,itime)=amp(ifreq,itime)*dconv(iu)

1 continue

endif

enddo

c If |iwave = 2|, read the parameters for each frequency.

if(iwave.eq.2)then

seed=float(nseed)/9999.
write(5,108) edens(ifreq),nwavs(ifreq),nseed
dir(ifreq,1)=thet0
edens(ifreq)=edens(ifreq)*(dconv(iu)**2.)
endif

3 continue

endif

c If |iinput = 2|, read in wave period and tidal offset.

if(iinput.eq.2)then

read(1,nml=waves2)

freqs(1,1)=freqin
tide(1)=tidein

89

write(5,*)’ iinput = 2, user specifies a in wave.dat’
nfreqs=1

write(5,102)
write(5,*)’ wave period =’,freqs(1,1),’ sec.’
write(5,*)’ tidal offset=’,tide(1)
freqs(1,1)=2.*pi/freqs(1,1)
tide(1)=tide(1)*dconv(iu)
endif

c --- re-arrange freqs,amp, and angle

num_total=int(total_time/(Master_dt*N_Interval_CallWave))

print*, total_time, Master_dt, N_interval_CallWave
print*,’total number of wave updated =’, num_total

if(num_total.ge.numdata)then
print*,’you should make a larger numdata in param.h’

endif

do ire=1,num_data
dis(ire)=freqs(1,ire)

enddo

do ire=1,num_total
between=(Master_dt*N_Interval_CallWave)*ire

* /UPDATE_INTERVAL
partial=between-int(between)
nstart=int(between)+1
if(nstart.lt.num_data)then
freqs(1,ire)=dis(nstart)*(1.-partial)+dis(nstart+1)*partial
else
freqs(1,ire)=dis(num_data)
endif

enddo

c -- amp

do ire=1,num_data
dis(ire)=amp(1,ire)

enddo

do ire=1,num_total
between=(Master_dt*N_Interval_CallWave)*ire

* /UPDATE_INTERVAL
partial=between-int(between)
nstart=int(between)+1
if(nstart.lt.num_data)then
amp(1,ire)=dis(nstart)*(1.-partial)+dis(nstart+1)*partial
else
amp(1,ire)=dis(num_data)
endif

90

enddo

c -- angle

do ire=1,num_data
dis(ire)=dir(1,ire)

enddo

do ire=1,num_total
between=(Master_dt*N_Interval_CallWave)*ire

* /UPDATE_INTERVAL
partial=between-int(between)
nstart=int(between)+1
if(nstart.lt.num_data)then
dir(1,ire)=dis(nstart)*(1.-partial)+dis(nstart+1)*partial
else
dir(1,ire)=dis(num_data)
endif

enddo

return

100 format(15i4)
101 format(501(f10.4))
102 format(’1’///20x,’ input section, wave data values’///)
103 format(’ ’///’ iwave=1, discrete wave amps and directions’)
104 format(’ ’///’ iwave=2, directional spreading model chosen’)
105 format(’ ’///’ the model is to be run for’,i3,’ separate’,

1’ frequency components’)
106 format(’ ’/’ wave component ’,i2,’, amplitude =’,f8.4,

1’, direction=’,f8.4)
107 format(’ ’//’ frequency component ’,i2//

1’ wave period=’,f8.4,’sec., tidal offset=’,f8.4)
108 format(’ ’/’ total variance density =’,f8.4,’, spreading factor

1n=’,i2,’ seed number =’,i5)

end

91

5.4 MODEL.

This subroutine is the control level for the actual wave model. Data read in during inref and inwave is

conditioned and passed to the wave model. This routine is executed once for each frequency component

specified in inwave.

The wave model is split in three parts which are run sequentially for each reference grid row.

grid subroutine performs the interpolation of depth and current values.
con calculate the constants needed by the finite difference scheme.
fdcalc perform the finite difference calculations.
calculate wave forcing calculate radiation stresses, depth integrated forcing and local forcing.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, November 1984. Last modified March 2002.

〈refdif 〉+≡

subroutine model

include ’param.h’

include ’common.h’

include ’pass.h’

integer i,j

dimension dthi(31),thi(31),thet(iy)

C DON’t THINK THESE ARE NEEDED

dimension sxy(iy),sxx(iy),syy(iy)

c Constants.

g=9.80621
rho=1000.
pi=3.1415927
eps=1.0e-05

c find updated wave information

itime=max(1.,Time_Master/(N_Interval_CallWave*Master_dt))
itime=min(itime,num_total)
print*,’wave itime =’, itime, ’ height=’,2*amp(1,itime)

c Execute model once for each frequency.

92

c |ifreq| is the controlling index value.

do 200 ifreq=1,nfreqs
psibar=0.
write(5,203) ifreq

period=2.*pi/freqs(ifreq,itime)

c If |ismooth=1|, compute window width.

if(ismooth.eq.1)then

al0=g*period*period/(2.*pi)
nrs=int((20.*al0/dyr-1.)/2.)
write(5,*)’ window half-width = ’, nrs

endif

c Specify initial nonlinear parameters for each run.

if(ntype.eq.0) an=0.
if(ntype.ne.0) an=1.
if(ntype.ne.2) anl=0.
if(ntype.eq.2) anl=1.

c Calculate the mean |kb| on the first row, for use in
c specifying initial conditions.

npts=0
sumk=0.

do 10 jr=1,nr
d(1,jr)=dr(1,jr)+tide(ifreq)+Intp_eta_Wave(1,jr)
call wvnum(d(1,jr),ur(1,jr),freqs(ifreq,itime),k(1,jr),eps,

1icdw,1,1)

if(d(1,jr).gt.0.05) then
sumk=sumk+k(1,jr)
npts=npts+1

endif

c --- pass wave number the first row

Pass_WaveNum(1,jr)=k(1,jr)

c --- pass c cg on the first row

sig(1,jr)=freqs(ifreq,itime)-k(1,jr)*ur(1,jr)
akd=k(1,jr)*dr(1,jr)
q(1,jr)=(1.+akd/(sinh(akd)*cosh(akd)))/2.
p(1,jr)=q(1,jr)*g*tanh(akd)/k(1,jr)

Pass_C(1,jr)=sig(1,jr)/k(1,jr)

93

Pass_Cg(1,jr)=sqrt(p(1,jr)*q(1,jr))

10 continue

kb(1)=sumk/float(npts)

c Establish initial wave conditions for the |ifreq| frequency

if(iinput.eq.1)then

c Compute wave from data given in |indat.dat|.

if(iwave.eq.1) then

c |iwave.eq.1|, discrete components specified.

do 3 j=1,n
a(1,j)=cmplx(0.,0.)

do 2 iwavs=1,nwavs(ifreq)
thet(j)=dir(ifreq,itime)*180./pi
a(1,j)=a(1,j)+amp(ifreq,itime)*cexp(cmplx(0.,kb(1)*sin(

1dir(ifreq,itime))*y(j)))
2 continue

3 continue

if(fname7.ne.’ ’) write(7,202)(thet(j),j=1,n,nd)

c -- pass angle -- Fengyan 02/04/2002
do j=1,n,nd
jj=(j-1)/nd+1
Pass_Theta(1,jj)=thet(j)
enddo

else

c |iwave.eq.2|, directional spreading model (not recommended).

sp=float(nwavs(ifreq))
nsp=nwavs(ifreq)
thmax=pi/4.
call acalc(thmax,nsp,a1)
edens(ifreq)=sqrt(edens(ifreq)/a1)
nn=31
ii=(nn-1)/2+1
seed=rand1(seed)

c Compute randomly distributed $\Delta\theta$’s.

sum0=0.
do 12 i=1,nn
seed=rand1(seed)

94

dthi(i)=seed
sum0=sum0+seed

12 continue
xnorm=2.*thmax/sum0
do 101 i=1,nn

dthi(i)=dthi(i)*xnorm
101 continue

thi0=-thmax
do 4 i=1,nn
thi0=thi0+dthi(i)
thi(i)=thi0-dthi(i)/2.
dth=dthi(i)
amp(ifreq,i)=edens(ifreq)*sqrt(dth)*sqrt(cos(thi(i)+dth/2.)

1**(2*nsp)+cos(thi(i)-dth/2.)**(2*nsp))
4 continue

do 5 i=1,nn
ip1=i+1
seed=rand1(seed)
dir(ifreq,ip1)=2.*pi*seed/100.

5 continue
do 7 j=1,n
a(1,j)=cmplx(0.,0.)
do 6 i=1,nn
a(1,j)=a(1,j)+amp(ifreq,i)*cexp(cmplx(0.,kb(1)*sin(thi(i)-thet0)

1*y(j)+dir(ifreq,i+1)))*2.
6 continue
7 continue

endif
endif

c If |iinput=2|, read |a| from data file |fname4|.

if(iinput.eq.2)then
open(4,file=fname4)
read(4,*)(a(1,j),j=1,n)
close(4)

c Calculate wave angle on the first row.

CCC NO - THIS DOESN’T WORK - IT HAS A BACKWARDS DERIVATIVE

CCC NEW -- Tony add this part that calculates angle at the first row.

do 15 j=1,n
if(a(m,j).EQ.(0.,0.))then
akx2=0.
else
akx2=aimag(clog(a(m,j)))
endif
if(a(m-1,j).EQ.(0.,0.))then
akx1=0.
else
akx1=aimag(clog(a(m-1,j)))

95

endif
if(abs(akx2-akx1).GT.pi)then
akx=sign((2.*pi-(abs(akx1)+abs(akx2)))/dx,akx1)
else
akx=(akx2-akx1)/dx
endif
if(j.NE.n)then
if(a(m,j+1).EQ.(0.,0.))then
aky2=0.
else
aky2=aimag(clog(a(m,j+1)))
endif
if(a(m,j).EQ.(0.,0.))then
aky1=0.
else
aky1=aimag(clog(a(m,j)))
endif
else
if(a(m,j).EQ.(0.,0.))then
aky2=0.
else
aky2=aimag(clog(a(m,j)))
endif
if(a(m,j-1).EQ.(0.,0.))then
aky1=0.
else
aky1=aimag(clog(a(m,j-1)))
endif
endif
if(abs(aky2-aky1).GT.pi)then
aky=sign((2.*pi-(abs(aky1)+abs(aky2)))/dy,aky1)
else
aky=(aky2-aky1)/dy
endif
thet(j)=atan2(aky,(akx+kb(m)))
thet(j)=180.*thet(j)/pi

15 continue
write(7,202)(thet(j),j=1,n,nd)

C END NEW

c -- pass angle on first row -- Fengyan 02/04/2002.

do j=1,n,nd
jj=(j-1)/nd+1
Pass_Theta(1,jj)=thet(j)
enddo

endif

c Store first row of wave heights on unit CHECK UNIT 12.

if(fname6.ne.’ ’)then
write(26,202)(2*cabs(a(1,j))/dconv(iu),j=1,n,nd)

96

endif

c --- Pass wave height (mks unit) -- Fengyan 02/04/2002.

do j=1,n,nd
jj=(j-1)/nd+1
Pass_height(1,jj)=2*cabs(a(1,j))
Pass_ibrk(1,jj)=0
enddo

c Store surface on file |fname9|.

if(fname9.ne.’ ’) then
x(1)=0

write(9,*) n
write(9,*) (y(j),j=1,n)
write(9,*) x(1)
write(9,*) (real(a(1,j)),j=1,n)

endif

c Now execute model for the |ifreq| frequency over each of |mr|
c grid blocks. |ir| is the controlling index value.

do 100 ir=1,(mr-1)

c Establish interpolated grid block for segment |ir|.

call grid(ifreq,ir)

c If |ir=1| write initial values on |iun(3)|.

if(ir.eq.1) then

write(5,201) x(1)/dconv(iu),psibar

endif

c Calculate constants for each grid block.

call con(ifreq,ir)

c Perform finite difference calculations.

call fdcalc(ifreq,ir)

c Grid block |ir| done, print output and go to next grid.

100 continue

if(ioutput.eq.2)then
write(20,*)(a(m,j),j=1,n)

97

endif

c Termination for the |surface.dat| file.

if(fname9.ne.’ ’) then

x(1)=-100.
write(9,*) x(1)

endif

c Calculate radiation stresses using new formula (roller and spline
c transition) -- fyshi 02/04/2002

Pass_period=2.*pi/freqs(1,itime)

call calculate_wave_forcing

c Model complete for the |ifreq| frequency component, go to the next frequency
c component.

200 continue

c Runs completed for all frequencies. Return to end of main program.

return

201 format(’ x=’,f10.2,’ psibar=’,f20.4)
202 format(501(f10.4))
203 format(’1’,20x,’model execution, frequency’,

1’ component’,i4//)

end

98

5.5 GRID.

Interpolate the depth and current grids for reference grid block —ir—. Velocities u and v are now set to zero

in thin film areas.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, October 1984, August 1997.

〈refdif 〉+≡

subroutine grid(ifreq,ir)

include ’param.h’

include ’common.h’

include ’pass.h’

integer i,j

c Constants.

pi=3.1415927
eps=1.0e-05

c Perform y-interpolation on reference grid.

c Interpolate first row.

do 10 j=1,n,nd
d(1,j)=dr(ir,((j-1)/nd+1))+Intp_eta_Wave(ir,((j-1)/nd+1))
u(1,j)=ur(ir,((j-1)/nd+1))
v(1,j)=vr(ir,((j-1)/nd+1))

10 continue

do 12 jj=2,nr
do 11 j=1,(nd-1)
jjj=nd*(jj-2)+(j+1)
d(1,jjj)=(dr(ir,jj)-dr(ir,jj-1))*y(jjj)/dyr

1+(yr(jj)*dr(ir,jj-1)-yr(jj-1)*dr(ir,jj))/dyr
u(1,jjj)=(ur(ir,jj)-ur(ir,jj-1))*y(jjj)/dyr

1+(yr(jj)*ur(ir,jj-1)-yr(jj-1)*ur(ir,jj))/dyr
v(1,jjj)=(vr(ir,jj)-vr(ir,jj-1))*y(jjj)/dyr

1+(yr(jj)*vr(ir,jj-1)-yr(jj-1)*vr(ir,jj))/dyr
11 continue
12 continue

c Set number of x points and define x values.

99

if(ispace.eq.0) then

c |ispace=0|, program sets subdivisions.

do 13 j=1,n
dref=d(1,j)+tide(ifreq)
if(dref.lt.0.001) dref=0.001
call wvnum(dref,u(1,j),freqs(ifreq,itime),k(1,j),eps,icdw,1,j)

13 continue

npts=0
sumk=0.
do 14 j=1,n
if(d(1,j).gt.0.05) then

sumk=sumk+k(1,j)
npts=npts+1

endif
14 continue

kb(1)=sumk/float(npts)
alw=2.*pi/kb(1)
anw=dxr/alw
np=ifix(5.*anw)
if(np.lt.1) np=1
md(ir)=min((ix-1),np)
if(np.gt.(ix-1)) write(5,100) ir

endif

c |ispace=1|, user specified subdivision.

m=md(ir)+1
dx=dxr/float(md(ir))
do 15 i=1,m
x(i)=xr(ir)+float(i-1)*dx

15 continue

c interpolate values on |m| row.

do 16 j=1,n,nd
d(m,j)=dr(ir+1,((j-1)/nd+1))+Intp_eta_Wave(ir+1,((j-1)/nd+1))
u(m,j)=ur(ir+1,((j-1)/nd+1))
v(m,j)=vr(ir+1,((j-1)/nd+1))

16 continue

do 18 jj=2,nr
do 17 j=1,(nd-1)
jjj=nd*(jj-2)+(j+1)
d(m,jjj)=(dr(ir+1,jj)-dr(ir+1,jj-1))*y(jjj)/dyr

1+(yr(jj)*dr(ir+1,jj-1)-yr(jj-1)*dr(ir+1,jj))/dyr
u(m,jjj)=(ur(ir+1,jj)-ur(ir+1,jj-1))*y(jjj)/dyr

1+(yr(jj)*ur(ir+1,jj-1)-yr(jj-1)*ur(ir+1,jj))/dyr
v(m,jjj)=(vr(ir+1,jj)-vr(ir+1,jj-1))*y(jjj)/dyr

100

1+(yr(jj)*vr(ir+1,jj-1)-yr(jj-1)*vr(ir+1,jj))/dyr
17 continue
18 continue

c Interpolate values in |x|-direction.

do 19 i=2,m-1
do 19 j=1,n
d(i,j)=(d(m,j)-d(1,j))*x(i)/dxr+(x(m)*d(1,j)-x(1)*d(m,j))/dxr
u(i,j)=(u(m,j)-u(1,j))*x(i)/dxr+(x(m)*u(1,j)-x(1)*u(m,j))/dxr
v(i,j)=(v(m,j)-v(1,j))*x(i)/dxr+(x(m)*v(1,j)-x(1)*v(m,j))/dxr

19 continue

c Add in user specified grid subdivisions (read from unit 3).

do 30 jr=1,nr-1
if(isd(ir,jr).eq.1) then
js=nd*jr+(1-nd)
jf=js+nd
read(3,101)((d(i,j),j=js,jf),i=1,m)

if(icur.eq.1)then
read(3,101)((u(i,j),j=js,jf),i=1,m)
read(3,101)((v(i,j),j=js,jf),i=1,m)
endif

do 31 i=1,m
do 31 j=js,jf
d(i,j)=d(i,j)*dconv(iu)
u(i,j)=u(i,j)*dconv(iu)
v(i,j)=v(i,j)*dconv(iu)

31 continue

end if

30 continue

c Add tidal offset to all rows and establish thin film. Set
c current speed to zero in thin film area.

do 20 i=1,m
do 20 j=1,n

d(i,j)=d(i,j)+tide(ifreq)

if(d(i,j).lt.0.001) then
d(i,j)=0.001
u(i,j)=0.0
v(i,j)=0.0
endif

20 continue

c Interpolation complete, return to |model|.

101

return

100 format(’ model tried to put more spaces than allowed in’,
1’ grid block ’,i3)

101 format(501f10.4)

end

102

5.6 CON.

Subroutine calculates constants for reference grid block —ir—.

Program now checks for the existance of blocking currents and reduces the flow velocity to remove the

blocking if it occurs.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, October 1984, August 1997.

〈refdif 〉+≡

subroutine con(ifreq,ir)

include ’param.h’

include ’common.h’

c Constants.

eps=1.0e-05
g=9.80621

c Calculate constants.

do 1 i=1,m
do 1 j=1,n
call wvnum(d(i,j),u(i,j),freqs(ifreq,itime),k(i,j),eps,icdw,i,j)
sig(i,j)=freqs(ifreq,itime)-k(i,j)*u(i,j)
akd=k(i,j)*d(i,j)
q(i,j)=(1.+akd/(sinh(akd)*cosh(akd)))/2.
p(i,j)=q(i,j)*g*tanh(akd)/k(i,j)
dd(i,j)=(cosh(4.*akd)+8.-2.*(tanh(akd)**2))/(8.*(sinh(akd)**4.))
bottomu(i,j)=g*k(i,j)/(2*freqs(ifreq,itime)*cosh(akd))

1 continue

c We seem to have occasional problems in adverse currents when the water
c is shallow, probably due to using artificial current fields. We now
c check to see if the total advection velocity is negative, make it a small
c positive number if not, and flag the change to the user.

if(icur.eq.1) then

do 2 i=1,m
do 2 j=1,n

cgroup=sqrt(p(i,j)*q(i,j))
advect=cgroup+u(i,j)

103

if(advect.le.0.) then
advect=0.1
utemp=advect-cgroup
write(5,100)ir,i,j,u(i,j),utemp
u(i,j)=utemp
endif

2 continue

endif

c Calculate the dissipation term |w|.

call diss

c Calculate the mean |kb| on each row.

do 11 i=1,m
npts=0
sumk=0.
do 10 j=1,n
if(d(i,j).gt.0.05) then

sumk=sumk+k(i,j)
npts=npts+1

endif
10 continue

if(npts.eq.0)then
kb(i)=k(i,1)
else
kb(i)=sumk/float(npts)
endif

11 continue

return

100 format(’at grid block ’,i3,’, location i=’,i4,’, j=’,i4,’ model
1found a negative, blocking velocity u=’,f8.2,’ and reduced it to
1u=’, f8.2)

end

104

5.7 FDCALC.

Perform the Crank-Nicolson finite-difference calculations on grid block —ir—. Method is the implicit-

implicit iteration used by Kirby and Dalrymple(1983).

Parameters for use in determining the minimax approximation are defined here.

60 degree minimax coefficients.

a0 = 0.998214

a1 = −0.854229

b1 = −0.383283

70 degree minimax coefficients.

a0 = 0.994733

a1 = −0.890065

b1 = −0.451641

80 degree minimax coefficients.

a0 = 0.985273

a1 = −0.925464

b1 = −0.550974

Padé coefficients (default).

a0 = 1

a1 = −0.75

b1 = −0.25

Small angle coefficients (Radder’s approximation).

a0 = 1.

a1 = −.5

b1 = 0.0

Coded by James T. Kirby, October 1984, January 1992, July 1992.

There is an unexplained and odd behavior in the minimax model when waves around islands are com-

puted. For this reason, the program distributed here has the coefficients for the Padé model.

〈refdif 〉+≡

subroutine fdcalc(ifreq,ir)

105

include ’param.h’

include ’common.h’

include ’pass.h’

integer i,j

real kap,ksth1,ksth2
complex c1,c2,c3,cp1,cp2,cp3,ci,damp
complex ac(iy),bc(iy),cc(iy),rhs(iy),sol(iy)
dimension thet(iy), urs(iy),height(iy),heightb(iy)
dimension sxy(iy),sxx(iy),syy(iy),sbxx(iy),sbxy(iy),sbyy(iy)

106

5.7.1 FDCALC statement functions.

The following code provides the statement functions used in establishing the tridiagonal matrix structure used

in fdcalc.

〈refdif 〉+≡

cg(i,j)=sqrt(p(i,j)*q(i,j))

pv(i,j)=p(i,j)-v(i,j)*v(i,j)

bet(i,j)=-4.*(k(i+1,j) - k(i,j))/(dx*((k(i+1,j) + k(i,j))**2))
1 -4.*(k(i+1,j)*(p(i+1,j) -u(i+1,j)**2) -
1 k(i,j)*(p(i,j)-u(i,j)**2)) /
1 (dx*((k(i+1,j) + k(i,j))**2.)*(p(i+1,j) + p(i,j) -
1 (u(i+1,j)**2 +
1 u(i,j)**2)))

dv(i,j)=(cg(i+1,j) + u(i+1,j))/sig(i+1,j) -
1 (cg(i,j)+u(i,j))/sig(i,j)
1 -delta1*dx*((v(i+1,j+1)/sig(i+1,j+1)) + (v(i,j+1)/sig(i,j+1))
1 -(v(i+1,j-1)/sig(i+1,j-1))-(v(i,j-1)/sig(i,j-1)))/(2.*dy)

damp(i,j)=2.*ci*cdamp*((cg(i+1,j) + u(i+1,j)) + (cg(i,j) +
1 u(i,j)))/
1 (dy*dy*(k(i+1,j)**2 + k(i,j)**2))

deltap(i,j)=a1-b1*kb(i)/k(i,j)

cp1(i,j)=(cg(i+1,j)+u(i+1,j))*cmplx(1.,dx*(kb(i+1)-a0*k(i+1,j)))
1+cmplx(1.,0.)*(cg(i,j)+u(i,j)+dv(i,j)*(sig(i+1,j)+sig(i,j))/4.)
1+2.*omeg*cmplx(0.,1.)*(-b1)*bet(i,j)*(u(i+1,j)+u(i,j))/sig(i+1,j)
1+4.*omeg*(-b1)*cmplx(0.,1.)*(3.*(u(i+1,j)-u(i,j))/dx+(v(i+1,j+1)
1+v(i,j+1)-v(i+1,j-1)-v(i,j-1))/(4.*dy))/(sig(i+1,j)*(k(i+1,j)+
1 k(i,j)))
1+cmplx(-2.*(-b1)/(dy*dy*(k(i+1,j)+k(i,j)))+b1*bet(i,j)*dx/(2.*
1 dy*dy),
1-deltap(i,j)*dx/(2.*dy*dy))*(pv(i+1,j+1)+2.*pv(i+1,j)+
1pv(i+1,j-1))/sig(i+1,j)-cmplx(1.,0.)*omeg*delta2*(3.*u(i+1,j)
1+u(i,j))/(2.*sig(i+1,j))+ci*omeg*(a0-1.)*k(i+1,j)*u(i+1,j)*
1 dx/sig(i+1,j)
1+2.*ifilt*damp(i,j) +cmplx(1.,0.)*alphn*dx

cp2(i,j)=cmplx((-delta1*dx)*(v(i+1,j) + v(i,j))/(2.*dy)
1+b1*u2*bet(i,j)*(u(i+1,j)*v(i+1,j) + u(i,j)*v(i,j))/
1 (dy*sig(i+1,j+1)),
1(-delta1*u2)*(u(i+1,j+1)*v(i+1,j+1) + u(i,j+1)*v(i,j+1)+
12.*u(i+1,j)*v(i+1,j))/(2.*dy*sig(i+1,j+1))+dx*(-b1)*bet(i,j)
1*(sig(i+1,j)*v(i+1,j)+sig(i,j)*v(i,j))/(2.*dy*sig(i+1,j+1)))
1+cmplx(2.*(-b1)/(dy*dy*(k(i+1,j)+k(i,j)))+
1 (-b1)*bet(i,j)*dx/(2.*dy*dy),
1+deltap(i,j)*dx/(2.*dy*dy))*(pv(i+1,j+1) +
1 pv(i+1,j))/sig(i+1,j+1) +
14.*cmplx(0.,1.)*(-b1)*sig(i+1,j)*v(i+1,j)/(dy*sig(i+1,j+1)*

107

1 (k(i+1,j) +
1k(i,j))) -ifilt*damp(i,j)

cp3(i,j)=cmplx(-(-delta1*dx)*(v(i+1,j)+v(i,j))/(2.*dy)
1+(-b1)*u2*bet(i,j)*(u(i+1,j)*v(i+1,j)+u(i,j)*v(i,j))/
1 (dy*sig(i+1,j-1)),
1 -(-delta1*u2)*(u(i+1,j-1)*v(i+1,j-1)+u(i,j-1)*v(i,j-1)+
12.*u(i+1,j)*v(i+1,j))/(2.*dy*sig(i+1,j-1))-
1dx*(-b1)*bet(i,j)*(sig(i+1,j)*v(i+1,j) + sig(i,j) * v(i,j)) /
1(2.*dy*sig(i+1,j-1))) +cmplx(2.*(-b1)/(dy*dy*(k(i+1,j) + k(i,j)))
1 +
1(-b1)*bet(i,j)*dx/(2.*dy*dy), -(-deltap(i,j)*dx) / (2.*dy*dy))*
1 (pv(i+1,j)
1+ pv(i+1,j-1))/sig(i+1,j-1)- 4.*cmplx(0.,1.)*(-b1)*sig(i+1,j)*
1 v(i+1,j) /
1(dy*sig(i+1,j-1)*(k(i+1,j)+k(i,j))) -ifilt*damp(i,j)

c1(i,j)=cmplx(cg(i+1,j)+u(i+1,j)-dv(i,j)*(sig(i+1,j) +
1 sig(i,j))/4.,0.) +
1cmplx(1.,-dx*(kb(i)-a0*k(i,j))) * (cg(i,j)+u(i,j)) +
12.*cmplx(0.,1.)*omeg*(-b1)*bet(i,j)*(u(i+1,j) + u(i,j))/sig(i,j)+
14.*cmplx(0.,1.)*omeg*(-b1)*(3.*(u(i+1,j) - u(i,j))/dx+
1 (v(i+1,j+1)+
1v(i,j+1) - v(i+1,j-1) - v(i,j-1))/(4.*dy))/(sig(i,j)*(k(i+1,j) +
1 k(i,j)))
1+ cmplx(2.*b1/(dy*dy*(k(i+1,j)+k(i,j))) -b1 * bet(i,j) *
1dx/(2.*dy*dy), +deltap(i,j)*dx/(2.*dy*dy))*(pv(i,j+1) +
12.*pv(i,j)+pv(i,j-1))/sig(i,j) - cmplx(1.,0.)*omeg*delta2*
1(3.*u(i+1,j)+u(i,j))/(2.*sig(i,j)) - ci*omeg* (a0-1.) * k(i,j) *
1u(i,j)*dx/sig(i,j) + 2.*ifilt*damp(i,j) - cmplx(1.,0.)*alphn*dx

c2(i,j)=cmplx(delta1*dx*(v(i+1,j) + v(i,j))/(2.*dy)
1 + b1*u2*bet(i,j)*(u(i+1,j)*v(i+1,j) + u(i,j)*v(i,j))/
1 (dy*sig(i,j+1)),
1(-delta1*u2)*(u(i+1,j+1)*v(i+1,j+1) + u(i,j+1)*v(i,j+1)
1+2.*u(i,j)*v(i,j))/(2.*dy*sig(i,j+1)) + 4.*(-b1)*sig(i,j)*
1 v(i,j) /
1(dy*(k(i+1,j) +k(i,j))*sig(i,j+1)) - dx*(-b1)*bet(i,j)*(
1sig(i+1,j)*v(i+1,j) + sig(i,j)*v(i,j)) / (2.*dy*sig(i,j+1))) +
1cmplx(2.*(-b1)/(dy*dy*(k(i+1,j) + k(i,j))) + b1*bet(i,j)*dx/
1 (2.*dy*dy),
1 (-deltap(i,j)*dx)/(2.*dy*dy))*(pv(i,j+1) + pv(i,j))/sig(i,j+1)
1 -
1ifilt*damp(i,j)

c3(i,j)=cmplx((-delta1*dx)*(v(i+1,j)+v(i,j))/(2.*dy) -
1 b1*u2*bet(i,j) *
1(u(i+1,j)*v(i+1,j) + u(i,j)*v(i,j))/(dy*sig(i,j-1)), (delta1*u2)*
1(u(i+1,j-1) * v(i+1,j-1) + u(i,j-1)*v(i,j-1) +2.*u(i,j)*v(i,j))/(
12.*dy*sig(i,j-1)) - 4.*(-b1)*sig(i,j)*v(i,j)/(dy*(k(i+1,j) +
1k(i,j))*sig(i,j-1)) + dx*(-b1)*bet(i,j)*(sig(i+1,j)*v(i+1,j) +
1sig(i,j)*v(i,j))/(2.*dy*sig(i,j-1))) + cmplx(-2.*b1/(dy*dy*(
1 k(i+1,j) +
1k(i,j))) + b1*bet(i,j)*dx/(2.*dy*dy), (-deltap(i,j)*dx) /

108

1 (2.*dy*dy)) *
1 (pv(i,j) + pv(i,j-1))/sig(i,j-1)-ifilt*damp(i,j)

f1(i,j)=tanh(k(i,j)*d(i,j))**5.

f2(i,j)=(k(i,j)*d(i,j)/sinh(k(i,j)*d(i,j)))**4.

c Constants defining the parabolic model angular aperture.

c 70 degree minimax coefficients.
c
c a0=0.994733
c a1=-0.890065
c b1=-0.451641

c Pad\’{e} coefficients.

a0=1.0
a1=-0.75
b1=-0.25

c Additional constants.

u2=1.0
kap=0.78
gam=0.4
omeg=freqs(ifreq,itime)
pi=3.1415927
ci=cmplx(0.,1.)

c cdamp is the constant for the noise suppression formulation. It can be
c changed.

cdamp=0.00025

alphn=0.
delta1=a1-b1
delta2=1+2.*a1-2.*b1

c Initialize breaking index if |ir = 1|.

if(ir.eq.1) then
ifilt=0

do 100 j=1,n
ibr(j)=0
wb(1,j)=cmplx(0.,0.)

100 continue
endif

c Solution for |m| grid blocks in reference block |ir|.

do 200 i=1,(m-1)

109

ip1=i+1
it=1
ih=1

c r.h.s. of matrix equation.

rhs(1)=cmplx(0.,0.)

do 1 j=2,(n-1)
rhs(j)=c1(i,j)*a(i,j)+c2(i,j)*a(i,j+1)+c3(i,j)*a(i,j-1)

1-dx*(w(i,j)+wb(1,j))*a(i,j)/2.
1-dx*cmplx(0.,1.)*an*anl*sig(i,j)*k(i,j)*k(i,j)*dd(i,j)*
1(1.-float(ibr(j)))*(cabs(a(i,j))**2.)*a(i,j)/2.
1-dx*cmplx(0.,1.)*(1.-float(ibr(j)))*an*(1.-anl)
1*sig(i,j)*((1.+f1(i,j)*k(i,j)*k(i,j)*(cabs(a(i,j))**2.)
1*dd(i,j))*tanh(k(i,j)*d(i,j)+f2(i,j)*k(i,j)*cabs(a(i,j)))
1/tanh(k(i,j)*d(i,j))-1.)*a(i,j)/2.

1 continue

rhs(n)=cmplx(0.,0.)

c Return here for iterations.

2 if(it.eq.1)ii=i
if(it.eq.2)ii=ip1

c Establish boundary conditions.

if(ibc.eq.1)then
ksth1=real((2.*(a(i,2)-a(i,1))/((a(i,2)+a(i,1))*dy))*cmplx

1(0.,-1.))
ksth2=real((2.*(a(i,n)-a(i,n-1))/((a(i,n)+a(i,n-1))*dy))*

1cmplx(0.,-1.))
bc(1)=cmplx(1.,ksth1*dy/2.)
cc(1)=-cmplx(1.,-ksth1*dy/2.)
bc(n)=-cmplx(1.,-ksth2*dy/2.)
ac(n)=cmplx(1.,ksth2*dy/2.)
else
bc(1)=cmplx(1.,0.)
cc(1)=-bc(1)
bc(n)=cmplx(1.,0.)
ac(n)=-bc(n)
endif

c Calculate dissipation in rows where breaking occurs.

do 3 j=1,n

if(ibr(j).eq.1) wb(2,j)=cmplx(1.,0.)*0.15*cg(ip1,j)*
1(1.-(gam*d(ip1,j)/(2.*cabs(a(ii,j))))**2.)/d(ip1,j)

if(ibr(j).eq.0) wb(2,j)=cmplx(0.,0.)

3 continue

110

c Coefficients for forward row.

do 4 j=2,(n-1)

ac(j)=cp3(i,j)

bc(j)=cp1(i,j)+(dx/2.)*(w(i+1,j)+wb(2,j))+cmplx(0.,an*anl)*
1 sig(i+1,j)
1*k(i+1,j)*k(i+1,j)*dd(i+1,j)*(cabs(a(ii,j))**2.)*(dx/2.)
1+cmplx(0.,an*(1.-anl))*sig(i+1,j)*(dx/2.)*((1.+f1(i+1,j)*
1k(i+1,j)*k(i+1,j)*(cabs(a(ii,j))**2.)*dd(i+1,j))*tanh(k(i+1,j)*
1d(i+1,j)+f2(i+1,j)*k(i+1,j)*cabs(a(ii,j)))/tanh(k(i+1,j)*d(i+1,j
1))-1.)

cc(j)=cp2(i,j)

4 continue

c Update solution one step.

call ctrida(1,n,ac,bc,cc,rhs,sol)
do 5 j=1,n
a(ip1,j)=sol(j)
sol(j)=cmplx(0.,0.)

5 continue
if((it.eq.2).or.(ih.eq.2)) go to 8

c Check for start or stop of breaking in each row.

do 6 j=1,n
urs(j)=2.*cabs(a(ip1,j))

6 continue

isave1=0
isave2=0
do 7 j=1,n
iset=0
ireset=0

if(((urs(j)/d(ip1,j)).gt.kap).and.(ibr(j).eq.0)) iset=1

if(iset.eq.1) then
ibr(j)=1
isave1=1

end if

if(((urs(j)/d(ip1,j)).lt.gam).and.(ibr(j).eq.1)) ireset=1

if(ireset.eq.1) then
ibr(j)=0
isave2=1

end if

111

7 continue

ih=2

c Redo initial calculation if breaking status changes.

if((isave1.eq.1).or.(isave2.eq.1)) go to 2
8 continue

if(it.eq.2) go to 9
it=2
go to 2

9 continue

c For Stokes model alone (|ntype.eq.2|), test to see whether Ursell
c parameter is too large.

if(ntype.eq.2) then
do 11 j=1,n
urs(j)=(cabs(a(ip1,j))/d(ip1,j))/((k(ip1,j)*d(ip1,j))**2)
if(urs(j).gt.0.5) write(5,204) urs(j),i,j

11 continue
end if

c Roll back breaking dissipation coefficient at each row.

do 12 j=1,n
wb(1,j)=wb(2,j)

12 continue

c Calculate reference phase function for surface plotting.

psibar=psibar+(kb(ip1)+kb(i))*dx/2.

c Store plotted surface if requested.

if(fname9.ne.’ ’) then

write(9,*) x(ip1)
write(9,*)(real(a(ip1,j)*cexp(cmplx(0.,psibar))),j=1,n)

endif

c Start filter if breaking is occuring.

do 13 j=1,n
if(ibr(j).eq.1)ifilt=1

13 continue

200 continue

c Calculate wave angles at reference grid rows. Note: angles are not well
c defined in a directional, multicomponent sea, or where waves become short

112

c crested. This routine was heavily modified by Raul Medina, University of
c Cantabria. It is further modified by Arun Chawla to take out a one-sided
c derivative that introduced an asymmetry bias.

do 15 j=1,n

if(a(m,j).eq.(0.,0.)) then
akx2=0.

else
akx2=aimag(clog(a(m,j)))

endif

if(a(m-1,j).eq.(0.,0.)) then
akx1=0.

else
akx1=aimag(clog(a(m-1,j)))

endif

if(abs(akx2-akx1).gt.pi)then
akx=sign((2.*pi-(abs(akx1)+abs(akx2)))/dx,akx1)
else
akx=(akx2-akx1)/dx
endif

if(j.eq.1) then
if(a(m,j+1).eq.(0.,0.)) then

aky2=0.
else

aky2=aimag(clog(a(m,j+1)))
endif

if(a(m,j).eq.(0.,0.)) then
aky1=0.

else
aky1=aimag(clog(a(m,j)))

endif

if(abs(aky2-aky1).gt.pi)then
aky=sign((2.*pi-(abs(aky1)+abs(aky2)))/dy,aky1)

else
aky=(aky2-aky1)/dy

endif

endif

if(j.eq.n) then

if(a(m,j).eq.(0.,0.)) then
aky2=0.

else
aky2=aimag(clog(a(m,j)))

endif

if(a(m,j-1).eq.(0.,0.))then

113

aky1=0.
else

aky1=aimag(clog(a(m,j-1)))
endif

if(abs(aky2-aky1).gt.pi)then
aky=sign((2.*pi-(abs(aky1)+abs(aky2)))/dy,aky1)

else
aky=(aky2-aky1)/dy

endif

endif

if((j.gt.1).and.(j.lt.n)) then

if(a(m,j+1).eq.(0.,0.)) then
aky2=0.

else
aky2=aimag(clog(a(m,j+1)))

endif

if(a(m,j-1).eq.(0.,0.))then
aky1=0.

else
aky1=aimag(clog(a(m,j-1)))

endif

if(abs(aky2-aky1).gt.pi)then
aky=sign((2.*pi-(abs(aky1)+abs(aky2)))/(2.*dy),aky1)

else
aky=(aky2-aky1)/(2.*dy)

endif

endif

thet(j)=atan2(aky,(akx+kb(m)))

15 continue

c Estimation of Wave Height

do 17 j=1,n

height(j)=2.*cabs(a(m,j))

17 continue

c Spatial smoothing of wave height if |(nd.gt.1)|.

if (nd.NE.1) then

jh = int(nd/2)

do j = 1,n,nd

114

heightb(j) = 0.

if (j.eq.1) then

do jj = 1,1+jh
heightb(1) = heightb(1) + height(jj)**2.

end do

heightb(1) = sqrt(heightb(1)/(jh+1))

endif

if (j.eq.n) then

do jj = n-jh,n
heightb(n) = heightb(n) + height(jj)**2.

end do

heightb(n) = sqrt(heightb(n)/(jh+1))

endif

if((j.gt.1).and.(j.lt.n)) then

do jj = j-jh,j+jh
heightb(j) = heightb(j) + height(jj)**2.

end do

heightb(j) = sqrt(heightb(j)/(2*jh+1))

endif

end do

endif

if(nd.eq.1) then

do j=1,n
heightb(j)=height(j)
end do

endif

c If |ismooth|=1, perform a much more drastic smoothing over a wider
c footprint.

if(ismooth.eq.1) then

do j=1,n,nd
height(j)=heightb(j)
end do

115

c First, employ a simple average over a wide base to get rid of most noise
c and most medium scale variability.

do j=1+nrs*nd,n-nrs*nd,nd
heightb(j)=0.

do is=-nrs,nrs,1
heightb(j)=heightb(j)+height(j+is*nd)**2.
end do

heightb(j)=sqrt(heightb(j)/float(2*nrs+1))
end do

c Then, emply a weighted three point average to get rid of small scale
c noise.

do j=1,n,nd
height(j)=heightb(j)
end do

do j=1+nd,n-nd,nd
heightb(j)=sqrt(0.25*height(j-nd)**2. + 0.5*height(j)**2.

1 + 0.25*height(j+nd)**2.)
end do

endif

c Print out |abs(a)| at grid reference points.

mm1=m-1
write(5,205) (ir+1),mm1
write(5,202) x(m)/dconv(iu), psibar

c Wave heights on |height.dat|.

write(26,203) (heightb(j)/dconv(iu),j=1,n,nd)

! --- Pass wave height -- mks unit Fengyan 02/04/2002
do j=1,n,nd
jj=(j-1)/nd+1
Pass_Height(ir+1,jj)=heightb(j)
enddo

! --- Pass wave number

do j=1,n,nd
jj=(j-1)/nd+1
Pass_WaveNum(ir+1,jj)=k(m,j)
enddo

c Wave angles on |angle.dat|.

do 18 j=1,n

116

thet(j)=180.*thet(j)/pi
18 continue

write(7,203) (thet(j),j=1,n,nd)

! --- Pass angle -- Fengyan 02/04/2002
do j=1,n,nd
jj=(j-1)/nd+1
Pass_Theta(ir+1,jj)=thet(j)
enddo

c Water depths on |depth.dat|.

write(8,203) (d(m,j)/dconv(iu),j=1,n,nd)

! --- Pass wave cg, c and ibrk -- Fengyan 02/04/2002
do j=1,n,nd
jj=(j-1)/nd+1
Pass_Cg(ir+1,jj)=cg(m,j)
Pass_C(ir+1,jj)=sig(m,j)/k(m,j)
Pass_ibrk(ir+1,jj)=ibr(j)
enddo

c Bottom velocities on |bottomu.dat|.

if(fname7.ne.’ ’) then
do 19 j=1,n,nd
bottomu(m,j)=bottomu(m,j)*cabs(a(m,j))

19 continue
write(17,203) (bottomu(m,j)/dconv(iu),j=1,n,nd)
endif

c Write out reference grid data on disk file |iun(3)|.

c write(iun(3),*) x(m)/dconv(iu),psibar
c write(iun(3),*)(a(m,j)/dconv(iu),j=1,n,nd)

c Roll back solution to first grid level.

do 201 j=1,n
a(1,j)=a(m,j)

201 continue

return

202 format(’ x=’,f10.2,’ reference phase psibar=’,f20.4)
203 format(501(f10.4))
204 format(’ ’//’ warning: Ursell number =’,f10.4,’ encountered at’,

1’grid location’,i6,’,’,i6/
1’ should be using Stokes-Hedges model (ntype=1) due to shallow’,
1’water’)

205 format(’ grid row ir=’,i3,’, ’,i3,’ x-direction subdivisions’,
1’ used’)

117

end

118

5.8 CTRIDA.

Tridiagonal matrix solution by double sweep algorithm. Present subroutine adopted from the subroutine

described in:

Carnahan, Luther and Wilkes, Applied Numerical Methods, Wiley, 1969

The original subroutine has been modified to handle complex array coefficients and solution values. Input

and output are
a, b, c coefficients of row in tridiagonal matrix
d right hand side vector of matrix equation
v solution vector
ii, l beginning and end indices of positions in the dimensioned range of the column vector.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, September 1984.

〈refdif 〉+≡

subroutine ctrida(ii,l,a,b,c,d,v)

include ’param.h’

complex a(iy),b(iy),c(iy),d(iy),v(iy),beta(iy),gamma(iy)

c Compute intermediate vectors |beta| and |gamma|.

beta(ii)=b(ii)
gamma(ii)=d(ii)/beta(ii)
iip1=ii+1

do 1 i=iip1,l
beta(i)=b(i)-a(i)*c(i-1)/beta(i-1)
gamma(i)=(d(i)-a(i)*gamma(i-1))/beta(i)

1 continue

c Compute solution vector |v|.

v(l)=gamma(l)
last=l-ii

do 2 k=1,last
i=l-k
v(i)=gamma(i)-c(i)*v(i+1)/beta(i)

2 continue

return

end

119

5.9 DISS.

Subroutine calculates the dissipation at a single grid point based on values of the switch iw at that point.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, October 1984.

〈refdif 〉+≡

subroutine diss

include ’param.h’

include ’common.h’

real nu,cp,kd

c Statement function.

sq(i,j)=sqrt(nu/(2.*sig(i,j)))

c Constants.

nu=1.3e-06
cp=4.5e-11
g=9.80621
pi=3.1415927

c Value of |f| here is value assuming $\tau=(f/8)uˆ{2}$.

c $f=4 f_w$; f_w is the wave friction factor

f=0.01*4.0

do 1 j=1,n
do 1 i=1,m
w(i,j)=cmplx(0.,0.)
kd=k(i,j)*d(i,j)

c If |iff(1) = 1|, use turbulent boundary layer damping.

if(iff(1).eq.1) w(i,j)=2.*f*cabs(a(1,j))*sig(i,j)*k(i,j)/
1(sinh(2.*kd)*sinh(kd)*3.*pi)

c If |iff(2) = 1|, add porous bottom damping.

if(iff(2).eq.1) w(i,j)=w(i,j)+(g*k(i,j)*cp/(nu*(cosh(kd)**2)))
1 *cmplx(1.,0.)

120

c If |iff(3) = 1|, add boundary layer damping.

if(iff(3).eq.1) w(i,j)=w(i,j)+2.*k(i,j)*sig(i,j)*sq(i,j)
1*(1.+(cosh(kd)**2))*cmplx(1.,-1.)/sinh(2.*kd)

1 continue

return

end

5.10 RAND1.

Generate a floating point pseudo random number between 0 and 1 by the multiplicative congruential method.

see Knuth, D.E., 1969, p. 155.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986.

〈refdif 〉+≡
function rand1(x)
ix=ifix(32767.*x)
irand=mod(4573*ix+6923,32767)
rand1=float(irand)/32767.
return
end

121

5.11 RDFACT.

compute the factorial of xi

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986

〈refdif 〉+≡

function rdfact(xi)

prod=1.
if (xi.gt.1.)then

do 17 ii=2,int(xi)
prod=prod*float(ii)

17 continue
endif

rdfact=prod

return

end

5.12 BNUM.

Compute the combination in!/(n!(n− in)!).

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986.

〈refdif 〉+≡
subroutine bnum(in,n,bn)
xin=in
xt=rdfact(xin)
xb=rdfact(float(n))*rdfact(float(in-n))
bn=xt/xb

return

end

122

5.13 ACALC.

Calculate the normalization factor a for the directional spectrum such that
∫ θm

−θm

cos(θ/2)2∗nspdθ = 1, where,

in code, θm = —thmax—.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by Robert A. Dalrymple, January 1986.

〈refdif 〉+≡

subroutine acalc(thmax,nsp,a)

itn=2*nsp
call bnum(itn,nsp,bn)
a=thmax*bn/(2.**(itn-1))
sum=0.
do 10 ik=1,nsp

ki=ik-1
call bnum(itn,ki,bn)

10 sum=sum+bn*sin(float(nsp-ki)*thmax)/float(nsp-ki)
a=a+sum/(2.**(itn-2))

return

end

123

5.14 WVNUM.

Calculate wavenumber k according to the form

(σ − ku)2 = gk tanh(kd)

where
d local water depth
s = σ absolute frequency
g gravitational acceleration constant
u x-component of ambient current
eps = ε tolerance for iteration convergence
i, j indices in finite-difference grid
icdw switch

=0, no convergence failures encountered
=1, at least one convergence failure

Solution is by Newton-Raphson iteration using Eckart’s approximation as a seed value.

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by James T. Kirby, September,1984

〈refdif 〉+≡

subroutine wvnum(d,u,s,k,eps,icdw,i,j)

include ’param.h’

common/ref2/dr(ixr,iyr),ur(ixr,iyr),vr(ixr,iyr),iun(8),iinput,
1 ioutput

real k,kn

c Constants.

g=9.806
pi=3.1415927
k=s*s/(g*sqrt(tanh(s*s*d/g)))

c Newton-Raphson iteration.

do 1 ii=1,20
f=s*s-2.*s*k*u+k*k*u*u-g*k*tanh(k*d)
fp=-2.*s*u+2.*k*u*u-g*tanh(k*d)-g*k*d/(cosh(k*d)**2.)
kn=k-f/fp
if((abs(kn-k)/kn).lt.eps)go to 2
k=kn

1 continue

124

t=2.*pi/(sqrt(g*k*tanh(k*d))+k*u)
write(5,100)i,j,k,u,d,f,t
icdw=1

return

2 k=kn

return

100 format(’ wavenumber iter. failed to converge on row’,i10,
1’ column’,i10/
1’ k=’,f15.8,’ u=’,f15.8/
1’ d=’,f15.8,’ f=’,f15.8/
1’ t=’,f15.8)

end

125

5.15 Calculate wave forcing

This subroutine is used to calculate radiation stresses according to the formulas used in Shorecirc model. The

roller effect is considered and results are transited with cubic SPLINE function to get smooth forcing around

the breaking line. Notice that the transition is only used in one direction (on shore).

Center for Applied Coastal Research

Department of Civil and Environmental Engineering

University of Delaware

Newark, DE 19716

Coded by Fengyan Shi 02/04/2002

〈refdif 〉+≡

subroutine calculate_wave_forcing

include ’param.h’
include ’common.h’
include ’pass.h’

integer i,j

real Sm(Nx_Max,Ny_Max),Sp(Nx_Max,Ny_Max)
& ,Sxxfake(Nx_Max),Sxyfake(Nx_Max),Syyfake(Nx_Max)
& ,Qwfake(Nx_Max),xrr(Nx_Max),y2(Nx_Max)
& ,xfake(Nx_Max),sxx(Nx_Max,Ny_Max)
& ,sxy(Nx_Max,Ny_Max)
& ,syy(Nx_Max,Ny_Max),qwtrs(Nx_Max,Ny_Max)
& ,Thetar(Nx_Max,Ny_Max)

pi=3.1415926
grav=9.8
B0=1./8.
rho=1030.0

period=Pass_period

c --- calculate Sxx Sxy Syy
! --- Outside the surfzone

do j=1,Ny_wave
do i=1,nx_wave
Thetar(i,j)=pi/180.*Pass_Theta(i,j)
enddo
enddo

do j=1,ny_wave
do i=1,nx_wave
wave_number=Pass_WaveNum(i,j)

126

aux=2.*wave_number*Depth_wave(i,j)
capg=aux/SINH(aux)
Sm(i,j)=1./16.*(1.+capg)*grav*rho

& *Pass_Height(i,j)*Pass_Height(i,j)
Sp(i,j)=1./16.*grav*rho

& *Pass_Height(i,j)*Pass_Height(i,j)*capg
enddo
enddo

! --- Inside the surfzone

do j=1,ny_wave
do i=1,nx_wave
if(Pass_ibrk(i,j).eq.1)then
wave_number=2.*pi/period/Pass_C(i,j)
aux=2.*wave_number*Depth_wave(i,j)
capg=aux/SINH(aux)
Sm(i,j)=1./16.*(1.+capg)*grav*rho

& *Pass_Height(i,j)*Pass_Height(i,j)
* +0.06*Pass_Height(i,j)*Pass_C(i,j)*Pass_C(i,j)

endif
enddo
enddo

do j=1,ny_wave
do i=1,nx_wave
Pass_Sxx(i,j)=cos(Thetar(i,j))

* *cos(Thetar(i,j))*Sm(i,j)+Sp(i,j)
Pass_Sxy(i,j)=sin(Thetar(i,j))

* *cos(Thetar(i,j))*Sm(i,j)
Pass_Syy(i,j)=sin(Thetar(i,j))

* *sin(Thetar(i,j))*Sm(i,j)+Sp(i,j)
if(Pass_ibrk(i,j).eq.0)then

Pass_MassFlux(i,j)=grav*Pass_Height(i,j)
* *Pass_Height(i,j)/Pass_C(i,j)*B0

else
Pass_MassFlux(i,j)=grav*Pass_Height(i,j)

* *Pass_Height(i,j)/Pass_C(i,j)*B0
* +Pass_Height(i,j)*Pass_C(i,j)*0.06

endif
enddo
enddo

! --- transition using spline function, only for x direction.

c goto 911

! --- look for 1st breakpoint along each each j (suppose wave from left side)
dx = dxr

do j=1,ny_wave
index =1
iflag = 0

127

do i=1,nx_wave
if(Pass_ibrk(i,j)==1.and.iflag==0)then
index=i
iflag=1

endif
enddo
index=index-1
slope=(Depth_Wave(index+1,j)-Depth_wave(index,j))/dx
jump=int(0.25/(-1.*slope)**1.1*Depth_wave(index,j)/dx)

! --- outside the surfzone
do i=1,index

Sxxfake(i)=Pass_Sxx(i,j)
Sxyfake(i)=Pass_Sxy(i,j)
Syyfake(i)=Pass_Syy(i,j)
Qwfake(i)=Pass_MassFlux(i,j)
xfake(i)=(i-1)*dx

enddo
! --- inside the surfzone

do i=index+jump,nx_wave
Sxxfake(i-jump+1)=Pass_Sxx(i,j)
Sxyfake(i-jump+1)=Pass_Sxy(i,j)
Syyfake(i-jump+1)=Pass_Syy(i,j)
Qwfake(i-jump+1)=Pass_MassFlux(i,j)
xfake(i-jump+1)=(i-1)*dx

enddo

! --- Do the cubic spline to for roller transition

do i=1,nx_wave
xrr(i)=(i-1.)*dx

enddo

call spline1(nx_wave,ny_wave,xfake,Sxxfake,nx_wave-jump,y2)
call splint1(nx_wave,ny_wave,xfake,Sxxfake,y2,nx_wave-jump,xrr,

& sxx, index,jump,j)

call spline1(nx_wave,ny_wave,xfake,Sxyfake,nx_wave-jump,y2)
call splint1(nx_wave,ny_wave,xfake,Sxyfake,y2,nx_wave-jump,xrr,

& sxy, index,jump,j)

call spline1(nx_wave,ny_wave,xfake,Syyfake,nx_wave-jump,y2)
call splint1(nx_wave,ny_wave,xfake,Syyfake,y2,nx_wave-jump,xrr,

& syy, index,jump,j)

call spline1(nx_wave,ny_wave,xfake,Qwfake,nx_wave-jump,y2)
call splint1(nx_wave,ny_wave,xfake,Qwfake,y2,nx_wave-jump,xrr,

& qwtrs, index,jump,j)

enddo

do j=1,ny_wave
do i=1,nx_wave
Pass_Sxx(i,j)=sxx(i,j)
Pass_Sxy(i,j)=sxy(i,j)

128

Pass_Syy(i,j)=syy(i,j)
Pass_MassFlux(i,j)=qwtrs(i,j)
Pass_MassFluxU(i,j)=Pass_MassFlux(i,j)*cos(Thetar(i,j))
Pass_MassFluxV(i,j)=Pass_MassFlux(i,j)*sin(Thetar(i,j))

enddo
enddo

911 continue

! --- cdiss, cubott

gam = 0.3

do j=1,ny_wave
do i=1,nx_wave
Pass_Diss(i,j)=0.125*grav*Pass_Height(i,j)

* *Pass_Height(i,j)*0.15
* *Pass_Cg(i,j)/Depth_wave(i,j)
* *(1.-(gam*Depth_wave(i,j)/Pass_Height(i,j))**2)
* *Pass_ibrk(i,j)

Pass_ubott(i,j)=Pass_Height(i,j)*pi/period
* /sinh(Depth_wave(i,j)*2.*pi
* /period/Pass_C(i,j))

enddo
enddo

c --- depth-integerated short wave forcing

do j=2,ny_wave-1
do i=2,nx_wave-1
Pass_Wave_Fx(i,j)=(Pass_Sxx(i+1,j)-Pass_Sxx(i-1,j))/2./dxr

* +(Pass_Sxy(i,j+1)-Pass_Sxy(i,j-1))/2./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i+1,j)-Pass_Sxy(i-1,j))/2./dxr

* +(Pass_Syy(i,j+1)-Pass_Syy(i,j-1))/2./dyr
enddo
enddo

do i=2,nx_wave-1
j=1
Pass_Wave_Fx(i,j)=(Pass_Sxx(i+1,j)-Pass_Sxx(i-1,j))/2./dxr

* +(Pass_Sxy(i,j+1)-Pass_Sxy(i,j))/1./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i+1,j)-Pass_Sxy(i-1,j))/2./dxr

* +(Pass_Syy(i,j+1)-Pass_Syy(i,j))/1./dyr
enddo
do i=2,nx_wave-1
j=ny_wave
Pass_Wave_Fx(i,j)=(Pass_Sxx(i+1,j)-Pass_Sxx(i-1,j))/2./dxr

* +(Pass_Sxy(i,j)-Pass_Sxy(i,j-1))/1./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i+1,j)-Pass_Sxy(i-1,j))/2./dxr

* +(Pass_Syy(i,j)-Pass_Syy(i,j-1))/1./dyr
enddo

do j=2,ny_wave-1

129

i=1
Pass_Wave_Fx(i,j)=(Pass_Sxx(i+1,j)-Pass_Sxx(i,j))/1./dxr

* +(Pass_Sxy(i,j+1)-Pass_Sxy(i,j-1))/2./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i+1,j)-Pass_Sxy(i,j))/1./dxr

* +(Pass_Syy(i,j+1)-Pass_Syy(i,j-1))/2./dyr
enddo

do j=2,ny_wave-1
i=nx_wave
Pass_Wave_Fx(i,j)=(Pass_Sxx(i,j)-Pass_Sxx(i-1,j))/1./dxr

* +(Pass_Sxy(i,j+1)-Pass_Sxy(i,j-1))/2./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i,j)-Pass_Sxy(i-1,j))/1./dxr

* +(Pass_Syy(i,j+1)-Pass_Syy(i,j-1))/2./dyr
enddo

i=1
j=1
Pass_Wave_Fx(i,j)=(Pass_Sxx(i+1,j)-Pass_Sxx(i,j))/1./dxr

* +(Pass_Sxy(i,j+1)-Pass_Sxy(i,j))/1./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i+1,j)-Pass_Sxy(i,j))/1./dxr

* +(Pass_Syy(i,j+1)-Pass_Syy(i,j))/1./dyr
i=nx_wave
j=1
Pass_Wave_Fx(i,j)=(Pass_Sxx(i,j)-Pass_Sxx(i-1,j))/1./dxr

* +(Pass_Sxy(i,j+1)-Pass_Sxy(i,j))/1./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i,j)-Pass_Sxy(i-1,j))/1./dxr

* +(Pass_Syy(i,j+1)-Pass_Syy(i,j))/1./dyr
i=1
j=ny_wave
Pass_Wave_Fx(i,j)=(Pass_Sxx(i+1,j)-Pass_Sxx(i,j))/1./dxr

* +(Pass_Sxy(i,j)-Pass_Sxy(i,j-1))/1./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i+1,j)-Pass_Sxy(i,j))/1./dxr

* +(Pass_Syy(i,j)-Pass_Syy(i,j-1))/1./dyr

i=nx_wave
j=ny_wave
Pass_Wave_Fx(i,j)=(Pass_Sxx(i,j)-Pass_Sxx(i-1,j))/1./dxr

* +(Pass_Sxy(i,j)-Pass_Sxy(i,j-1))/1./dyr
Pass_Wave_Fy(i,j)=(Pass_Sxy(i,j)-Pass_Sxy(i-1,j))/1./dxr

* +(Pass_Syy(i,j)-Pass_Syy(i,j-1))/1./dyr

c --- - and / rho

do j=1,ny_wave
do i=1,nx_wave
Pass_Wave_Fx(i,j)=-Pass_Wave_Fx(i,j)/rho
Pass_Wave_Fy(i,j)=-Pass_Wave_Fy(i,j)/rho

enddo
enddo

c --- local radiation stresses for 3D circulation model
! --- Outside the surfzone

do j=1,ny_wave

130

do i=1,nx_wave
aux=2.*Pass_WaveNum(i,j)*Depth_wave(i,j)
capg=aux/SINH(aux)
Sm(i,j)=1./16./dr(i,j)*(1.+capg)*grav

& *Pass_Height(i,j)*Pass_Height(i,j)
Sp(i,j)=1./16./dr(i,j)*grav*Pass_Height(i,j)*Pass_Height(i,j)

& *(capg-1.)
enddo
enddo

! --- Inside the surfzone

do j=1,ny_wave
do i=1,nx_wave
if(Pass_ibrk(i,j).eq.1)then
aux=2.*Pass_WaveNum(i,j)*Depth_wave(i,j)
capg=aux/SINH(aux)
Sm(i,j)=1./16./dr(i,j)*(1.+capg)*grav

& *Pass_Height(i,j)*Pass_Height(i,j)
* +1./dr(i,j)*0.06*Pass_Height(i,j)*Pass_C(i,j)*Pass_C(i,j)

endif
enddo
enddo

do j=1,ny_wave
do i=1,nx_wave
Pass_Sxx_body(i,j)=cos(Thetar(i,j))

* *cos(Thetar(i,j))*Sm(i,j)
Pass_Sxy_body(i,j)=sin(Thetar(i,j))

* *cos(Thetar(i,j))*Sm(i,j)
Pass_Syy_body(i,j)=sin(Thetar(i,j))

* *sin(Thetar(i,j))*Sm(i,j)
Pass_Sxx_surf(i,j)=Sp(i,j)
Pass_Sxy_surf(i,j)=0.
Pass_Syy_surf(i,j)=Sp(i,j)

enddo
enddo

c --- print sxx sxy and syy, ibrk

if(fname10.ne.’ ’) then
do i = 1, nx_wave
write(10,100)(Pass_Sxx(i,j), j=1,ny_wave)
end do

do i = 1, nx_wave
write(11,100)(Pass_Sxy(i,j), j=1,ny_wave)
end do

do i = 1, nx_wave
write(12,100)(Pass_Syy(i,j), j=1,ny_wave)
end do

131

endif

c --- write Fx Fy

if(fname13.ne.’ ’) then
do i = 1, nx_wave
write(13,100)(Pass_Wave_Fx(i,j), j=1,ny_wave)
end do

do i = 1, nx_wave
write(14,100)(Pass_Wave_Fy(i,j), j=1,ny_wave)
end do

endif

c --- write ibrk

if(fname19.ne.’ ’) then
do i = 1, nx_wave
write(19,100)(Pass_ibrk(i,j), j=1,ny_wave)
end do

endif

c --- write Quv

if(fname15.ne.’ ’) then
do i = 1, nx_wave
write(15,100)(Pass_MassFluxU(i,j), j=1,ny_wave)
end do
do i = 1, nx_wave
write(16,100)(Pass_MassFluxV(i,j), j=1,ny_wave)
end do

endif

c --- write tb

if(fname17.ne.’ ’) then
do i = 1, nx_wave
write(17,100)(Pass_ubott(i,j), j=1,ny_wave)
end do

endif

c --- write local radiation stresses for 3d circ model

if(fname21.ne.’ ’) then

do i = 1, nx_wave
write(21,100)(Pass_Sxx_body(i,j), j=1,ny_wave)
end do
do i = 1, nx_wave
write(22,100)(Pass_Sxy_body(i,j), j=1,ny_wave)
end do
do i = 1, nx_wave

132

write(23,100)(Pass_Syy_body(i,j), j=1,ny_wave)
end do
do i = 1, nx_wave
write(24,100)(Pass_Sxx_surf(i,j), j=1,ny_wave)
end do
do i = 1, nx_wave
write(25,100)(Pass_Sxy_surf(i,j), j=1,ny_wave)
end do
do i = 1, nx_wave
write(27,100)(Pass_Syy_surf(i,j), j=1,ny_wave)
end do

endif

101 format(501(I3))
100 format(501(f10.4))

return
end

133

5.16 SPLINE1

〈refdif 〉+≡

subroutine spline1(nx,ny,xin,yin,n,y2)

! --- This subroutine will compute the cubic spline for an array.
include ’pass.h’

integer i,j

real xin(nx_max),yin(nx_max),y2(nx_max),u(nx_max)

y2(1)=0.
u(1)=0.
do i=2,n-1

sig=(xin(i)-xin(i-1))/(xin(i+i)-xin(i))
p=sig*y2(i-1)+2.
y2(i)=(sig-1.)/p
u(i)=(6.*((yin(i+1)-yin(i))/(xin(i+1)-xin(i))

. -(yin(i)-yin(i-1))

. /(xin(i)-xin(i-1)))/(xin(i+1)-xin(i-1))-sig*u(i-1))/p
end do
qn=0.
un=0.
y2(n)=(un-qn*u(n-1))/(qn*y2(n-1)+1.)

do kk=n-1,1,-1
y2(kk)=y2(kk)*y2(kk+1)+u(kk)

end do

return
end

134

5.17 SPLINT1

This subroutine will compute values from the cubic spline.

〈refdif 〉+≡

SUBROUTINE SPLINT1(nx,ny,xin,yin,y2,n,xout,yout,index,jump,j)

include ’pass.h’

integer i,j

real xin(nx_max),yin(nx_max),y2(nx_max),xout(nx_max)
real yout(nx_max,ny_max)
integer index,jump

do i=1,index-1
yout(i,j)=yin(i)
enddo

do i=index+jump+1,nx
yout(i,j)=yin(i-jump+1)
enddo

do i=index,index+jump
KLO=1
KHI=N

1 IF (KHI-KLO.GT.1) THEN
kk=(KHI+KLO)/2
IF(xin(kk).GT.xout(i))THEN
KHI=kk

ELSE
KLO=kk

ENDIF
GOTO 1
ENDIF
hh=xin(KHI)-xin(KLO)
IF (hh.EQ.0.) then

print*,’Bad xin input’
stop

endif
aa=(xin(KHI)-xout(i))/hh
bb=(xout(i)-xin(KLO))/hh
yout(i,j)=aa*yin(KLO)+bb*yin(KHI)+

* ((aa**3-aa)*y2(KLO)+(bb**3-bb)*y2(KHI))*(hh**2)/6.

end do

return
end

135

6 ADDITIONAL MODEL COMPONENTS

6.1 master.f

REF/DIF 1 has been used as a wave-driver (wave module) in a comprehensive community model developed

with the support of the National Ocean Partnership Program (NOPP). Basically, a master program is used as

an interface to link three modules, i.e., wave module, circulation module and sediment module. The mas-

ter program handles module coupling control, internal data transfer and interpolation/extrapolation between

modules, as well as input of control parameters and result output. Passing variables are included in ’pass.h’.

The passing variables in REF/DIF 1 are:

1. Depth Wave: water depth on Wave Grid, from the sediment module

2. Pass Sxx, Pass Sxy, and Pass Syy: radiation stresses

3. Pass Sxx body, Pass Sxy body, Pass Syy body: local radiation stresses (body part)

4. Pass Sxx surf, Pass Sxy surf, Pass Syy surf: local radiation stresses (surface part)

5. Pass Wave Fx, Pass Wave Fy: wave forcing

6. Pass MassFluxU,Pass MassFluxV: mass flux

7. Pass Diss: dissipation caused by wave breaking

8. Pass WaveNum: wave number

9. Pass Theta: wave angle

10. Pass ubott: bottom velocity

11. Pass Height: wave height

12. Pass C: phase velocity

13. Pass Cg: group velocity

14. Pass Period: wave period

15. Pass ibrk: wave breaking index (1 - breaking, 0 - nonbreaking)

16. Intp U Wave and Intp V Wave: current velocity interpolated from the circulation module.

17. Intp eta Wave: surface elevation interpolated from the circulation module.

Details can be found in the master program documentation.

Note that using the master program does not affect input and output of REF/DIF 1.

136

6.2 param.h

param.h is used to define array lengths for all dimension parameters.

6.3 common.h

common.h includes all the common blocks used in the REF/DIF 1.

6.4 pass.h

pass.h is used to define all of the passing variables used in the nearshore community model. See details in the

master program documentation.

137

7 PROGRAMS FOR GENERATING AND POST-PROCESSING DATA
FILES

This section provides listings for the following programs:

• indat-createv26.f - used to create the indat.dat file based solely on input from the user.

• datgenv26.f - used to create Version 2.5 indat.dat and refdat.dat files for specific examples.

• surface.f - used to convert the data in file surface.dat to a regularly spaced, ascii formatted array repre-

senting an instantaneous picture of the water surface.

• refdifplot.m - sample Matlab program illustrating the reading and plotting of the output data.

Note that the versions of the programs supplied with the program distribution may be slightly updated

relative to the codes listed here.

138

7.1 indat-createv26.f

〈indat-create〉≡

c*--
c* indat-createv26.f
c*
c* This program generates an indat.dat file by asking the operator a
c* series of questions. This file is intended to make life a little
c* easier - its function is just as easily carried out manually if you
c* are used to the form of the indat.dat file.
c*
c* James T. Kirby
c* Center for Applied Coastal Research
c* University of Delaware
c* Newark, DE 19716
c*
c* (302) 831-2438, FAX (302) 831-1228, kirby@udel.edu
c*
c* Last revision 02/28/02.
c*
c*--

program indatcreate

include ’param.h’

dimension md(ixr), dconv(2), iff(3)
dimension freqs(ncomp), edens(ncomp), nwavs(ncomp)
dimension amp(ncomp,ncomp), dir(ncomp,ncomp), tide(ncomp)

character*255 fname1,fname2,fname3,fname4,fname5,fname6,fname7,
1 fname8,fname9,fname10,fname11,fname12,fname13,
1 fname14,fname15,fname16,fname17,fname18,fname19,
1 fname20,fname21,fname22,fname23,fname24,fname25,
1 fname26

data fname1 /’indat.dat’/, fname2 /’refdat.dat’/,
1 fname3 /’subdat.dat’/, fname4/’wave.dat’/,
1 fname5 /’refdif1.log’/, fname6/’height.dat’/,
1 fname7/’angle.dat’/,fname8/’depth.dat’/,
1 fname9/’ ’/,fname10/’sxx’/,
1 fname11/’sxy.dat’/,fname12/’syy.dat’/,
1 fname13/’fx.dat’/,fname14/’fy.dat’/,
1 fname15/’qx.dat’/,fname16/’qy.dat’/,
1 fname17/’tbx.dat’/,fname18/’tby.dat’/,
1 fname19/’ibrk.dat’/,
1 fname20 /’owave.dat’/
1 fname21 /’ ’/,fname22 /’ ’/,fname23 /’ ’/,fname24 /’ ’/,
1 fname25 /’ ’/,fname26 /’ ’/

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, ismooth, dxr, dyr, dt,
1 ispace, nd, iff, isp, iinput, ioutput
1 /inmd/ md

139

1 /fnames/ fname2,fname3,fname4,fname5,fname6,
1 fname7,fname8,fname9,fname10,fname11,fname12,
1 fname13,fname14,fname15,fname16,fname17,
1 fname18,fname19,fname20,fname21,fname22,
1 fname23,fname24,fname25,fname26
1 /waves1a/ iwave, nfreqs
1 /waves1b/ freqs, tide, nwavs, amp, dir
1 /waves1c/ thet0, freqs, tide, edens, nwavs, nseed
1 /waves2/ freqin, tidein

open(unit=10,file=fname1)

write(*,*)’ enter name for .dat file containing reference grid in’,
1’ single quotes’
read(*,*) fname2

c write(*,*)’ enter name for ouput data file’
c read(*,*) fname2

write(10,nml=fnames)

c Enter control data.

write(*,*)’ enter grid dimensions mr, nr’
read(*,*) mr,nr

write(*,*)’ enter grid spacings dxr, dyr and depth tolerance dt’
read(*,*) dxr, dyr, dt

write(*,*)’ input iu: 1=mks, 2=english’
read(*,*) iu

write(*,*)’ input dispersion relationship; ntype: 0=linear,’
write(*,*)’ 1=composite, 2=stokes’
read(*,*)ntype

write(*,*)’ input lateral boundary condition; ibc: 0=closed’
write(*,*)’ 1=open’
read(*,*) ibc

write(*,*)’ input ispace (0=program picks x spacing,’,
1’ 1=user chooses)’
read(*,*) ispace

write(*,*)’ input nd (# y divisions, 1 is minimum)’
read (*,*) nd

if(ispace.eq.0) go to 105

write(*,*)’ constant or variable x spacing?(0 for constant)’
read(*,*) ians1

if(ians1.eq.0) then
write(*,*) ’ input constant md’

140

read(*,*) mdc
do 103 iko=1,mr-1
md(iko)=mdc

103 continue
else
write(*,104)

104 format(’ input md(i) for i=1 to mr-1’)
read(*,*) (md(i),i=1,mr-1)
endif

105 write(*,106)
106 format(’ input if(1) turbulent, if(2) porous, if(3) laminar’)

write(*,*) ’ standard choice: 1, 0, 0’
read(*,*) iff(1), iff(2), iff(3)

write(*,*)’ input isp (subgrid features) :standard 0’
read(*,*) isp

write(*,108)
108 format(’ input values of iinput, ioutput:’/

1’ iinput: 1 standard, i.e., not starting from previous run’/
1’ 2 if starting from previous run’/
1’ ioutput: 1 standard, not saving restart data’/
1’ 2 if saving restart data’)
read(*,*)iinput,ioutput

write(*,115)
115 format(’ input value of isurface:’/

1’ isurface = 0: no surface picture generated’/
1’ isurface = 1: surface picture generated’)
read(*,*) isurface

if(isurface.eq.0) fname6 = ’ ’

write(10,nml=ingrid)

if(ispace.eq.1) write(10,nml=inmd)

if(iinput.eq.1) then
c*--
c* write waves1 portion of indat.dat
c*--

write(*,*)’ input iwave (1 discrete, 2 directional spread)’
read(*,*) iwave

write(*,*) ’ input nfreq (# of frequencies)’
read(*,*) nfreqs

write(10, nml=waves1a)

if (iwave.eq.2) then
write(*,*)’ enter central direction thet0’
read(*,*) thet0
endif

141

do 113 ifreq=1,nfreqs
c*--
c* line 10, iinput=1
c*--

write(*,109)
109 format(’ input wave period and tide stage’)

read(*,*) freqs(ifreq), tide(ifreq)

c*--
c* line 11, iwave=1, iinput=1
c*--

if(iwave.eq.1) then

write(*,110)
110 format(’ input # of waves per frequency, nwavs’)

read(*,*) nwavs(ifreq)

c*--
c* line 12, iwave=1, iinput=1
c*--

do 111 iwavs=1,nwavs(ifreq)
write(*,*)’ input amplitude and direction’
read(*,*) amp(ifreq,iwavs), dir(ifreq,iwavs)

111 continue

else

c*---
c* iwave=2, iinput=1
c*---

write(*,112)
112 format(’input en. density and on next line, directional’,

1’ spreading factor’)
read(*,*) edens(ifreq)
read(*,*) nwavs(ifreq)

nseed=500

endif
113 continue

if (iwave .eq. 1) write(10, nml=waves1b)
if (iwave .eq. 2) write(10, nml=waves1c)

endif

if (iinput .eq. 2) then
c*---
c* line 9, iinput=2
c*---

write(*,*)’ input wave period and tide stage’
read(*,*) freqin ,tidein

142

write(10, nml=waves2)

endif

close(10)

stop
end

143

7.2 datgenv26.f

〈datgen〉≡

C*---
C*
C* datgenv26.f
C*
C* This program generates input data files for several example
c* applications of REF/DIF 1. In particular, the first four cases
c* listed here correspond to the four test cases shown in the
c* User’s Manual.
c*
c* James T. Kirby
c*
c* kirby@udel.edu, (302) 831-2438, FAX (302) 831-1228
c*
c* Center for Applied Coastal Research
c* Department of Civil and Environmental Engineering
c* University of Delaware
c* Newark, DE 19716
C*
C* January 1991, revised July 1994 for REF/DIF 1 version 2.5.
c* Revised February 2002 for version 2.6.
c*
c* Last revision 2/28/02.
C*
C*---

include ’param.h’

dimension iun(4), md(ixr)

common/ref/ dr(ixr,iyr),ur(ixr,iyr),vr(ixr,iyr),mr,nr,dxr,dyr,
1itype
common/ind/ iu,ntype,icur,ibc,ispace,nd,iff,isp,iinput,

1iwave,nfreqs,freqs,tide,nwavers,amp,dir,edens
common/dims/ x(ixr),y(iyr)
dimension iff(3)
dimension amp(ncomp,ncomp),dir(ncomp,ncomp),tide(ncomp),

1 freqs(ncomp),edens(ncomp),nwavs(ncomp)
character*255 fname1,fname2,fname3,fname4,fname5,fname6,fname7,

1 fname8,fname9,fname10,fname11,fname12,fname13,
1 fname14,fname15,fname16,fname17,
1 fname18,fname19,fname20,fname21,fname22,fname23,
1 fname24,fname25,fname26

data fname2 /’refdat.dat’/,
1 fname3 /’subdat.dat’/, fname4/’wave.dat’/,
1 fname5 /’refdif1.log’/, fname6/’height.dat’/,
1 fname7/’angle.dat’/,fname8/’depth.dat’/,
1 fname9/’ ’/,fname10/’sxx’/,
1 fname11/’sxy.dat’/,fname12/’syy.dat’/,
1 fname13/’fx.dat’/,fname14/’fy.dat’/,

144

1 fname15/’qx.dat’/,fname16/’qy.dat’/,
1 fname17/’tbx.dat’/,fname18/’tby.dat’/,
1 fname19/’ibrk.dat’/,
1 fname20 /’owave.dat’/,
1 fname21 /’ ’/,fname22 /’ ’/,fname23 /’ ’/,fname24 /’ ’/,
1 fname25 /’ ’/,fname26 /’ ’/

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, ismooth,
1 dxr, dyr, dt,
1 ispace,nd,iff,isp,iinput,ioutput
1 /inmd/ md
1 /fnames/ fname2,fname3,fname4,fname5,fname6,
1 fname7,fname8,fname9,fname10,fname11,fname12,
1 fname13,fname14,fname15,fname16,fname17,
1 fname18,fname19,fname20,fname21,fname22,fname23,
1 fname24,fname25,fname26
1 /waves1a/ iwave, nfreqs
1 /waves1b/ freqs, tide, nwavs, amp, dir
1 /waves1c/ thet0, freqs, tide, edens, nwavs, nseed
1 /waves2/ freqin, tidein

c*--
c* setup the logical devices for input:
c* *=keyboard input
c* iun(2)=output file "refdat.dat"
c* iun(3)=screen output (use 0 for sun, 3 for pc)
c* iun(4)=output file "indat.dat"
c*---

iun(2)=20
iun(3)=0
iun(4)=24
fname1=’indat.dat’
open(iun(4),file=fname1)

c*---
c* initialize all entries for indat.dat prior to generating the
c* depth grid.
c*---

iu=0
ntype=0
icur=0
ibc=0
ispace=0
nd=1
if1=0
if2=0
if3=0
isp=0
iinput=0
iwave=0
nfreqs=0

nwaves=0

145

c*---
c* open file for reference grid data
c*---

open(iun(2),file=fname2)

c*---
c* establish depth grid
c*---

call depth(iun)

c*---
c* calculate constants
c*---

dt=10.
call con

c*---
c* write reference grid data
c*---

do 1 i=1,mr
write(iun(2),100)(dr(i,j),j=1,nr)

1 continue

if(icur.eq.1)then

do 2 i=1,mr
write(iun(2),100)(ur(i,j),j=1,nr)

2 continue

do 3 i=1,mr
write(iun(2),100)(vr(i,j),j=1,nr)

3 continue

endif

close(iun(2))

100 format(501f10.4)

c*---
c* generation of file indat.dat
c*---

write(*,*) ’ do you want to create indat.dat? yes=1’
read(*,*) ians

if(ians.eq.1) then
open(iun(4),file=’indat.dat’)

c*---
c* write fnames portion of namelist file
c*---

146

write(iun(4),nml=fnames)

c*---
c* write ingrid portion of namelist file
c*---

if(iu.eq.0)then
write(iun(3),*)’ input iu: 1=mks, 2=english’
read(*,*) iu
endif
write(iun(3),*)’ input dispersion relationship; ntype: 0=linear,’
write(iun(3),*)’ 1=composite, 2=stokes’
read(*,*)ntype
write(iun(3),*)’ input lateral boundary condition; ibc: 0=closed’
write(iun(3),*)’ 1=open’
read(*,*) ibc

write(iun(3),102)
102 format(’ input ispace (0=program picks x spacing, 1=user choses)’)

read(*,*) ispace
write(*,*)’ input nd (# y divisions, 1 is minimum)’
read (*,*) nd

if(ispace.eq.0) go to 105
write(iun(3),*)’ constant or variable x spacing?(0 for constant)’
read(*,*) ians1
if(ians1.eq.0) then
write(*,*) ’ input constant md’
read(*,*) mdc
do 103 iko=1,mr-1
md(iko)=mdc

103 continue
else
write(iun(3),104)

104 format(’ input md(i) for i=1 to mr-1’)
read(*,*) (md(i),i=1,mr-1)
endif

105 write(iun(3),106)
106 format(’ input if(1) turbulent, if(2) porous, if(3) laminar’)

write(iun(3),*) ’ standard choice: 1, 0, 0’
read(*,*) iff(1), iff(2), iff(3)

write(iun(3),107)
107 format(’ input isp (subgrid features) :standard 0’)

read(*,*) isp

write(iun(3),108)
108 format(’ input values of iinput, ioutput:’/

1’ iinput: 1 standard, i.e., not starting from previous run’/
1’ 2 if starting from previous run’/
1’ ioutput: 1 standard, not saving restart data’/
1’ 2 if saving restart data’)

147

read(*,*)iinput,ioutput

write(iun(3),115)
115 format(’ input value of isurface:’/

1’ isurface = 0: no surface picture generated’/
1’ isurface = 1: surface picture generated’)
read(*,*) isurface
if(isurface.eq.0) fname6 = ’ ’

write(iun(4),nml=ingrid)

if(ispace.eq.1) write(iun(4),nml=inmd)

if(iinput.eq.1) then
c*--
c* write waves1 portion of indat.dat
c*--

write(iun(3),*)’ input iwave (1 discrete, 2 directional spread)’
read(*,*) iwave
write(iun(3),*) ’ input nfreq (# of frequencies)’
read(*,*) nfreqs

write(iun(4), nml=waves1a)

if (iwave.eq.2) then
write(*,*)’ enter central direction thet0’
read(*,*) thet0
endif

do 113 ifreq=1,nfreqs
c*--
c* line 10, iinput=1
c*--

write(iun(3),109)
109 format(’ input wave period and tide stage’)

read(*,*) freqs(ifreq), tide(ifreq)

c*--
c* line 11, iwave=1, iinput=1
c*--

if(iwave.eq.1) then

write(iun(3),110)
110 format(’ input # of waves per frequency, nwavs’)

read(*,*) nwavs(ifreq)

c*--
c* line 12, iwave=1, iinput=1
c*--

do 111 iwavs=1,nwavs(ifreq)
write(iun(3),*)’ input amplitude and direction’
read(*,*) amp(ifreq,iwavs), dir(ifreq,iwavs)

111 continue

148

else

c*---
c* iwave=2, iinput=1
c*---

write(iun(3),112)
112 format(’input en. density and on next line, directional’,

1’ spreading factor’)
read(*,*) edens(ifreq)
read(*,*) nwavs(ifreq)

nseed=500

endif
113 continue

if (iwave .eq. 1) write(iun(4), nml=waves1b)
if (iwave .eq. 2) write(iun(4), nml=waves1c)

endif

if (iinput .eq. 2) then
c*---
c* line 9, iinput=2
c*---

write(iun(3),*)’ input wave period and tide stage’
read(*,*) freqin ,tidein

write(iun(4), nml=waves2)

endif

close(iun(4))

endif

stop
end

c*---
subroutine con

c*---

include ’param.h’

common/ref/ d(ixr,iyr),u(ixr,iyr),v(ixr,iyr),m,n,dx,dy,itype
common/ind/ iu,ntype,icur,ibc,ispace,nd,iff,isp,iinput,

1iwave,nfreqs,freqs,tide,nwavers,amp,dir,edens
common/dims/ x(ixr),y(iyr)
dimension iff(3)
dimension amp(ncomp,ncomp),dir(ncomp,ncomp),tide(ncomp),

1 freqs(ncomp),edens(ncomp),nwavs(ncomp)

149

do 1 i=1,m
do 1 j=1,n
if((icur.eq.1).and.(itype.eq.3))then
xp=x(m)-x(i)
u(i,j)=-0.02295*exp(-((xp/76.2)**2)/2.)*exp(-((y(j)/7.62)**2)

1/2.)*xp
v(i,j)=-0.2188*(2.-(xp/76.2)**2)*exp(-((xp/76.2)**2)/2.)*

1erfjk(abs(y(j))/107.76)*y(j)/abs(y(j))
else
u(i,j)=0.
v(i,j)=0.
endif

1 continue

return
end

c*---
subroutine depth(iun)

c*---

include ’param.h’

common/ref/ d(ixr,iyr),u(ixr,iyr),v(ixr,iyr),m,n,dx,dy,itype
common/ind/ iu,ntype,icur,ibc,ispace,nd,iff(3),isp,iinput,

1iwave,nfreqs,freqs,tide,nwavers,amp,dir,edens
common/dims/ x(ixr),y(iyr)
dimension iun(3)
dimension amp(ncomp,ncomp),dir(ncomp,ncomp),tide(ncomp),

1 freqs(ncomp),edens(ncomp),nwavs(ncomp)

write(iun(3),1)
1 format(’ *********** parabolic model in rectangular’,

1 ’ grid **********’//
2 ’ input type of bottom desired’//
3 ’ 1=surface piercing island’/
4 ’ 2=bbr, submerged shoal’/
5 ’ 3=arthur rip current’/
6 ’ 4=test case, planar bottom’/
7 ’ 5=radder(1979), configuration 2’/
8 ’ 6=grazing incidence on linear caustic’/
9 ’ 7=whalin’’s channel’/
1 ’ 8=surface piercing breakwater’/
2 ’ 9=channel’/
3 ’10=breakwater’)
read (*,*) itype

if (itype .eq. 1) then
c*---
c* surface piercing island
c*---

write(iun(3),101)
101 format(’ surface piercing island’)

150

write(iun(3),102)
102 format(’ input m,n,dx,dy,depth,period’)

read (*,*) m,n,dx,dy,dep,t
write(iun(3),*)m,n,dx,dy,dep,t
write(iun(3),103)

103 format(’ input crest height, x semiaxis, y semiaxis’)
read (*,*) hb, xa, ya
write (iun(3),*)hb,xa,ya
sig=2.*3.1415927/t
do 104 i=1,m
x(i)=float(i-1)*dx

104 continue
do 105 j=1,n
y(j)=(float(j-1)-0.5)*dy

105 continue
xc=xa+3.*dx
do 106 i=1,m
do 106 j=1,n
d(i,j)=dep-(1.-sqrt((((x(i)-xc)/xa)**2)+((y(j)/ya)**2)

1))*hb
if(d(i,j).gt.dep)d(i,j)=dep

106 continue

end if

if (itype .eq. 2) then
c*---
c* bbr, submerged shoal
c*---

iu=1
m=100
n=100
c20=cos(20.*3.1415927/180.)
s20=sin(20.*3.1415927/180.)
dx=0.25
dy=0.25
do 151 i=1,m

151 x(i)=float(i-1)*dx
do 152 j=1,n

152 y(j)=float(j-1)*dy
do 154 i=1,m
do 154 j=1,n
xp=(x(i)-10.5)*c20-(y(j)-10.)*s20
yp=(x(i)-10.5)*s20+(y(j)-10.)*c20
test=((yp/4.)**2)+((xp/3.)**2)
if(xp.lt.(-5.84))d(i,j)=0.45
if(xp.ge.(-5.84))d(i,j)=0.45-0.02*(xp+5.84)
if(test.gt.1) go to 153
d(i,j)=d(i,j)-(0.5*sqrt(1.-((yp/5.)**2)-((xp/3.75)**2))

1-0.3)
153 continue
154 continue

end if

151

if (itype .eq. 3) then
c*--
c* arthur (1952) rip current
c*--

iu=1
icur=1
dx=5.0
dy=5.0
slope=0.02
m=100
n=100
do 201 i=1,m
x(i)=float(i-1)*dx

201 continue
do 202 j=1,n
y(j)=float(2*j-n-1)*dy/2.

202 continue
xm=x(m)
do 203 j=1,n
do 203 i=1,m
d(i,j)=(xm-x(i)+dx)*slope

203 continue
endif

if (itype .eq. 4) then
c*---
c* planar bottom test case
c*---

write(iun(3),*)’ input m,n,dx,dy,depth,period’
read (*,*) m,n,dx,dy,dep,period
write(iun(3),*) ’ input bottom slope’
read(*,*) xm
sig=2.*3.1415927/period
do 251 i=1,m
do 251 j=1,n
d(i,j)=dep-xm*float(i-1)*dx

251 continue
do 252 i=1,m

252 x(i)=float(i-1)*dx
do 253 j=1,n

253 y(j)=float(j-1)*dy
endif

if (itype .eq. 5) then
c*--
c* radder(1979), configuration 2
c*--

write(iun(3),*)’ input m,n,dx,dy,depth’
read (*,*)m,n,dx,dy,dep
iu=1
rad=dep/0.116
dm=0.1379*dep
e0=(dep-dm)/rad
ak0=2.*3.1415927/(0.288*rad)

152

sig2=9.806*ak0*tanh(ak0*dep)
sig=sqrt(sig2)
do 301 i=1,m
x(i)=float(i-1)*dx

301 continue
do 302 j=1,n
y(j)=float(j-1)*dx

302 continue
do 303 i=1,m
do 303 j=1,n
r=sqrt(((x(i)-x(ifix(rad/dx)+1))**2.)+((y(j)-y((n+1)/2)

1)**2.))
if(r.gt.rad)d(i,j)=dep

c* if(r.le.rad)d(i,j)=dm+e0*r*r
if(r.le.rad)d(i,j)=dm+e0*r

303 continue
endif

if (itype .eq. 6) then
c*---
c* grazing incidence on caustic (kirby and dalrymple, 1983)
c*---

write(iun(3),*)’ input m,n,dx,dy,depth,period’
read(*,*)m,n,dx,dy,dep,per
pi=3.1415927
sig=2.*pi/per
d2=2.*dep
alph=atan(0.02)
thet=25.*pi/180.
b=(d2-dep)/tan(alph)
tt=tan(thet)
do 351 j=1,n
y(j)=float(j-1)*dy

351 continue
do 352 i=1,m
x(i)=float(i-1)*dx

352 continue
do 353 i=1,m
do 353 j=1,n
if(y(j).lt.(y(n)-x(i)*tt))d(i,j)=dep
if(y(j).ge.(y(n)-x(i)*tt))d(i,j)=dep+cos(thet)*tan(alph)

1*(x(i)*tt+y(j)-y(n))
if(y(j).gt.(y(n)-x(i)*tt+b/cos(thet)))d(i,j)=d2

353 continue
endif

if (itype .eq. 7) then
c*--
c* whalin’s channel (1971)
c*--

write(iun(3),401)
401 format(’ whalins channel, input wave period’)

read (*,*)period
write (iun(3),*)period

153

m=100
n=74
iu=1
dx=.242424242
dy=.33866666/4.
pi=3.1415927
sig=2.*pi/period
do 402 i=1,m

402 x(i)=float(i-1)*dx
do 403 j=1,n

403 y(j)=float(j-1)*dy-dy/2.
do 404 j=2,n-1
g=sqrt(y(j)*(6.096-y(j)))
do 404 i=1,m
if(x(i).lt.(10.67-g))d(i,j)=0.4572
if((x(i).ge.(10.67-g)).and.(x(i).le.(18.29-g)))d(i,j)=

10.4572+(10.67-g-x(i))/25.
if(x(i).gt.(18.29-g))d(i,j)=0.1524

404 continue
do 405 i=1,m
d(i,1)=d(i,2)
d(i,n)=d(i,n-1)

405 continue
endif

if (itype .eq. 8) then
c*--
c* surface piercing breakwater
c*--

write(*,*)’ input m,n,dx,dy’
read(*,*) m,n,dx,dy

c* breakwater tip radius
xt=1.5
yt=4.
do 451 j=1,n
y(j)=float(j-1)*dy

451 continue
do 452 i=1,m
x(i)=float(i-1)*dx
do 452 j=1,n
if (x(i).lt.xt) then

r=sqrt((x(i)-xt)**2+(y(j)-yt)**2)
dep=.66*r-.37

else
dep=.66*abs(y(j)-yt)-.37

endif
if(dep.gt..36) dep=.36
d(i,j)=dep

452 continue
endif

if (itype .eq. 9) then
c*---
c* generate a pair of breakwaters with rounded heads on each

154

c* side of a channel.
c* xt= beginning location for trunk of breakwater
c* sl= slope of the sides of the breakwater
c*---

write(*,*) ’ input m,n,dx,dy,xt,sl,do’
read(*,*) m,n,dx,dy,xt,sl,do
w=float(n-1)*dy
do 503 i=1,m

x(i)=float(i-1)*dx
if (x(i).le.xt) then

do 501 j=1,n
y(j)=float(j-1)*dy
if (j.lt.n/2) then

r=sqrt((x(i)-xt)**2+y(j)**2)
if(r.eq.0.) then
cr=0.

else
cr=abs((x(i)-xt))/r

endif
dep=sl*r+.05

c* add bulbous head
c dep=dep-sl*sqrt(r)*cr

else
r=sqrt((x(i)-xt)**2+(y(j)-w)**2)
if(r.eq.0.) then

cr=0.
else

cr=abs((x(i)-xt))/r
endif

dep=sl*r+.05
c add bulbous head
c dep=dep -sl*sqrt(r)*cr

endif
if (dep.gt.do)dep = do
if (dep.lt..05)dep = .05
d(i,j)=dep

501 continue
else
do 502 j=1,n

if (j.lt.n/2) then
yt=0.

else
yt=w

endif
dep=sl*abs(y(j)-yt)+.05
if (dep.gt.do)dep = do
d(i,j)=dep

502 continue
end if

503 continue
endif

if (itype .eq. 10) then
c*---

155

c* generate a breakwater with rounded head
c* with an orientation alpha (degrees) to the x axis
c* xh, yh= locus of breakwater head;
c* sl= slope of the sides of the breakwater;
c* do= constant depth section.
c*---

write(*,*) ’ input m,n,dx,dy,xh, yh,alpha,sl,do’
read(*,*) m,n,dx,dy,xh,yh,alpha,sl,do
al=alpha*3.1415927/180.
write(*,*)’ alpha =’,al
co=cos(al)
si=sin(al)
do 551 i=1,m

x(i)=float(i-1)*dx
do 551 j=1,n

y(i)=float(j-1)*dy
xp=(x(i)-xh)*co+(y(i)-yh)*si
yp=-(x(i)-xh)*si +(y(i)-yh)*co

c see if we are in front of the trunk
if(xp.lt.0.0) then

r=sqrt(xp*xp+yp*yp)
dep=sl*r-10.

else
dep=sl*abs(yp)-10.

endif
if (dep.gt.do) dep=do
d(i,j)=dep

551 continue
endif

return
end

c*--
c* error function, hasting’s method
c*--

function erfjk(x)
dimension a(5)
a(1)=0.254830
a(2)=-0.284497
a(3)=1.421414
a(4)=-1.453152
a(5)=1.061405
t=1./(1.+0.327591*x)
erfjk=1.-exp(-(x**2))*t*(a(1)+t*(a(2)+t*(a(3)+t*(a(4)+t*a(5)))))
return
end

156

7.3 surface.f

〈surface〉≡

c*--
c*
c* surface.f
c*
c* This program converts the file (usually surface.dat) containing
c* an instantaneous snapshot of the water surface at the computational
c* grid spacing to a regularly spaced ascii file, suitable for directly
c* reading into Matlab format.
c*
c* James T. Kirby
c* Center for Applied Coastal Research
c* University of Delaware
c* Newark, DE 19716
c* kirby@udel.edu, (302) 831-2438, FAX (302) 831-1228
c*
c* Last revision 12/22/94.
c*
c*---

program surfacev26

include ’param.h’

integer i,j,k,m,n,nx,ny,iswap
integer iret, iout
real surface(iy,iy)
real x(iy),y(iy),dx,dy,xold(iy),surfold(iy,iy)
character*255 fileout
integer idimsizes(2)

character*255 fname1,fname2,fname3,fname4,fname5,fname6,
1 fname7,fname8,fname9,fname10,fname11,fname12,
1 fname13,fname14,fname15,fname16,fname17,
1 fname18,fname19,fname20,fname21,fname22,fname23,
1 fname24,fname25,fname26

namelist /ingrid/ mr, nr, iu, ntype, icur, ibc, ismooth, dxr, dyr, dt,
1 ispace, nd, iff, isp, iinput, ioutput
1 /inmd/ md
1 /fnames/ fname2,fname3,fname4,fname5,fname6,
1 fname7,fname8,fname9,fname10,fname11,fname12,
1 fname13,fname14,fname15,fname16,fname17,
1 fname18,fname19,fname20,fname21,fname22,fname23,
1 fname24,fname25,fname26
1 /waves1a/ iwave, nfreqs
1 /waves1b/ freqs, tide, nwavs, amp, dir
1 /waves1c/ thet0, freqs, tide, edens, nwavs, nseed
1 /waves2/ freqin, tidein

open(8,file=’indat.dat’)

157

read(8,nml=fnames)

open(10,file=fname9)

c Enter output file name.

write(*,*) ’enter output file name in single quotes’
read(*,*) fileout

c Read number of y-direction points from surface.dat

read(10,*) ny
read(10,*) (y(j),j=1,ny)

write(*,*) ’ number of y points = ’, ny
write(*,*) ’ maximum y = ’, y(ny)

c Read surface data.

do 10 i=1,100000

read(10,*) xold(i)

if (xold(i).lt.0) go to 20

read(10,*) (surfold(i,j),j=1,ny)

10 continue

20 continue

m=i-1

write(*,*) ’ number of x points in file = ’, m
write(*,*) ’ maximum x = ’, xold(m)

dy=y(2)-y(1)
dx=dy

write(*,*) ’ grid spacing (x and y) in new image = ’, dy

nx=int(xold(m)/dx)+1

write(*,*) ’ number of x points in interpolated image = ’, nx

do 25 j=1,ny
jj=(ny-j)+1
surface(1,j)=surfold(1,jj)

25 continue

x(1)=0.

do 40 i=2,nx-1
x(i)=float(i-1)*dx

158

do 35 ii=1,m-1
if((xold(ii).le.x(i)).and.(xold(ii+1).gt.x(i))) then

fac=(x(i)-xold(ii))/(xold(ii+1)-xold(ii))
do 30 j=1,ny
jj=(ny-j)+1
surface(i,j)=(1.-fac)*surfold(ii,jj)+fac*surfold(ii+1,jj)

30 continue
endif

35 continue
40 continue

do 45 j=1,ny
surface(nx,j)=surfold(m,j)

45 continue

open(11,file=fileout)

do 50 i=1,nx
write(11,51)(surface(i,j),j=1,ny)

50 continue

close(11)

stop

51 format(501(f10.4))

end

159

7.4 refdifplot.m

〈refdifplot〉≡

% refdifplot.m
%
% Script file to read in wave height, wave angle, water depth and surface data
% from refdif1 output,
% and construct various plots. This
% program uses the quiver routine from Matlab 4.2
%
% James T. Kirby
% Center for Applied Coastal Research
% University of Delaware
% Newark, DE 19716
% kirby@udel.edu, (302) 831-2438, FAX (302) 831-1228.
%
% 11/27/94

% Read data files.

load height.dat
load angle.dat
load depth.dat

dx=input(’ enter dx: ’);
dy=input(’ enter dy: ’);

sz=size(height);

% Compute x,y vectors.

x=dx*(1:sz(1))-dx;
y=dy*(1:sz(2))-dy;

% Constructing scales arrow plot for wave heights and directions.
% Compute x,y components of arrows.

DX=height.*cos(pi*angle/180);
DY=height.*sin(pi*angle/180);

% Now do contours of wave height over depth contours.

figure(1),clf,hold off
cf=contour(x,y,height’);clabel(cf,’manual’),xlabel(’x’),ylabel(’y’)
hold on,contour(x,y,depth’,’--’),axis(’equal’)

% Now overlay scaled arrows on contours of wave height.

figure(2),clf,hold off
cf=contour(x,y,height’);clabel(cf,’manual’),xlabel(’x’),ylabel(’y’)
hold on,quiver(x,y,DX’,DY’),axis(’equal’)

% Now plot the surface.

160

isurf=input(’do you want to plot the surface? 1=yes: ’);

if isurf ==1, load surf.dat

figure(3),clf,hold off
cf=contour(x,y,surf’);clabel(cf,’manual’),xlabel(’x’),ylabel(’y’)
hold on, contour(x,y,depth’,’--’), axis(’equal’)

end

161

8 FREQUENTLY ASKED QUESTIONS

1. What is the maximum current this model can handle?

The program can handle currents that are of the same order as the wave speed. However, opposing

currents which are strong enough to stop the waves cause a singularity in the wave height due to the

absence of reflection effects and no provision for steepness-limited breaking. These extensions will be

added in the future.

2. In which situations should the user specify totally reflecting lateral boundaries (ibc = 0), and when

should partially transmitting lateral boundaries (ibc = 1) be used?

It is common practice to use the closed boundary condition as the amount of reflection can be identified

and the domain width can be chosen so that there are no reflections in the region of interest. The final

run may be made using partially transmitting boundaries, but it should be noted that there will still be

a certain amount of reflected waves present in the domain.

3. What is the difference between user-specified subdivisions and user-specified subgrid?

User-specified subdivisions and user-specified subgrids are two completely independent options. The

user has to specify the desired number of subdivisions in the y-direction nd. However, the user has an

option between specifying the number of subdivisions in the x-directionmd(ir) or having the program

specify those. If the program specifies md(ir), the switch ispace has to be set to zero and the program

performs interpolations of the depth and velocity grids. If the user choses to specify the md(ir) values

himself, the switch ispace has to be set to unity. In this case, the user again has a choice: The user can

specify isp = 0, then the program will perform interpolations. The user can set isp = 1, in which case

he/she has to specify a subgrid in the file subdat.dat.

4. What are the guidelines for the specification of the number of subdivisions md(ir) in the x-direction?

It is recommended that the number of subdivisions md(ir) be determined by the program. However,

if the user wants to specify md(ir)’s, the user should make sure that the subdivided grid is at least as

fine as the program would have determined. In order to achieve this, the user can first run the program

by letting it pick its own subdivisions. Then the user can chose his/her subdivision using the programs

subdivisions as a guideline.

5. What are the guidelines for the choice of the number of subdivisions nd in the y-direction ?

nd should be chosen such that the final subdivided reference grid cells have increments in the x- and y-

directions that are fairly close in size. This is best determined by running REF/DIF 1 once to check how

many x-direction subdivisions are introduced in the most finely subdivided grid, and then subdividing

in y by a corresponding amount.

162

6. Where is the origin of the grid ?

The origin of the domain is always chosen to be the lower right-hand corner of the domain with the

x-axis pointing in the propagation direction and the y-axis pointing towards the left.

163

9 REFERENCES

Arthur, R. S., 1950, “Refraction of shallow water waves: the combined effect of currents and underwater

topography”, Trans. AGU, 31, 549-552.

Berkhoff, J.C.W., 1972, “Computation of combined refraction-diffraction,” Proc. 13th Int. Conf. Coastal

Engrg., Vancouver.

Berkhoff, J.C.W., N. Booij and A.C. Radder, 1982, “Verification of numerical wave propagation models for

simple harmonic linear waves,” Coastal Engineering, 6, 255-279.

Bettess, P. and O.C. Zienkiewicz, 1977, “Diffraction and refraction of surface waves using finite and infinite

elements,” Int. J. for Numerical Methods in Engrg., 1, 1271-1290.

Booij, N., 1981, Gravity Waves on Water with Non-uniform Depth and Current, Doctoral dissertation, Tech-

nical University of Delft, The Netherlands, 131 pp.

Booij, N., 1983, “A note on the accuracy of the mild-slope equation,” Coastal Engineering, 7, 191-203.

Carnahan, B., H.A. Luther and J.O. Wilkes, 1969, Applied Numerical Methods, Wiley.

Chawla, A., Özkan-Haller, H. T. and Kirby, J. T., 1998, “Spectral model for wave transformation over

irregular bathymetry”, Journal of Waterway, Port, Coastal and Ocean Engineering, 124, 189-198.

Chu, V.C. and C.C. Mei, 1970, “On slowly varying Stokes waves,” J. Fluid Mech., 41, 873-887.

Dally, W.R., R.G. Dean and R.A. Dalrymple, 1985, “Wave height variations across beaches of arbitrary

profile,” J. Geophys. Research, 90, 11917-11927.

Dalrymple, R.A., J.T. Kirby and P.A. Hwang, 1984a, “Wave diffraction due to areas of energy dissipation,”

J. Waterway, Port, Coastal and Ocean Engineering, 110, 67-79.

Dalrymple, R.A., J.T. Kirby and D.W. Mann, 1984b, “Wave propagation in the vicinity of islands,” Proc. of

the 16th Offshore Tech. Conf., No. 4675, Houston, May.

Dalrymple, R. A., 1988, “A model for the refraction of water waves”, J. Waterway, Port, Coastal and Ocean

Engineering, 114, 423-435.

Dalrymple, R. A., 1991, “REFRACT: A refraction program for water waves. Version 2.0”, Report CACR-

91-09, Center for Applied Coastal Research, Dept. of Civil Engrng., Univ. of Delaware, Newark.

Dean, R.G. and R.A. Dalrymple, 1984, Water Wave Mechanics for Engineers and Scientists, Englewood

Cliffs: Prentice-Hall.

Djordjevic, V.D. and L.G. Redekopp, 1978, “On the development of packets of surface gravity waves mov-

ing over and uneven bottom,” Z. Angew. Math. and Phys., 29, 950-962.

164

Hales, L. Z. and Herbich, J. B., 1972, “Tidal inlet current-ocean wave interaction”, Proc. 13th ICCE, 669-

688.

Hedges, T.S., 1976, “An empirical modification to linear wave theory,” Proc. Inst. Civ. Eng., 61, 575-579.

Houston, J.R., 1981, “Combined refraction-diffraction of short waves using the finite element method”,

Applied Ocean Res., 3, 163-170.

Jonsson, I.G. and O. Skovgaard, 1979, “A mild-slope wave equation and its application to tsunami calcula-

tions,” Mar. Geodesy, 2, 41-58.

Kirby, J .T., 1983, “Propagation of weakly-nonlinear surface water waves in regions with varying depth and

current”, ONR Tech. Rept. 14, Res. Rept. CE-83-37, Department of Civil Engineering, University of

Delaware, Newark.

Kirby, J.T. and R.A. Dalrymple, 1983a, “A parabolic equation for the combined refraction-diffraction of

Stokes waves by mildly varying topography,” J. Fluid Mech., 136, 543-566.

Kirby, J.T. and R.A. Dalrymple, 1983b, “The propagation of weakly nonlinear waves in the presence of

varying depth and currents,” Proc. XXth Congress I.A.H.R., Moscow.

Kirby, J.T., 1984, “A note on linear surface wave-current interaction,” J. Geophys. Res., 89, 745-747.

Kirby, J.T. and R.A. Dalrymple, 1984, “Verification of a parabolic equation for propagation of weakly non-

linear waves,” Coastal Engineering, 8, 219-232.

Kirby, J. T., 1986a, “Higher-order approximations in the parabolic equation method for water waves”, J.

Geophys. Res., 91, 933-952.

Kirby, J. T., 1986b, “Rational approximations in the parabolic equation method for water waves”, Coastal

Engineering, 10, 355-378.

Kirby, J. T., 1986c, “Open boundary condition in parabolic equation method”, J. Waterway, Port, Coast.

and Ocean Eng., 112, 460-465.

Kirby, J. T. and Dalrymple, R. A., 1986a, “Modeling waves in surfzones and around islands”, J. Waterway,

Port, Coast. and Ocean Eng., 112, 78-93.

Kirby, J. T. and Dalrymple, R. A., 1986b, “An approximate model for nonlinear dispersion in monochro-

matic wave propagation models”, Coast. Eng., 9, 545-561.

Kirby, J. T., Tjan, K. and Shi, F., 2002, “Damping of high frequency noise in the large angle parabolic

equation method”, manuscript.

165

Krommes, J. A., 1992, “The web system of structured software design and documentation for C, C++,

Fortran, Ratfor, and TEX”, draft report.

Liu, P.L.-F. and R.A. Dalrymple, 1984, “The damping of gravity water waves due to percolation,” Coastal

Engineering, ?.

Liu, P.L.-F. and T.-K. Tsay, 1984, “On weak reflection of water waves,” J. Fluid Mech., 131, 59-71.

MacCamy, R.D. and R.A. Fuchs, 1954, “Wave forces on piles: a diffraction theory,” Tech. Memo, 69, Beach

Erosion Board.

Medina, R., 1991, personal communication.

Mei, C.C. and E.O. Tuck, 1980, “Forward scattering by thin bodies,” SIAM J. Appl. Math., 39, 178-191.

Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikishii, 1975, “Observations

of the directional spectrum of ocean waves using a cloverleaf buoy,” J. Physical Oceanography, 5,

750-760.

Phillips, O.M., 1966, The Dynamics of the Upper Ocean, Cambridge University Press.

Radder, A.C., 1979, “On the parabolic equation method for water-wave propagation,” J. Fluid Mech., 95,

159-176.

Sommerfeld, A., 1896, “Mathematische theorie der diffraction”, Math. Annalen, 47, 317-374.

U.S. Army Coastal Engineering Research Center, 1973, Shore Protection Manual, Vol. I.

Wiegel, R.L., 1962, “Diffraction of waves by a semi-infinite breakwater,” J. Hydraulic Div., 88, 27-44.

Yue, D.K.P. and C.C. Mei, 1980, “Forward diffraction of Stokes waves by a thin wedge,” J. Fluid Mech.,

99, 33-52.

166

