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Motivations:
Improve Tsunami Early Warnlng System

Systems based on seismic measurements

Tsunami measurements are essential to
increase the reliability of the system
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Can we use precursors of tsunami?
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l, DART system

Hyd ro-acoustic waves (pressure waves in weakly compressible fluid)
e Travel at 1500 m/s
* Contain information on the tsunamigenic source
* Need of numerical modelling (3D models are computationally expensive)

!

This research aims at developing numerical models applicable on an
oceanic scale
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Hydro-acoustic wave

ith%';ﬁfadke The movement of the bottom

generates pressure waves
and surface waves (tsunamis)
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In the next slide results of computations related to this simple layout are shown
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Depth Effect
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Change in Normal Peak Frequencies
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Depth integrated equation

Linearized 3d Depth MSE-like eq. In
potential flow » integration » terms of
problem velocity
potential at z=0
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Depth-integrated equation for large-scale
modelling of low-frequency hydroacoustic waves,
2013, Journal of Fluid Mechanics, 722, R6.
DOI:_http://dx.doi.org/10.1017/jfm.2013.153




Depth integrated equation for Rigid Bottom

Rigid Bottom
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Depth-integrated equation for porous bottom
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Model valldatlon for Varying Bottom
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| Results for FSE time series at 150 km from tsunamigenic
source from 3D (blue) and 2D models (black).

1 (b,c) Results for impermeable sea bottom and (d,e) for
| coupled model.
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Large Scale Applications

365 AD Crete Haida Gwaii 2012

0 W=
e $ , ’4’

] h (m) s ..,_‘( ~ ..

-500

N

-1000

2
4

Sicily £ ,cTS -1500

- -2000
-2500
-3000
-3500

-4000

-4500

F v October 27, 2012 Queen Charlotte Island Tsunami
OAA Center for Tsunami Research




Multidisciplinary deep water observatories

* The Catania Test Site (CTS), 25 km offshore the East coast of Sicily,
water depth 2 km —> f7(1) =0.2 Az
 The Capo Passero (CP) observatory, 100 km offshore the coast, water
depth 3.5 km ——> f7(1) =0.1 A~z
* Both observatories are connected to shore through submarine
electro-optical cables and equipped with hydrophones = macsen e rﬁqgi
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Large-scale numerical modeling of hydro-acoustic waves generated by tsunamigenic earthquakes
(2014) Natural Hazards and Earth System Sciences-2014-153, DOI: 10.5194/nhessd-2-4629-2014




Long term observations in the open ocean — from seafloor to sea surface

EMSO (European Multidisciplinary Seafloor and Water Column Observatory) is a large-
scale European Research Infrastructure (RIl). It is a European network of fixed point, deep
sea observatories with the basic scientific objective of real-time, long-term monitoring of
environmental processes related to the interaction between the geosphere, biosphere, and

hydrosphere.
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Submadine Mulidscipinary Observatery MERTEH
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Tonini et al. 2011,
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A Depth-Integrated Equation For Large Scale Modeling Of Tsunami In Weakly Compressible
Fluid, International Conference of Coastal Engineering ICCE, Seoul, June. 2014. DOI:
http://dx.doi.org/10.9753/icce.v34.currents.9
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Haida Gwaii 2012 Event
Bathymetry and vertical seabed displacement
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Tsunami Wave (Haida Gwaii, 2012)
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Hydro-acoustic Waves (Haida Gwaii, 2012)
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Conclusions

We have derived a hyperbolic mild-slope equation for hydro-
acoustic waves in weakly compressible fluids for rigid and
porous bottoms (MSEWC & MSEDW(C).

The model equation has been validated by comparing with a
three-dimensional solver of the governing equations

First simulations on a real, large scale bathymetry
Suggestion on where to locate the submarine observatories
(hydrophones) for the early detection: not in shallow

waters!



Next steps: Tohoku-Oki 2011 (Japan)
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of SMF and Earthquake) (Tappin et al. 2014)
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