NTHMP Grant Semi-Annual Progress Report

NOAA Grant Award Number:	NA15NWS4670029				
Period of performance (start date to end date of entire grant): September 1, 2015 – August 31, 2017					
Award reporting period (date range):	September 1, 2016 – February 28, 2017				
Primary award recipient (name, address, telephone, email) Subaward recipient(s): (name, address, telephone, email):	Center for Applied Coastal Research University of Delaware Newark, DE 19716 USA 1-302-831-2438, kirby@udel.edu				
Subaward recipient(s). (name, address, telephone, eman).	Department of Ocean Engineering University of Rhode Island Narragansett, RI 02882 USA 1-401-874-6636, grilli@oce.uri.edu				
Person submitting report:	James T. Kirby				
Date of this report:	April 11, 2017				

Instructions: add rows to the table below as needed to complete reporting on all tasks awarded. Fill in all cells within the table. Make sure that task titles match the current Project Narrative for this grant.

Task #	Task title	Progress made during this reporting period	Challenges and successes	% of total task completed
1	Tsunamigenic Landslide Modeling Benchmark Development, Validation Workshop and Workshop Documentation	The workshop was held in Galveston in January. An overview of activities may be seen at <u>www.udel.edu/kirby/landslide/</u> The site will be maintained as a public repository for data and model results after the workshop completion.	Workshop was completed successfully, with over 30 attendees and with results for over 10 models submitted.	80%
2	Refinement and extension of potential SMF sources and source modeling techniques for tsunami activity in the North Atlantic	Work on West Bahama Banks potential landslides was published. SMF Currituck slide proxies modeled as rigid slumps north of the Carolinas were revisited and modeled as deforming slides. The Hudson River	Four journal papers published on Bahama Bank, Deforming slides in Kitimat and upper east coast, and tide-tsunami interactions. Methodology for	80%

		Canyon SMF (Area 1; Grilli et	computing deformable	
		al., 2015b) and the Currituck	landslides has been	
		slide were first remodeled	developed and used to	
		assuming they behave as a	refine East Coast	
		dense fluid layer (Fig. 1). The	source descriptions as	
		model used was validated with	well as tsunami coastal	
		lab. Experiments. As expected,	impact. Two types of	
		tsunami generation is reduced	deforming slide models	
		Model	(dense fluid and	
		parameters/rheology for the	granular flow) were	
		deforming slides were selected	validated against lab	
		based on simulating laboratory	experiments and	
		experiments and field case	applied to case studies.	
		studies.		
		A comparison solid vs	NGDC tsunami DEM's	
		deforming slide with respect to	are now available for	
		coastal hazard off of NJ,	the southern portion of	
		NY/Long Island was performed.	Florida, and delayed	
		Both maximum elevation and	inundation mapping	
		minimum drawdown are	will be completed	
		reduced when assuming a	during the remainder of	
		deforming slide rather than a	this project.	
		rigid slump.		
		For detail see, Grilli et al.	Work on deformable	
		(2015b, 2017).	slide modeling is	
		Following the same method-	strongly synergistic	
		logy, deforming SMFs of	with Grilli and Kirby	
		various rheologies were	NSF supported work,	
		simulated in Areas 2,3 and 4,	covering ongoing	
		further south using NHWAVE	model development	
		and results compared to rigid	and improvement, with	
		slump simulations. Simulations with FUNWAVE in higher	technology	
		resolution nested grids are being	immediately	
		performed to serve as a basis for	transferred to NTHMP	
		updating inundation maps in the	project. This is also	
		future.	synergistic with the	
		Additional SMFs will be	organization of the	
		simulated in the southern New	landslide model	
		England arc, East of Long	benchmarking workshop	
		Island), and in the Cape Fear	workshop.	
		area, once we receive		
		information and parameters		
		from USGS.		
3	Tsunami Hazard Assessment	Storm surge maps for US East	Contacts are being	60%
	for Un-modeled East Coast	Coast stated being collected	made with individual	0070
	Sites	from constituents.	state agencies to gather	
		Analysis of correspondence	information on	
		between storm surge inundation	category 1-5 storm	
		lines and tsunami inundation	surge inundation maps	
		lines for mapped areas	and evacuation	
		underway.	procedures to assist in	
		Work on effect of shelf	interpreting tsunami	
		geometry in controlling location	height estimates based	
L		geomeny in controlling location	neight estimates based	

	of high tsunami hazard is being completed.	on the ray tracing estimates.	
--	--	-------------------------------	--

During this reporting period, was any budget reprogramming required for this award? If so...

- a. Date reprogramming approved by NWS Tsunami Program Office:
- b. Date approved by NOAA Grants Office:
- c. Describe where funds were moved and why:

General comments from recipient about progress during this reporting period:

PROBLEMS ENCOUNTERED: DEM's for southern Florida were recently obtained. Inundation mapping for the Florida east coast is underway. Work is slowed somewhat by a change-over in student assigned to the project, with Babak Tehranirad graduating in December 2016.

ANTICIPATED OUTCOMES: Results for the additional mapping efforts described here will be presented in the form of technical reports for each NGDC DEM or similarly sized coastal region, and in the form of draft inundation maps for coastal communities within the DEM regions. Project results are displayed at the project website <u>http://www.udel.edu/kirby/nthmp.html</u> and will be displayed at the NTHMP website http://ws.weather.gov/nthmp/index.html as they are finalized. Draft maps and reports are presently available at an unlinked site <u>http://www.udel.edu/kirby/nthmp_protect.html</u> prior to their review by local state agencies.

Refinement of modeling techniques for simulating landslide (SMF) tsunami generation has led to published papers, and more will be prepared, and enhancements to the public domain model NHWAVE. These have played a central role in the organization and preparation of the landslide tsunami benchmark workshop in January 2017.

PUBLICATIONS AND PRESENTATIONS REFERENCING FY14-15 WORK

- Grilli, S.T., Grilli, A.R., Tehranirad, B. and J.T. Kirby 2015a, "Modeling tsunami sources and their propagation in the Atlantic Ocean for coastal tsunami hazard assessment and inundation mapping along the US East Coast". In *Proc. 2015 COPRI Solutions to Coastal Disasters Conf.* (Boston, USA. September 9-11, 2015), ASCE, 12 pps., <u>http://personal.egr.uri.edu/grilli/COPRI15_sgrilli.pdf</u>.
- Grilli S.T., O'Reilly C., Harris J.C., Tajalli-Bakhsh T., Tehranirad B., Banihashemi S., Kirby J.T., Baxter C.D.P., Eggeling T., Ma G. and F. Shi, 2015b, "Modeling of SMF tsunami hazard along the upper US East Coast: Detailed impact around Ocean City, MD". *Natural Hazards*, 76(2), 705-746, doi: 10.1007/s11069-014-1522-8.
- Grilli, S.T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G., Kirby, J. T. and Shi, F., 2017, Modeling coastal tsunami hazard from submarine mass failures: effect of slide rheology, experimental

validation, and case studies off the US East coast. *Natural Hazards*, **86**, 353-391, doi: 10.1007/s11069-016-2692-3

- Kirby, J. T., Shi, F., Nicolsky, D. and Misra, S., 2016. "The 27 April 1975 Kitimat, British Columbia submarine landslide tsunami: A comparison of modeling approaches," *Landslides*, 13, 1421-143, doi:10.1007/s10346-016-0682-x₂
- Lynett, P. J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., Bai, Y., Bricker, J. D., Castro, M. J., Cheung, K. F., David, C. G., Dogan, G. G., Escalante, C., Gonzalez, F. I., Gonzalez-Vida, J. M., Grilli, S. T., Heitmann, T. W., Horrillo, J., Kanoglu, U., Kian, R., Kirby, J. T., Li, W., Macias, J., Nicolsky, D. J., Ortega, S., Pampell-Maniso, A., Park, Y. S., Roeber, V., Sharghivand, N., Shelby, M., Shi, F., Tehranirad, B., Tolkova, E., Thio, H. K., VelioÄŸlu, D., Yalciner, A. C., Yamazaki, Y., Zaytsev, A., Zhang, Y. J., 2017, "Inter-model analysis of tsunami-induced coastal currents", *Ocean Modelling*, in press.
- Ma, G., Kirby, J.T., Hsu, T.J. and Shi, F., 2015, "A two-layer granular landslide model for tsunami wave generation: theory and computation", *Ocean Modelling*, **93**, 40-55, doi:10.1016/j.ocemod.2015.07.012.
- Schnyder, J. S. D., Eberli, G. P., Kirby, J. T., Shi, F., Tehranirad, B., Mulder, T., Ducassou, E., Hebbeln, D. and Wintersteller, P., 2016, "Tsunamis caused by submarine slope failures along Western Great Bahama Bank", *Scientific Reports* (Nature Publishing Group) 6, 35925, doi:10.1038/srep35925.
- Shelby, M., Grilli, S. T. and Grilli, A. R., 2015, "Dynamic tide-tsunami interaction in the Hudson River estuary", <u>Research Report No. CACR-15-10</u>, Center for Applied Coastal Research, Dept. of Civil and Environmental Engineering, University of Delaware.
- Shelby, M., Grilli, S. T. and Grilli, A. R., 2016a, "Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-tide simulations." *Pure and Applied Geophysics*, 39 pps., doi:10.1007/s00024-016-1315-y (published online 5/24/16)
- Shelby, M., Grilli, S. T., Ma, G., Kirby, J. T. and Shi, F., 2016b, "Sensitivity of coastal tsunami hazard to the modeling of tsunami generation by Submarine Mass Failures of various rheology". Presented at the 14th Estuarine and Coastal Modeling Conference, Kingston RI, June 15-17.
- Tajalli Bakhsh, T. S., Grilli, S. T. and Grilli, A. R., 2015, "Dynamic tidal effects on tsunami coastal hazard in large estuaries: Case of the Chesapeake Bay/James River, USA", <u>Research Report No. CACR-15-09</u>, Center for Applied Coastal Research, Dept. of Civil and Environmental Engineering, University of Delaware.
- Tehranirad B., Harris J.C., Grilli A.R., Grilli S.T., Abadie S., Kirby J.T. and F. Shi 2015a. Far-field tsunami hazard in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. *Pure and Applied Geophysics*, **172**(12), 3,589-3,616 doi:10.1007/s00024-015-1135-5.
- Tehranirad, B., 2015, "Effects of bathymetry on tsunami propagation on the US East Coast: Application of ray tracing to tsunamis", presented at *Young Coastal Scientists and Engineers Conference North America*, Newark, July.
- Tehranirad, B., Kirby, J. T., Shi, F., Grilli, S. T. and Grilli, A. R., 2015, "Is continental shelf bathymetry the main control for tsunami inundation patterns on the US East Coast?", presented at the *Geological Society of America Meeting*, Baltimore, October.
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015a, "Tsunami inundation mapping for Atlantic City, NJ NGDC DEM", <u>Research Report No. CACR-15-01</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015b, "Tsunami inundation mapping for the northern half of the State of New Jersey", <u>Research Report No. CACR-15-02</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)

- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015c, "Tsunami inundation mapping for New York City", <u>Research Report No. CACR-15-03</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015d, "Tsunami inundation mapping for Montauk, NY NGDC DEM", <u>Research Report No. CACR-15-04</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015e, "Tsunami inundation mapping for Nantucket, MA NGDC DEM", <u>Research Report No. CACR-15-05</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015f, "Tsunami Inundation Mapping for Virginia Beach, VA NGDC DEM", <u>Research Report No. CACR-15-11</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015g, "Tsunami Inundation Mapping for Cape Hatteras, NC NGDC DEM", <u>Research Report No. CACR-15-12</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015h, "Tsunami Inundation Mapping for Myrtle Beach, SC NGDC DEM", <u>Research Report No. CACR-15-13</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Tehranirad, B., Kirby, J. T., Callahan, J. A. and Shi, F., 2015i, "Tsunami Inundation Mapping for Savannah, GA NGDC DEM", <u>Research Report No. CACR-15-14</u>, Center for Applied Coastal Research, Department of Civil and Environmental Engineering, University of Delaware. (DRAFT)
- Viroulet S., A. Sauret and O. Kimmoun, 2014. Tsunami generated by a granular collapse down a rough inclined plane. *Europhysics Lett.*, **105**(34004) doi:10.1209/0295-5075/105/34004.