NTHMP Grant Semi-Annual Progress Report

NOAA Grant Award Number: NA16NWS4670034

Period of performance (start date to end date of entire grant): September 1, 2016 – August 31, 2018

Award reporting period (date range): September 1, 2017 – February 28, 2018

Primary award recipient (name, address, telephone, email): James T. Kirby

Center for Applied Coastal Research

University of Delaware Newark, DE 19716 USA

1-302-831-2438, kirby@udel.edu

Subaward recipient(s): (name, address, telephone, email): Stephan Grilli

Department of Ocean Engineering

University of Rhode Island Narragansett, RI 02882 USA 1-401-874-6636, grilli@uri.edu

Person submitting report: James T. Kirby

Date of this report: October 11, 2018

Instructions: add rows to the table below as needed to complete reporting on all tasks awarded. Fill in all cells within the table. Make sure that task titles match the current Project Narrative for this grant.

Task	Task title	Progress made during	Challenges and	% of total
#		this reporting period	successes	task
				completed
1	Task 1: Development of maritime hazard assessment for U. S. East Coast:		The major challenge is that the "safe depth" developed based on travel times and usual bathymetric conditions on the west coast will not be viable for the east coast, given wide shelf conditions. We are examining alternative recommendations based on east coast modeling results, which are all archived for the areas that have been mapped. Final determination of guidelines will require some re-simulation of areas within mapped	100%

			regions, which is going to	
			be carried out as part of	
			FY18 work where we are	
			looking at the effect of	
	Task 2: Presentation of	Discussions with Ed Fratto	revised sources.	1000/
2	MMS mapping results to East	and Rocky Lopes are	A first presentation was given by J. Kirby and S.	100%
	Coast state agencies and	continuing to identify	Grilli to the Massachu-	
	coordination with state EMA	additional appropriate local	setts Emergency	
	managers on development of	representatives to aid in	Management Agency, on	
	evacuation and warning	choosing locales for	July 12, 2017, at their HQ	
	efforts.	presentations.	in Framingham, MA.	
			Ed Fratto was present.	
			Feedback from MEMA	
			was excellent. A second	
			presentation was given on	
			March 28, 2018 in	
			Norfolk, VA. A third	
			presentation was made to the NWS office in	
			Wilmington, NC and	
			other participants by	
			Webex (due to scheduling	
			problems) on July 18,	
			2018.	
3	Task 3: Reanalysis of	SMF Currituck slide proxy	One journal paper was	3.1: 100%
	selected mapping products	in Hudson River Canyon	published in Natural	3.2: 100%
	based on improved treatment	was modeled as deforming	Hazards on deforming slide simulations and	
	of modeled physics for source description and	slides of various rheology and tsunami inundation at	validation with laboratory	
	tsunami propagation:	the coast was computed	experiment (Grilli et al,	
	tounum propugation.	and compared to earlier	2017).	
	C-1-41- 1. I 1-1: 14-	rigid slump simulations.	Presentations/posters	
	Subtask 1: Landslide events	Model parameters and	were made at AGU and	
	using a range of recently developed models for	rheology were selected	results discussed with the	
	landslide/tsunami employing	based on simulating	community.	
	deformable slides with a	laboratory experiments and	Methodology for	
	range of modeled rheologies.	field case studies.	computing deformable	
		Following the same	landslides was developed	
	Subtask 2: Reanalysis of	Following the same methodology, SMF	and used to refine East	
	frictional dissipation effects	Currituck slide proxies	Coast source descriptions	
	and impact on shoreline	were modeled in areas 1-4	as well as tsunami coastal	
	tsunami amplitudes in areas	as deforming slides, in	impact. Two types of	
	with wide continental	higher resolution grids, and	deforming slide models	
	shelves.	the coastal inundation was	(dense fluid and granular flow) were validated	
		compared to that caused by	against lab experiments	
		the same SMFs modeled as	and applied to case	
		rigid slumps (which was	studies.	
		the basis of current	Work performed on	
		NTHMP maps). The	deformable slide	
		conclusion is the slumps cause worst-case scenarios	modeling, both laboratory	
		tsunamis in all cases, but	validation and field work,	
		tounanno in an cases, but	1	

	1 11 .		
	are probably too	was an integral part of the	
	conservative in view of	NTHMP tsunami model	
	geological field evidence.	validation workshop	
	Modeling SMFs as slides with a moderate	organized by the PIs in	
	deformation rate (at the	Galveston (Jan., 2017).	
	,	This work is synergistic	
	upper range of debris flow	with Grilli and Kirby's	
	viscosity) is recommended for future work.	NSF supported work,	
	for future work.	covering ongoing slide	
	As part of this work the	model development and	
	As part of this work, the sensitivity of coastal	improvement, with	
	inundation to bottom	technology immediately	
	friction for wide shelves	transferred to NTHMP	
	was reassessed. First of all,	project.	
	unlike earlier work that	The newer work on	
	used a constant bottom	deformable SMFs and	
	friction coefficient, the	effects of bottom friction	
	latter is now computed in	on inundation caused by	
	the propagation model	those is detailed in a	
	using Manning's formula	report of the UD Center	
	(i.e., Cd is an increasing	for Applied Coastal	
	function of depth).	Research. A	
	Simulations were	corresponding journal	
	performed using two	paper was published in	
	values of the Manning <i>n</i>	Pure and Applied	
	coefficient, one 50% larger	Geophysics (Schambach	
	than the other. In the latter	et al, 2018)	
	case, coastal inundation		
	was decreased by up to		
	15%, showing the		
	importance of properly		
	selecting bottom friction as		
	a function of geological		
	data and land use.		
Task 4: Simulation and	A methodology for	We have established a	4.1: 100%
evaluation of meteo-tsunami	modeling meteo-tsunamis	collaboration with Greg	4.2: 100%
hazard and estimation of	generated by a moving	Dusek and colleagues at	
return periods of tsunami	surface pressure has been	the NWS, who have	
events from various sources.	developed and has been	analyzed the past 20 years	
	validated through	of tide gauge data for the	
Subtask 1: Simulation of	numerical modeling of the	US East Coast and	
propagation and coastal	June 13, 2013 event off the	Caribbean islands, and	
impact of meteo-tsunamis	coast of New Jersey. This	have established a	
generated on the wide EC	event is being documented	climatology of meteo-	
shelf, for events of 100-200	in a technical report that	tsunami events based on	
year return period.	describes model	this record, with	
r · · · · ·	extensions, model	extensions to longer time	
Carleta ala 2. Esti de Cont	configuration, and testing	periods based on extreme	
Subtask 2: Estimate of return	of sensitivity of results to	value estimation. We	
periods of extreme tsunamis	variations in input	have examined the larger	
from various sources used in	conditions. (Woodruff, UD	events in this data base	
inundation mapping with	MCE thesis, in	which seem to correspond	
	preparation)	most closely to squall line	

emphasis on landslide	The Monte Carlo (MC)	configurations. We have	
tsunamis	methodology that was	verified that we can	
	developed by Grilli et al.	construct pressure forcing	
	prior to this NTHMP EC	distributions from a set of	
	work and applied in 2004-	land-based weather	
	2006 to the EC and later to	stations, and then use	
	the Gulf (2015-2016) is	these pressure	
	being revisited in light of	distributions to drive	
	new field data and using a	events which produce sea	
	more accurate propagation	surface elevations	
	and coastal impact model,	measured at tide gauges.	
	in order to develop better	We thus have the	
	estimates of return periods	capability to model the	
	of landslide tsunamis.	generation of events for	
	A model developed by	subsequent detailed	
	Belotti et al. (who	inundation and maritime	
	participated in the	hazard studies. Results	
	landslide workshop) for	have been presented at	
	the fast simulation of SMF	two conferences, and a	
	tsunami generation (based	journal manuscript is in	
	on the linear Mild Slope	preparation.	
	Equation; MSE) has been		
	evaluated in collaboration	Properly estimating the	
	with Dr. Belotti, by	return period of landslide	
	simulating some of the	tsunami events on the EC,	
	benchmarks of the	besides assessing the	
	NTHMP landslide model	relevance of the proposed	
	workshop. This MSE	MC methodology,	
	model will be used as a	requires extensive field	
	component of the MC	data and dating of past	
	simulations in order to	events, which is being	
	provide a more accurate	done by USGS. Results	
	computation of SMF	from the latest field	
	propagation and coastal	surveys, however,	
	runup.	particularly in the "New	
		England Slide Complex"	
		are not yet available.	

PROBLEMS ENCOUNTERED: The organization of the NTHMP tsunami model validation workshop by the PIs in Galveston (Jan., 2017), which is a FY15 task that was delayed, has taken a lot of time and efforts from the PIs in the first half of this fiscal year; the completion of the workshop report has similarly taken a lot of the PI time during the second half of the fiscal year. This has delayed the start of some of the FY16 tasks, particularly the maritime hazard assessment. Work on this task requires the collection of simulation data in regions outside of the coverage of the high resolution inundation maps, where results (other than model boundary conditions) were not routinely stored. These regions will be covered by FY18 work, and the statistics for these areas further offshore will be examined during

this process. Additionally, we have had turnover in our graduate students, with two graduating and two new students starting on the project, who have had to be brought up to speed.

ANTICIPATED OUTCOMES: Results for the additional mapping efforts described here will be presented in the form of technical reports for each NGDC DEM or similarly sized coastal region, and in the form of draft inundation maps for coastal communities within the DEM regions. Project results are displayed at the project website http://www.udel.edu/kirby/nthmp.html and will be displayed at the NTHMP website http://www.udel.edu/kirby/nthmp/index.html as they are completed and finalized. Draft maps and reports are presently available at an unlinked site http://www.udel.edu/kirby/nthmp_protect.html prior to their review by local state agencies. Material for the site visits in Massachusetts, Virginia and North Carolina are available online at the first link above.

Input is still being developed for the Maritime Guidance document for east coast settings. Maritime hazard results are available for each mapped region, but need additional work to cover offshore conditions.

Refinement of modeling techniques for simulating landslide (SMF) tsunami generation has led to published papers and enhancements to the public domain model NHWAVE. These have played a central role in the organization and preparation of the landslide tsunami benchmark workshop that was held in January 2017 in Galveston, TX. Results of the new simulations of deforming slides off of the upper East Coast have been performed down to 120 m resolution grids and archived for future use, should a second generation of NTHMP inundation maps be developed in the future, using a different set of tsunami sources.

Refinements to the model FUNWAVE-TVD, funded by the Corps of Engineers, now allow us to carry out the refinement from regional down to high resolution inundation scales using a two-way nesting procedure. This improved modeling technique will be employed in all future mapping studies.