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Abstract

This report provides a user’s guide for operation of the non-hydrostatic wave model NHWAVE
in application to generation of submarine landslide-induced tsunami waves. NHWAVE was de-
veloped by Ma et al. (2012) for modeling fully dispersive surface wave processes. It solves the
non-hydrostatic Navier-Stokes equations in a domain over a surface and terrain in the sigma co-
ordinate system. Tsunami waves generated by a prescribed submarine landslide can be directly
simulated by taking advantage of the σ coordinate system. The model assumes a single-valued
water surface and represents turbulent stresses in terms of an eddy viscosity closure scheme.
For tsunami wave applications in the present report, turbulent stresses are not modeled, and
thus the model is basically solving the Euler equations for incompressible flow with a moving
surface and bottom.

NHWAVE has been benchmarked in Tehranirad et al. (2012) for tsunami application us-
ing PMEL-135 benchmarks provided by Synolakis et al. (2007), and a landslide benchmark
developed from results in Enet and Grilli (2007). This report provides a user’s manual for land-
slide applications only. A brief description of model theory, numerical scheme and landslide
configuration is also included in the report. The model setup and results presented here rep-
resent testing of Version 1.1 of the code, and will be updated online at http://chinacat.coastal.
udel.edu/programs/ with each version change for the publicly distributed code.
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1 Introduction

The non-hydrostatic wave model NHWAVE was developed by Ma et al. (2012) for modeling fully
dispersive surface wave processes from deep water to coastal region. It solves the non-hydrostatic
Navier-Stokes equations in a domain over a surface and terrain in the σ coordinate system. The
Smagorinsky subgrid turbulence model and k− ε turbulence model are implemented in NHWAVE.
The model takes wave breaking and moving shorelines into account. For tsunami wave appli-
cations presented in this report, turbulent stresses, wave breaking and moving shoreline are not
modeled, and thus the model is basically solving the Euler equations for incompressible flow with
moving surface and bottom. Numerically, it uses a Godunov-type finite volume scheme to repre-
sent spatial derivatives, with time stepping done using a Runge-Kutta scheme. The model allows
for a prescribed time-dependent bottom motion, making it directly applicable to the simulation of
landslide-induced tsunami wave generation. The detailed description of the model can be found in
Ma et al. (2012).

Tehranirad et al. (2012) reported the benchmark testing of NHWAVE for tsunami runup appli-
cation using PMEL-135 benchmarks provided by Synolakis et al (2007). This set of benchmarks
are the presently accepted benchmarking standards adopted by the National Tsunami Hazard Mit-
igation Program (NTHMP) for judging model acceptance for use in development of coastal inun-
dation maps and evacuation plans. In addition, benchmark tests for landslide generated tsunami
waves were also carried out in Tehranirad et al. using the laboratory experimental data provided by
Enet and Grilli (2007). This user’s guide uses the case of Enet and Grilli (2007) as one example to
demonstrate the model setup process.

The report is organized as follows. Sections 2 and 3 provide brief descriptions of the model
equations and numerical techniques, respectively, proposed by Ma et al. (2012). Section 4 in-
troduces an idealized solid slide used in both Enet and Grilli (2007) and a field-scale application.
Section 5 describes the model operation procedures. Two examples including a laboratory case and
a field-scale case are demonstrated in Section 6.

NHWAVE is distributed as open source code. General users may obtain the most recent tested
version from the web site http://chinacat.coastal.udel.edu/programs/index.html which provides this
code along with other programs developed at the Center for Applied Coastal Research. The code
is provided along with a unix/linux makefile and input files for executing the tests described in the
manual. The present report will also be updated with each major change in program version.

Version control for NHWAVE is managed using Subversion ( Collins-Sussman et al, 2004).
Users who would like to become part of the development team should contact Fengyan Shi (fyshi@
udel.edu) or Jim Kirby (kirby@udel.edu).
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2 Governing Equations

2.1 Navier-Stokes equations

The incompressible Navier-Stokes equations in Cartesian coordinates (x∗1, x
∗
2, x

∗
3), where x∗1 = x∗,

x∗2 = y∗ and x∗3 = z∗ and time t∗ are given by

∂ui
∂x∗i

= 0 (1)

∂ui
∂t∗

+ uj
∂ui
∂x∗j

= −1
ρ

∂p̃

∂x∗i
+ gi +

∂τij
∂x∗j

(2)

where (i, j) = 1, 2, 3, ui is velocity component in the x∗i direction, p̃ is total pressure, ρ is water
density, gi = −gδi3 is the gravitational body force and τij = νt(∂ui/∂x∗j + ∂uj/∂x

∗
i ) is turbulent

stress with νt the turbulent kinematic viscosity. Equations (1) and (2) are augmented by kinematic
constraints given at the surface and bottom boundaries given by

∂η

∂t∗
+ u

∂η

∂x∗
+ v

∂η

∂y∗
= w; z∗ = η (3)

∂h

∂t∗
+ u

∂h

∂x∗
+ v

∂h

∂y∗
= −w; z∗ = −h (4)

where η and h are single valued functions of (x∗, y∗, t∗), and by appropriate dynamic constraints.

2.2 Governing equations in σ coordinate system

In order to accurately represent bottom and surface geometry, a σ coordinate transformation devel-
oped by Phillips (1957) is used in NHWAVE. The coordinate transformation maps the bottom and
surface onto constant boundaries of a strip of unit thickness. The transformation is given by

t = t∗ x = x∗ y = y∗ σ =
z∗ + h

D
(5)

where D = h + η. Using the chain rule, the partial derivatives of a variable f = f(x∗, y∗, z∗, t∗)
in the physical domain are transformed as follows.

∂f

∂t∗
=
∂f

∂t
+
∂f

∂σ

∂σ

∂t∗

∂f

∂x∗
=
∂f

∂x
+
∂f

∂σ

∂σ

∂x∗

∂f

∂y∗
=
∂f

∂y
+
∂f

∂σ

∂σ

∂y∗

∂f

∂z∗
=
∂f

∂σ

∂σ

∂z∗

(6)
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We obtain the governing equations in the new coordinate system (x, y, σ, t) using (5-6) in (1)
and (2). The continuity equation (1) is first transformed as

∂u

∂x
+
∂u

∂σ

∂σ

∂x∗
+
∂v

∂y
+
∂v

∂σ

∂σ

∂y∗
+

1
D

∂w

∂σ
= 0 (7)

Using the results

∂σ

∂t∗
=

1
D

∂h

∂t
− σ

D

∂D

∂t
∂σ

∂x∗
=

1
D

∂h

∂x
− σ

D

∂D

∂x
∂σ

∂y∗
=

1
D

∂h

∂y
− σ

D

∂D

∂y

∂σ

∂z∗
=

1
D

(8)

we rewrite (7) as
∂D

∂t
+
∂Du

∂x
+
∂Dv

∂y
+
∂ω

∂σ
= 0 (9)

where ω is the vertical velocity relative to constant σ surfaces, given by

ω = D

(
∂σ

∂t∗
+ u

∂σ

∂x∗
+ v

∂σ

∂y∗
+ w

∂σ

∂z∗

)
(10)

The transformed continuity equation (9) may be integrated over depth to obtain

∂D

∂t
+

∂

∂x
(D

1∫
0

udσ) +
∂

∂y
(D

1∫
0

vdσ) = 0 (11)

where the kinematic constraints (3) - (4) have been used. Equation (11) is used subsequently to
determine the surface position.

The transformed momentum equations may be written as

∂U
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂σ

= Sh + Sp + Sτ (12)

where U = (Du,Dv,Dw)T . The fluxes are given by

F =

 Duu+ 1
2gD

2

Duv
Duw

 G =

 Duv
Dvv + 1

2gD
2

Dvw

 H =

 uω
vω
wω

 (13)
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The source terms are given by

Sh =

 gD ∂h
∂x

gD ∂h
∂y

0

 Sp =

 −
D
ρ ( ∂p∂x + ∂p

∂σ
∂σ
∂x∗ )

−D
ρ (∂p∂y + ∂p

∂σ
∂σ
∂y∗ )

−1
ρ
∂p
∂σ

 Sτ =

 DSτx
DSτy
DSτz

 (14)

where the total pressure p̃ = p+ ρg(η− z∗) has been divided into it’s dynamic (p) and hydrostatic
(ρg(η − z∗)) parts. It has been noted in a number of previous studies that the application of
standard finite volume Godunov-type scheme directly to equations of this form does not lead to
an automatic preservation of steady state (Zhou et al., 2001; Kim et al, 2008; Liang and Marche,
2009). Therefore, It is desirable to reformulate the equations so that the flux and source terms can
be automatically balanced at the discrete level in the steady state. Following Shi et al. (2012), the
source term is rewritten as

g(h+ η)
∂h

∂x
=

∂

∂x

(
1
2
gh2

)
+ gη

∂h

∂x
(15)

in which the first term in the right hand side can be combined together with the flux terms. Based
on this, the flux terms F and G and source term Sh are rewritten as

F =

 Duu+ 1
2gη

2 + ghη
Duv
Duw

 G =

 Duv
Dvv + 1

2gη
2 + ghη

Dvw

 Sh =

 gη ∂h∂x
gη ∂h∂y

0

 (16)

The main advantage of the above formulation is that the flux and source terms are well-balanced
so that no artificial flow due to bottom slope will be generated.

For the present landslide tsunami application, turbulent diffusion terms Sτx , Sτy , Sτz are ne-
glected.

3 Numerical method

3.1 Grid configuration

A combined finite-volume and finite-difference scheme with a Godunov-type method was applied
to discretize equations (9) and (12). It is straightforward to define all dependent variables at cell
centers to solve the Riemann problem. However, this treatment results in checkerboard solutions
in which the pressure and velocity become decoupled when they are defined at the same location
(Patankar, 1980). Therefore, most existing models use a staggered grid in which the pressure is
defined at the centers of computational cells and the velocities are defined at cell faces (Bradford,
2005). However, staggered grids do not lend themselves as easily as co-located grids to the use of
Godunov-type schemes. Meanwhile, difficulty in treating the cell-centered pressure at the top layer
may arise when applying the pressure boundary condition at the free surface (Yuan and Wu, 2004).
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with

@r
@t!

¼ 1
D

@h
@t

# r
D

@D
@t

@r
@x!

¼ 1
D

@h
@x

# r
D

@D
@x

@r
@y!

¼ 1
D

@h
@y

# r
D

@D
@y

@r
@z!

¼ 1
D

ð8Þ

In the current paper, turbulent diffusion terms Ssx ; Ssy ; Ssz are
included for the cases involving wave breaking, which are given by

Ssx ¼
@sxx
@x

þ
@sxx
@r

@r
@x!

þ
@sxy
@y

þ
@sxy
@r

@r
@y!

þ
@sxz
@r

@r
@z!

Ssy ¼
@syx
@x

þ @syx
@r

@r
@x!

þ @syy
@y

þ @syy
@r

@r
@y!

þ @syz
@r

@r
@z!

Ssz ¼
@szx
@x

þ @szx
@r

@r
@x!

þ @szy
@y

þ @szy
@r

@r
@y!

þ @szz
@r

@r
@z!

ð9Þ

and the stresses in the transformed space are calculated as

sxx ¼ 2mt
@u
@x

þ @u
@r

@r
@x!

! "
sxy ¼ syx ¼ mt

@u
@y

þ @u
@r

@r
@y!

þ @v
@x

þ @v
@r

@r
@x!

! "

syy ¼ 2mt
@v
@y

þ @v
@r

@r
@y!

! "
sxz ¼ szx ¼ mt

@u
@r

@r
@z!

þ @w
@x

þ @w
@r

@r
@x!

! "

szz ¼ 2mt
@w
@r

@r
@z!

! "
syz ¼ szy ¼ mt

@v
@r

@r
@z!

þ @w
@y

þ @w
@r

@r
@y!

! "

ð10Þ

The turbulent kinematic viscosity mt is estimated by the Smagorin-
sky subgrid model

mt ¼ ðCsDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
ð11Þ

where Cs is the Smagorinsky coefficient, which is taken as 0.1–0.2,D
is the filter width, which is calculated as D = (DxDyDrD)1/3, and

Sij ¼ 1
2

@ui
@x!

j
þ @uj

@x!
i

! "
is the stress tensor.

Integrating Eq. (5) from r = 0 to 1 and using the boundary con-
ditions at the bottom and surface forx, we get the governing equa-
tion for free surface movement.

@D
@t

þ @

@x
D
Z 1

0
udr

! "
þ @

@y
D
Z 1

0
vdr

! "
¼ 0 ð12Þ

3. Numerical method

A combined finite-volume and finite-difference scheme with a
Godunov-type method was applied to discretize equations (6)
and (12). It is straightforward to define all dependent variables at
cell centers to solve Riemann problem. However, this treatment re-
sults in checkerboard solutions in which the pressure and velocity
become decoupled when they are defined at the same location
(Patankar, 1980). Therefore, most existing models use a staggered
grid in which the pressure is defined at the centers of computa-
tional cells and the velocities are defined at cell faces (Bradford,
2005). However, staggered grids do not lend themselves as easily
as co-located grids to the use of Godunov-type schemes. Mean-
while, difficulty in treating the cell-centered pressure at the top
layer may arise when applying the pressure boundary condition
at the free surface (Yuan and Wu, 2004a,b).

With these considerations, a different kind of staggered grid
framework is introduced, in which the velocities are placed at
the cell centers and the pressure is defined at the vertically-facing
cell faces as shown in Fig. 1. The momentum equations are solved

by a second-order Godunov-type finite volume method. The HLL
approximate Riemann solver (Harten et al., 1983) is used to esti-
mate fluxes at the cell faces. As in Stelling and Zijlema (2003),
the pressure boundary condition at the free surface can be pre-
cisely assigned to zero.

3.1. Time stepping

To obtain second-order temporal accuracy, the two-stage sec-
ond-order nonlinear Strong Stability-Preserving (SSP) Runge–Kutta
scheme (Gottlieb et al., 2001) was adopted for time stepping. At the
first stage, an intermediate quantity U(1) is evaluated using a typi-
cal first-order, two-step projection method given by

U! # Un

Dt
¼ # @F

@x
þ @G

@y
þ @H

@r

! "n

þ Snh þ Sns ð13Þ

Uð1Þ # U!

Dt
¼ Sð1Þp ð14Þ

where Un represents U value at time level n, U⁄ is the intermediate
value in the two-step projection method, and U(1) is the final first
stage estimate. In the second stage, the velocity field is again up-
dated to a second intermediate level using the same projection
method, after which the Runge–Kutta algorithm is used to obtain
a final value of the solution at the n + 1 time level

U! # Uð1Þ

Dt
¼ # @F

@x
þ @G

@y
þ @H

@r

! "ð1Þ

þ Sð1Þh þ Sð1Þs ð15Þ

Uð2Þ # U!

Dt
¼ Sð2Þp ð16Þ

Unþ1 ¼ 1
2
Un þ 1

2
Uð2Þ ð17Þ

Each stage of the calculation requires the specification of the non-
hydrostatic component of the pressure force as expressed through
the quantities Sp. The pressure field needed to specify these is based
on the solution of the Poisson equation described below. Also at
each stage, the surface elevation is obtained by solving Eq. (12)
explicitly. The time step Dt is adaptive during the simulation, fol-
lowing the Courant–Friedrichs–Lewy (CFL) criterion

Dt¼Cmin min
Dx

jui;j;kjþ
ffiffiffiffiffiffiffiffiffi
gDi;j

p ;min
Dy

jv i;j;kjþ
ffiffiffiffiffiffiffiffiffi
gDi;j

p ;min
DrDi;j

jwi;j;kj

" #

ð18Þ

where C is the Courant number, which is taken to be 0.5 to ensure
accuracy and stability in the current model.

u,v,w

p

x

z

k+1/2

k−1/2

k

i+1/2i−1/2 i

Fig. 1. Layout of computational variables. Velocities (u,v,w) are placed at cell center
and dynamic pressure (p) is defined at vertical cell face.

24 G. Ma et al. / Ocean Modelling 43-44 (2012) 22–35

Figure 1: Layout of computational variables. Velocities (u, v, w) are placed at cell center and
dynamic pressure p is defined at vertical cell face.

With these considerations, a different kind of staggered grid framework is introduced, in which
the velocities are placed at the cell centers and the pressure is defined at the vertically-facing cell
faces as shown in figure 1. The momentum equations are solved by a second-order Godunov-
type finite volume method. The HLL approximate Riemann solver (Harten et al., 1983) is used to
estimate fluxes at the cell faces. As in Stelling and Zijlema (2003), the pressure boundary condition
at the free surface can be precisely assigned to zero.

3.2 Time Stepping

To obtain second-order temporal accuracy, the two-stage second-order nonlinear Strong Stability-
Preserving (SSP) Runge-Kutta scheme (Gottlieb et al., 2001) is adopted for time stepping. At the
first stage, an intermediate quantity U(1) is evaluated using a typical first-order, two-step projection
method given by

U∗ −Un

∆t
= −

(
∂F
∂x

+
∂G
∂y

+
∂H
∂σ

)n
+ Snh + Snτ (17)

U(1) −U∗

∆t
= S(1)

p (18)

where Un represents U value at time level n, U∗ is the intermediate value in the two-step projection
method, and U(1) is the final first stage estimate. In the second stage, the velocity field is again
updated to a second intermediate level using the same projection method, after which the Runge-
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Kutta algorithm is used to obtain a final value of the solution at the n+ 1 time level.

U∗ −U(1)

∆t
= −

(
∂F
∂x

+
∂G
∂y

+
∂H
∂σ

)(1)

+ S(1)
h + S(1)

τ (19)

U(2) −U∗

∆t
= S(2)

p (20)

Un+1 =
1
2
Un +

1
2
U(2) (21)

Each stage of the calculation requires the specification of the nonhydrostatic component of the
pressure force as expressed through the quantities S(1,2)

p . The pressure field needed to specify
these is based on the solution of the Poisson equation described below. Also at each stage, the
surface elevation is obtained by solving equation (11) explicitly. The time step ∆t is adaptive
during the simulation, following the Courant-Friedrichs-Lewy (CFL) criterion

∆t = Cmin

[
min

∆x
|ui,j,k|+

√
gDi,j

,min
∆y

|vi,j,k|+
√
gDi,j

,min
∆σDi,j

|wi,j,k|

]
(22)

where C is the Courant number, which is taken to be 0.5 to ensure accuracy and stability in the
current model.

3.3 Spatial finite volume scheme

Equation (9) and (12) are discretized using a second-order Godunov-type finite volume method.
To solve equation (9) and (12), fluxes based on the conservative variables are required at the cell
faces. In high-order Godunov-type methods, the values of the conservative variables within a cell
are calculated using a reconstruction method based on the cell center data (Zhou et al., 2001).
Usually a piecewise linear reconstruction is used, leading to a second order scheme. For U in the
cell i, we have

U = Ui + (x− xi)∆Ui (23)

where ∆Ui is the gradient of U, which is calculated by

∆Ui = avg
(

Ui+1 −Ui

xi+1 − xi
,
Ui −Ui−1

xi − xi−1

)
(24)

in which avg is a slope limiter which is used to avoid spurious oscillations in the reconstruction
data at the cell faces. In NHWAVE, the van Leer limiter is adopted, which is given by

avg(a, b) =
a|b|+ |a|b
|a|+ |b|

(25)

The left and right values of U at cell face (i+ 1
2) are given by

UL
i+ 1

2

= Ui +
1
2

∆xi∆Ui UR
i+ 1

2

= Ui+1 −
1
2

∆xi+1∆Ui+1 (26)
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The flux F(UL,UR) is calculated by solving a local Riemann problem at each horizontally-
facing cell face. In the present study, HLL Riemann solver is employed. The flux at the cell
interface (i+ 1

2) is determined by

F(UL,UR) =


F(UL) if sL ≥ 0
F∗(UL,UR) if sL < 0 < sR
F(UR) if sR ≤ 0

(27)

where

F∗(UL,UR) =
sRF(UL)− sLF(UR) + sLsR(UR −UL)

sR − sL
(28)

with wave speed sL and sR defined by

sL = min(uL −
√
gDL, us −

√
gDs) (29)

sR = max(uR +
√
gDR, us +

√
gDs) (30)

where us and
√
gDs are estimated by

us =
1
2

(uL + uR) +
√
gDL −

√
gDR (31)√

gDs =
√
gDL +

√
gDR

2
+
uL − uR

4
(32)

To obtain the non-hydrostatic velocity field, the dynamic pressure p has to be calculated first.
From equation (18) and (20), we get

u(k) = u∗ − ∆t
ρ

(
∂p

∂x
+
∂p

∂σ

∂σ

∂x∗

)(k)

(33)

v(k) = v∗ − ∆t
ρ

(
∂p

∂y
+
∂p

∂σ

∂σ

∂y∗

)(k)

(34)

w(k) = w∗ − ∆t
ρ

1
D(k)

∂p(k)

∂σ
(35)

where k = 1, 2 represents the kth stage in the Runge-Kutta integration.
Substituting equation (33) - (35) into the continuity equation (7), we obtain the Poisson equa-

tion in (x, y, σ) coordinate system, given by

∂

∂x

[
∂p

∂x
+
∂p

∂σ

∂σ

∂x∗

]
+

∂

∂y

[
∂p

∂y
+
∂p

∂σ

∂σ

∂y∗

]
+

∂

∂σ

(
∂p

∂x

)
∂σ

∂x∗
+

∂

∂σ

(
∂p

∂y

)
∂σ

∂y∗
+

[(
∂σ

∂x∗

)2

+
(
∂σ

∂y∗

)2

+
1
D2

]
∂

∂σ

(
∂p

∂σ

)
=

ρ

∆t

(
∂u∗

∂x
+
∂u∗

∂σ

∂σ

∂x∗
+
∂v∗

∂y
+
∂v∗

∂σ

∂σ

∂y∗
+

1
D

∂w∗

∂σ

) (36)
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The above equation is discretized using second-order space-centered finite differences. The ve-
locities (u∗, v∗, w∗) at vertical cell faces are interpolated from adjacent cell-centered values. The
resulting linear equation is given by

a1pi,j−1,k−1 + a2pi−1,j,k−1 + a3pi,j,k−1 + a4pi+1,j,k−1 + a5pi,j+1,k−1+
a6pi,j−1,k + a7pi−1,j,k + a8pi,j,k + a9pi+1,j,k + a10pi,j+1,k + a11pi,j−1,k+1+
a12pi−1,j,k+1 + a13pi,j,k+1 + a14pi+1,j,k+1 + a15pi,j+1,k+1 = Rp

(37)

where

a1 = −
(

(σy)i,j−1,k

2∆y(∆σk + ∆σk−1)
+

(σy)i,j,k
2∆y(∆σk + ∆σk−1)

)
a2 = −

(
(σx)i−1,j,k

2∆x(∆σk + ∆σk−1)
+

(σx)i,j,k
2∆x(∆σk + ∆σk−1)

)

a3 = −
(σ2
x + σ2

y + 1
D2 )i,j,k

0.5(∆σk + ∆σk−1)∆σk−1

a4 =
(σx)i+1,j,k

2∆x(∆σk + ∆σk−1)
+

(σx)i,j,k
2∆x(∆σk + ∆σk−1)

a5 =
(σy)i,j+1,k

2∆y(∆σk + ∆σk−1)
+

(σy)i,j,k
2∆y(∆σk + ∆σk−1)

a6 = a10 = − 1
∆y2

a7 = a9 = − 1
∆x2

a8 =
2

∆x2
+

2
∆y2

+
(σ2
x + σ2

y + 1
D2 )i,j,k

0.5(∆σk + ∆σk−1)∆σk
+

(σ2
x + σ2

y + 1
D2 )i,j,k

0.5(∆σk + ∆σk−1)∆σk−1

a11 =
(σy)i,j−1,k

2∆y(∆σk + ∆σk−1)
+

(σy)i,j,k
2∆y(∆σk + ∆σk−1)

a12 =
(σx)i−1,j,k

2∆x(∆σk + ∆σk−1)
+

(σx)i,j,k
2∆x(∆σk + ∆σk−1)

a13 = −
(σ2
x + σ2

y + 1
D2 )i,j,k

0.5(∆σk + ∆σk−1)∆σk

a14 = −
(

(σx)i+1,j,k

2∆x(∆σk + ∆σk−1)
+

(σx)i,j,k
2∆x(∆σk + ∆σk−1)

)
a15 = −

(
(σy)i,j+1,k

2∆y(∆σk + ∆σk−1)
+

(σy)i,j,k
2∆y(∆σk + ∆σk−1)

)
Rp = − ρ

∆t

(
∂u∗

∂x
+
∂u∗

∂σ

∂σ

∂x∗
+
∂v∗

∂y
+
∂v∗

∂σ

∂σ

∂y∗
+

1
D

∂w∗

∂σ

)
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where σx = ∂σ
∂x∗ and σy = ∂σ

∂y∗ .
Uniform gridding is used in the horizontal direction while gridding in the vertical direction

is generalized to be non-uniform in order to capture the bottom and surface boundary layers when
desired. The coefficient matrix is asymmetric and has a total of 15 diagonal lines. The linear system
is solved using the high performance preconditioner HYPRE software library. With p solved, the
non-hydrostatic velocities at each stage can be updated from equation (33) to (35).

3.4 Boundary conditions

Boundary conditions are required for all the physical boundaries in order to solve the governing
equations. Kinematic constraints on the surface and bottom boundaries have been discussed previ-
ously and are given by equations (3) and (4).

At the free surface, the continuity of normal and tangential stresses is enforced. With wind
effects absent, the tangential stress equals zero, resulting in

∂u

∂σ
|z=η =

∂v

∂σ
|z=η = 0 (38)

The zero pressure condition on the free surface is applied when the Poisson equation is solved.

p|z=η = 0 (39)

At the bottom, the normal velocity and the tangential stress are prescribed. The normal velocity
w is imposed through the kinematic boundary condition (4). For the inviscid case considered here,
we use free-slip boundary conditions on the bottom and impose a zero-tangential-stress condition

∂u

∂σ
|z=−h =

∂v

∂σ
|z=−h = 0 (40)

Note that a form of bottom shear stresses is also implemented in the model and is not described
here in the present application.

The Neumann boundary condition is used for dynamic pressure, which is directly obtained
from the governing equation for w.

∂p

∂σ
|z=−h = −ρDdw

dt
|z=−h (41)

where w at z = −h is given by (37). In the application to an underwater landslide, we linearize the
resulting boundary condition which gives

∂p

∂σ
|z=−h = ρD

∂2h

∂t2
(42)

At the closed boundaries or vertical walls, free-slip boundary conditions are imposed, so that
the normal velocity and the tangential stress are set to zero. The normal pressure gradient is zero.
At inflow, both free surface and velocities calculated from the analytical solutions are specified.
In the lateral direction, periodic boundary conditions can be applied. To facilitate the parallel
implementation, we used two ghost cells at each boundaries. The boundary conditions are specified
at the ghost cells.
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3.5 Parallelization

In parallelizing the computational model, we used a domain decomposition technique to subdi-
vide the problem into multiple regions and assign each subdomain to a separate processor core.
Each subdomain region contains an overlapping area of ghost cells. The Message Passing Inter-
face (MPI) with non-blocking communication is used to exchange data in the overlapping region
between neighboring processors. The parallelized HYPRE software library is used in solving the
Poisson equation.

4 Configuration of idealized solid slide

Enet and Grilli (2007) carried out a laboratory experiment of surface waves generated by a three-
dimensional under-water slide in a 3.7 m wide, 1.8 m deep and 30 m long wave tank with a plane
underwater slope with θ = 15◦ angle. The dataset of the laboratory experiment was suggested as
a benchmark test for simulating landslide-generated tsunamis during the National Tsunami Hazard
Mitigation Program workshop at Galveston, TX, in 2010. The field-scale application of submarine
landslide tsunami follows the laboratory configuration of the solid slide with a realistic bathymetry.

4.1 Laboratory case

In Enet and Grilli (2007), the solid slide geometry was modeled using truncated hyperbolic secant
functions in x and y direction, which is given by

ζ =
T

1− ε
[sech(kbx)sech(kwy)− ε] (43)

where kb = 2C/b, kw = 2C/w and C = a cosh(1/ε). The slide has length b, width w and
thickness T . The truncation parameter ε is 0.717 as chosen by Enet and Grilli. The vertical cross
section of the landslide is shown in Figure ??.

The slide volume is calculated by

Vb = bwT

(
f2 − ε
1− ε

)
with f =

2
C
atan

√
1− ε
1 + ε

(44)

The landslide is initially located at the submergence depth d. The movement of the landslide is
prescribed as

s(t) = s0 ln
(

cosh
t

t0

)
(45)

which closely approximates the landslide displacement measured in experiments. s0 and t0 are
given by

s0 =
u2
t

a0
, t0 =

ut
a0

(46)

where a0 is the landslide initial acceleration measured in the experiment.
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4.2 Field-scale case

The slide geometry for field-scale cases is expressed by the same truncated hyperbolic secant func-
tion (43) as used in Enet and Grilli (2007). The motion of the landslide can be expressed by bal-
ancing inertia, gravity, buoyancy, Coulomb friction, hydrodynamic friction and drag forces (Enet
and Grilli, 2007). Then the motion of the landslide is governed by

(Mb + ∆Mb)
d2s

dt2
= (Mb − ρwVb)(sinθ − Cncosθ)g −

1
2
ρw(CFAw + CDAb)(

ds

dt
)2 (47)

where g is gravitational acceleration, ∆Mb,Aw and Ab are slide model added mass, wetted surface
area and main cross section perpendicular to the direction of motion, respectively. CF is skin fric-
tion coefficient. CD is form drag coefficient. Cn = tanφ is the basal Coulomb friction coefficient.

With the above equation, the terminal velocity of the landslide can be obtained by (Enet and
Grilli, 2007)

ut =

√
gb sin θ

(
1− tanφ

tan θ

)
γ − 1
C
′
d

2(f2 − ε)
f − ε

(48)

where γ = ρb/ρw, the ratio of slide density to water density. C
′
d = CFAw/Ab + Cd is global drag

coefficient. Based on the geotechnical considerations, the basal Coulomb friction is negligible as
compared to inertia, gravity and hydrodynamic forces when the landslide is in motion (Enet and
Grilli, 2007). This is expressed as tanφ � tan θ in the equation. The drag coefficient C

′
d = 1.0

as suggested by Enet and Grilli.
The initial acceleration a0 can be described as

a0 = g sin θ (49)

where θ is the shelf slope angle. (49) does not take into account the added mass coefficient for a
conservative consideration. The slide is assumed to move with a constant acceleration a0 to reach
the terminal velocity ut in field case studies.

5 Direction for modeling landslide tsunami waves

5.1 Program flow chart

The code was written using Fortran 90 with c preprocessor (cpp) statements for separation of the
source code. Arrays are dynamically allocated at runtime. Precision is selected using the selected
real kind Fortran intrinsic function defined in the makefile. The default precision is single. The
present version of NHWAVE includes a number of options including

1. choice of serial or parallel code

2. landslide

15



3. Intel compiler which uses a different random function for wavemaker

and other options not for landslide tsunami cases.
The flow chart is shown in Figure 2.

5.2 Installation and compilation

NHWAVE is is distributed in a compressed file. To install the programs, first, uncompress the
package. Then use

> tar xvf *.tar

to extract files from the uncompressed package. The exacted files will be distributed in two new
directories: /src and /work.

To compile the program, go to /src and modify Makefile if needed. There are several necessary
flags in Makefile which need to be specified. These include:

-DDOUBLE PRECISION: use double precision, default is single precision.

-DPARALLEL: use parallel mode, default is serial mode.

-DLANDSLIDE: include landslide applications. This option must be used for landslide applica-
tions

-DINTEL: if INTEL compiler is used, this option can make use of FPORT for the RAND() func-
tion

CPP: path to CPP directory

FC: Fortran compiler

For parallel runs, the software library HYPRE needs to be installed. The library can be down-
loaded from

https://computation.llnl.gov/casc/hypre/software.html

After the installation of HYPRE, the library has to be specified in the Libraries section:

LIBS = -L/user/hypre/parallel/lib -lHYPRE

INCS = -I/user/hypre/parallel/include
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Figure 2: Flow chart of the main program.
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Then execute

> make

The executable named nhwave will be generated. Use make clean each time when modifying
Makefile.

Copy nhwave to /work/. Modify input.txt as needed and execute nhwave.

5.3 Input

Following are descriptions of parameters in input.txt. All parameter names are case sensitive.

TITLE: title of your case, only used for log file.

RESULT FOLDER
RESULT FOLDER = ./results/

DIMENSION
Mglob: global dimension in x direction
Nglob: global dimension in y direction
Kglob: global dimension in z (σ) direction

TIME
SIM STEPS: total time steps, for debug use, set a large number if not in debug mode
TOTAL TIME: simulation time in seconds
PLOT INTV: output interval in seconds (Note, output time is not exact because adaptive dt is

used.)
SCREEN INTV: time interval (s) of screen print.

GRID SIZE
DX: grid size(m) in x direction.
DY: grid size(m) in y direction.

VERTICAL GRID OPTION
IVGRD: 1 for uniform; 2 for exponential (not available for landslide application)

TIME STEP
DT INI : initial time step
DT MIN: minimum time step, if DT calculated based on CFL is smaller than DT MIN, the

program stops
DT MAX: maximum time step

BATHYMETRY
DEPTH TYPE: CELL CENTER for input depth is defined at cell center, CELL GRID for

input depth defined at cell corner. Note that for LANDSLIDE application, depth must be defined
at cell center.
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The read format in the code is shown below.
DO J=1,Nglob
READ(1,*)(Depth(I,J),I=1,Mglob)
ENDDO
ANA BATHY : ANA BATHY = T represents analytical bathymetry in the laboratory experi-

ments by Enet and Grilli (2007).
DEPTH FILE: depth file name.

NUMERICS
HIGH ORDER: order of spatial scheme, usually set HIGH ORDER = SECOND, meaning the

2nd order scheme
TIME ORDER: order of RK scheme, usually set TIME ORDER = SECOND, meaning the 2nd

order scheme

NON-HYDRO
NON HYDRO: T for non-hydrostatic solver, F for shallow water equation solver.

COURANT NUMBER
CFL: Courant number, usually set CFL = 0.5

TURBULENCE MODEL
VISCOUS FLOW: T for viscous flow, F for non viscous flow. For Landslide application, set F.
VISCOSITY: viscosity coefficient. It is invalid if VISCOUS FLOW = F.

WETTING AND DRYING
MinDep: minimum depth for wetting and drying.

POISSON SOLVER
ISOLVER: 1 for Modified Incomplete Cholesky CG. 2 for Incomplete Cholesky GMRES. 3

for Successive Overrelaxation (SOR) GMRES.
ITMAX: maximum number of iterations. Usually ITMAX = 1000.
TOL: accuracy for iteration. Usually TOL = 1.0 E-8.

BOUNDARY CONDITION
BC X0: west boundary condition. 1 for free-slip 2 for no-slip. 3 for influx. 4 for outflux. 5 for

periodic in x. 6 for periodic in y.
BC Xn: east boundary condition. The same as above.
BC Y0: south boundary condition. The same as above.
BC Yn: north boundary condition. The same as above.
BC Z0: top boundary condition. The same as above.
BC Zn: bottom boundary condition. The same as above.
For landslide applications, set 1 for all boundaries.

WAVEMAKER
Wavemaker is not used for landslide applications.
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SPONGE LAYER
SPONGE ON: logical parameter for sponge layer. T = .TURE., F = .FALSE.
Sponge West Width: width of sponge layer (m) at west boundary
Sponge East Width: width of sponge layer (m) at east boundary
Sponge South Width: width of sponge layer (m) at south boundary
Sponge North Width: width of sponge layer (m) at north boundary
R Sponge: decay rate in sponge layer. Its values are between 0.85 and 0.95.
A Sponge: maximum damping magnitude. The value is about 5.0.

LANDSLIDE PARAMETERS
H slide : height of slide
L slide : length of slide
W slide : width of slide
e slide : parameter e in Enet and Grilli
Angle slide : slide angle (deg) from east clockwise
X0 slide : initial center x0 of slide (in meters,
(0,0) is SW corner of computational domain)
Y0 slide : initial center y0 of slide (meters)
Slope slide : bathymetry slope at slide (deg), use constant
TermV slide : terminal velocity of slide (calculated using Enet and Grilli)

OUTPUT
Logical parameters for output, T = .TRUE., F = .FALSE.
OUT H : water depth
OUT E : surface elevation
OUT U : velocity in x direction
OUT V : velocity in y direction
OUT W : velocity in z direction
OUT P : dynamic pressure
OUT K : turbulent kinetic energy (not used for landslide application)
OUT D : turbulent dissipation rate (not used for landslide application)
OUT S : shear production (not used for landslide application)
OUT C : eddy viscosity (not used for landslide application)
OUT B : bubble void fraction (not used for landslide application)
OUT preview: output for debug (not used for landslide application)
For PROBE OUTPUT:
NSTAT: gauge number. set NSTAT=0 if there is no probe output. The probe location (x,y) is

defined in stat.txt.
PLOT INTV STAT: time interval (s) for probe output.
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5.4 Output

The output files are saved in the result directory defined by RESULT FOLDER in input.txt. For
outputs in ASCII, a file name is a combination of variable name and an output series number such
as eta 0001, eta 0002, ... The format and read/write algorithm are consistent with the input depth
file. Time series output for stations is a series of numbered files such as probe 0001, probe 0002.

6 Examples

Two examples are presented in the user’s guide. One is a laboratory case (Enet and Grilli, 2007)
which has been done in Ma et al. (2012) and is a part of benchmark tests in Tehranirad et al. (2012).
The other is a field-scale case in which the slide is set up based on a collapse of the shelf break
slope of the carbonate platform.

6.1 Enet and Grilli (2007) Laboratory Case

In Enet and Grilli (2007), the laboratory experiments were performed on a plane slope with angel
θ = 15◦, using a smooth streamlined Gaussian-Shaped body as described in (??). The solid
body was released at time t = 0 from different initial submergence depths (d) as shown in Figure
3. Available measurements include slide kinematics obtained from slide acceleration utilizing a
micro-accelerometer within the slide, time passage of the slide, and surface elevation for four
gauges. All seven laboratory cases have been simulated in Tehranirad et al. (2012) with satisfactory
model/data comparisons. Here, we demonstrate the first case (Case A) of Tehranirad et al. with the
initial slide location at d =61 mm water depth.

The model bathymetry and slide geometry follow the laboratory experiment setup. The com-
putational domain is only half of the lab domain in terms of crosswise symmetry of the experiment.
The model dimension is 500 × 90 × 3 (points in x, y, and z). dx = dy = 0.02m. The detailed
model input parameters are listed below (parameters irrelevant to the application are not listed).

! ——————–DIMENSION———————————
Mglob = 500
Nglob = 90
Kglob = 3
! ———————–TIME———————————-
SIM STEPS = 100000000
TOTAL TIME = 4.0
PLOT START = 0.02
PLOT INTV = 0.02
SCREEN INTV = 0.02
! ————————GRID———————————-
DX = 0.02
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Figure 3: Vertical Cross section of underwater landslide (Enet and Grilli, 2007)

DY = 0.02
! ———————-TIME STEP—————————–
DT INI = 0.00001
DT MIN = 0.00001
DT MAX = 0.10000
! ———————-BATHYMETRY—————————
DEPTH TYPE = CELL CENTER
ANA BATHY = T
DEPTH FILE = depth.txt
! ———————-NUMERICS—————————-
HIGH ORDER = SECOND
TIME ORDER = SECOND
! ———————-NON-HYDRO—————————
! if non-hydrostatic simulation
NON HYDRO = T
! ———————POISSON SOLVER————————-
ISOLVER = 2
ITMAX = 1000
TOL = 1.e-8
! ——————-BOUNDARY TYPE————————–
BC X0 = 1
BC Xn = 1
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BC Y0 = 1
BC Yn = 1
BC Z0 = 1
BC Zn = 1
! ——————–PROBE OUTPUT———————————
NSTAT = 4
PLOT INTV STAT = 0.01
! ——————– LANDSLIDE PARAMETERS ——————
H slide = 0.082
L slide = 0.395
W slide = 0.680
e slide = 0.717
Angle slide = 0.0
X0 slide = 0.551
Y0 slide = 0.0
Slope slide = 15.0
TermV slide = 1.70
ACC lab = 1.20
! ———————–OUTPUT——————————-
OUT H = T
OUT E = T
OUT U = T
OUT V = T
OUT W = T
OUT P = F
OUT K = F
OUT D = F
OUT S = F
OUT C = F
OUT B = F
OUT preview = F

The matlab script BM3 loader 1.m can be used for post-processing. Figure 4 shows the model/data
comparisons at four gauge locations.

6.2 Field Example

The field example is based on a collapse of the shelf break slope of the carbonate platform which
forms the continental shelf on the western side of the Florida peninsula. The Florida Escarpment
landslide was described in ten Brink et al (2009). The bathymetry and the outlined slide are shown
in Figure 5. Based on Brink et al., the slide is modeled using an area A = 647.47 km2, width w =
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Figure 4: Model/data comparisons at four gauge locations (case A, Enet and Grilli, 2007).
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Figure 5: Bathymetry and the slide moving path.
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42.938 km, length b=19.202 km and height T = 66.0 m (volume Vb = 16.2 km3). The effective
local slope angle was estimated as 5.8 degrees based on bathymetry contours. The terminal velocity
is 134.34 m/s, calculated by (48).

The model dimension is 400× 400× 3 (points in x, y, and z). dx = dy = 500m. The detailed
model input parameters are listed below (parameters irrelevant to the application are not listed).
Figure 6 shown the surface elevation distribution at T = 250 s.

! ——————–DIMENSION———————————
Mglob = 400
Nglob = 400
Kglob = 3
! ———————–TIME———————————-
SIM STEPS = 100000000
TOTAL TIME = 600.0
PLOT START = 0.0
PLOT INTV = 5.0
SCREEN INTV = 5.0
! ————————GRID———————————-
DX = 500.0
DY = 500.0
! ———————-TIME STEP—————————–
DT INI = 1.0
DT MIN = 0.00001
DT MAX = 60.0
! ———————-BATHYMETRY—————————
DEPTH TYPE = CELL CENTER
ANA BATHY = F
DEPTH FILE = depth fl.txt
! ———————-NUMERICS—————————-
HIGH ORDER = SECOND
TIME ORDER = SECOND
! ———————-NON-HYDRO—————————
! if non-hydrostatic simulation
NON HYDRO = T
! ———————POISSON SOLVER————————-
ISOLVER = 2
ITMAX = 1000
TOL = 1.e-8
! ——————-BOUNDARY TYPE————————–
BC X0 = 1
BC Xn = 1
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BC Y0 = 1
BC Yn = 1
BC Z0 = 1
BC Zn = 1
! ——————–PROBE OUTPUT———————————
NSTAT = 4
PLOT INTV STAT = 0.01
! ——————– LANDSLIDE PARAMETERS ——————
H slide = 66.0
L slide = 19202.376
W slide = 42938.0
e slide = 0.717
Angle slide =-171.02
X0 slide = 118908.0
Y0 slide = 105655.0
Slope slide = 5.8
TermV slide = 134.34
ACC lab = 1.20
! ———————–OUTPUT——————————-
OUT H = T
OUT E = T
OUT U = T
OUT V = T
OUT W = T
OUT P = F
OUT K = F
OUT D = F
OUT S = F
OUT C = F
OUT B = F
OUT preview = F
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Figure 6: Surface elevation at T = 250 s
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