

Small scales experiments on subaerial and submarine landslides

Olivier Kimmoun¹, Sylvain Viroulet² & Guillaume Dupont¹

(1) -Ecole Centrale Marseille / IRPHE – France (2) - Institut de Physique du Globe – Paris - France

> NTHMP Landslide Tsunami Model Benchmarking Workshop January 9 - 11, 2017 Galveston, Texas

Small scales experiments on subaerial landslides

Introduction

First experience in landslide problem : the sliding of a solid body.

- 1. Very simple case the solid is not submerged
- 2. 2D case
- 3. The motion of the solid is well captured

Hayle, England 23/09/2011 (video de R. Hocking)

Experimental Setup

Repetitivity

Glass beads 4 mm, 2kg, slope 45°

Repetitivity

Glass beads 10 mm, 2kg, slope 45°

Repetitivity

Aqua sand, 2kg, slope 45°

Influence of the material

Comparison between 2 different materials

Glass beads 4 mm, 2kg, slope 50°

Aqua sand , 2kg, slope 50°

GB 4 mm vs Aqua sand

t = 0,1 s

t = 0,3 s

t = 0,4 s

t = 0,5 s

t = 0,7 s

t = 0,9 s

Influence of the weight

Glass beads 4 mm, H_{eau} = 15 cm, pente 45°

Influence of the weight

Glass beads 1,5 mm, H_{eau} = 15 cm, pente 45°

Influence of the weight

Glass beads 1,5, 4 et 10 mm, H_{eau} = 15 cm, slope 45°

Influence of the slope

35°

45°

60°

Influence of the plate slope

H_{eau} = 15 cm, 2 kg

Measure of the angle at rest θ_{stop} in the case of dry beads

Glass Beads 1,5 mm

Influence of the plate slope

H_{eau} = 15 cm, 2 kg

Evolution of the potential energy

Evolution of the potential energy

M = 2 kg, H = 15 cm

PIV measurements

For the PIV computation, the water and granular material surface are measured every 1/200s

Next : submarine

Small scales experiments on submarine landslides

Experimental setup

Experimental setup

The solution given by Sylvain: insole NOEME for shoes

Repetitivity for 2 following tests

Repetitivity for 3 tests – one day interval

Influence of the water level

Influence of the water level

Influence of the water level

Same water level above the beads

Same water depth

Influence of the support

To mimic a real situation, beads of the same diameter as the test are glued on the plate

Influence of the support

Limitations

Perspectives

New device with a thin plate in aluminum with seals that allow to use small beads or other thin material.

Vue de face Echelle : 1:2

+

THANK YOU FOR YOUR ATTENTION