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Abstract

A Navier-Stokes VOF model (THETIS) is tested against three benchmarks involving 3D block
sliding and 2D granular submarine and subaerial slides. Simulations are compared with experiments
giving slide motions as well as generated wave train features. Newtonian as well as µ(I) rheology
were used to simulate the slide motion. The results obtained in this exercise are detailed throughout
the paper and more synthetically in the conclusions.

1 Model background
THETIS is a numerical simulation tool developed by University of Bordeaux. It is a versatile code to
solve different problems: fluid flows, heat transfers, scalar transports or porous mediums. The potential
of the code in the field of fluid flow is relatively large, it allows to solve incompressible or slightly
compressible problems (laminar flow or turbulent flow), as well as multi-phase problems. It has also
been validated and further developed in numerous studies related to water waves (Abadie et al., 1998;
Lubin et al., 2006; Abadie et al., 2010; Mokrani and Abadie, 2016; Ducassou et al., 2017).

2 Model equations
In this benchmark study, the system of equations, also called one-fluid model, is composed of the in-
compressible Navier-Stokes equations (NS) and an additional equation for the interface evolution :

∇.u = 0

ρ
(
∂u
∂t + (u.∇)u

)
=

ρg − ∇p + ∇.
[
η(∇u + ∇tu)

] (1)

∂χ

∂t
+ u.∇χ = 0 (2)

In which, ρ and η, respectively density and viscosity of the fluid, are spatially varying variables and
χ(x, y, t) is a phase characteristic function equal to 1 in water and 0 in air.

3 Available rheology models
Three different rheology models may be used in THETIS:

1. the classical Newtonian fluid

2. the Bingham fluid

3. the µ(I)-rheology

As a first approximation, landslide may be considered as a Newtonian fluid for which the viscosity
value has to be tuned with respect to experimental data.
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To be closer to the discontinuous media behavior, non-Newtonian fluid can be used. The formulation
programmed here is the one used by Staron et al. (2013) in the code Gerris. The dynamic viscosity η is
implemented as follows:

ηBingham = min
(
τy

D2
; ηmax

)
(3)

The µ(I)-rheology has also been implemented in Thetis. The latter has the form described by Lagrée
et al. (2011) and implemented in Gerris, another Navier-Stokes code. The dynamic viscosity η, the
friction coefficient µ(I) and the inertial coefficient I are defined as follows:

η = max
(
µ(I)
√

2D2
p, 0

)
(4)

µ(I) = µs +
∆µ

I0/I + 1
(5)

I =
d
√

2D2√
|p|/ρ

(6)

with D2 the second invariant of the strain rate tensor, p the pressure, µs, ∆µ and I0 three material-
dependent coefficients, d the diameter of the grain and ρ the density of the grain.

This rheology has been initially developed for dry granular flow. In the case of granular flow in a
viscous fluid, Cassar et al. (2005) have distinguished different regimes and adapted the expression of
the inertial coefficient depending on the regime. This latter law is also implemented in THETIS.

4 Numerical method

4.1 Velocity and pressure solving
The NS equations are discretized on a fixed Cartesian grid using a finite volume formulation. Following
(Patankar, 1990), the finite volumes formulation is solved using staggered mesh known as the Marker
And Cells (MAC) method from (Harlow and Welch, 1965). For this reason, in THETIS the mesh is
composed of two grids: the pressure grid and the velocity grid. The coupling between velocity and
pressure can be solved using either the augmented Lagrangian method or the projection method. The
first method is a very robust algorithm lying on an iterative procedure which may in some case be quite
costly. The latter is an accurate and fast procedure to obtain divergence free velocity field but may fail
in particular boundary condition cases.

4.1.1 Augmented Lagrangian method

This is a minimization method under the constraint of the continuity equation, where the pressure, which
is decoupled from the velocity, appears as a Lagrange multiplier. The incompressibility constraint is
directly introduced into the equation of motion as a penalty term ru∇(∇.v), which couples the velocity
components. At each time step n and at iteration k, the system is written as:

ρn(
vn,k+1

4tn
+ (vn,k∇)vn,k+1) − ρn b − ∇pn,k

− ∇[ηn(∇vn,k+1 + ∇tvn,k+1)] − ru∇(∇.vn,k+1) = ρn vn

4tn
(7)

pn,k+1 = pn,k − rp∇ · vn,k+1, (8)

where ru and rp are convergence parameters. The advantage of such a formulation is the explicit calcu-
lation of the pressure. It uses only the pressure in the previous temporal iteration and the divergence of
velocity.
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4.1.2 Projection method

This method comprises two steps:

1. from the pair (un, pn), a velocity field ũ is calculated using the expression :

ũ − un =
∆tn

ρn (ρng − ∇pn + ∇(ηn(∇un + ∇tun)) − ∇ · (ρnun ⊗ un))) (9)

2. The velocity u is calculated by projection of ũ on a field with no divergence

un+1 = ũ −
∆tn

ρn ∇(pn+1 − pn) (10)

This second step (projection step) involves determining the pressure pn+1. We use the Poisson
equation:

∇(
∆tn

ρn ∇(pn+1 − pn)) = ∇ũ (11)

This method is relatively simple to program and easy to solve because it is not an iterative method
(contrary to the previous method). However, the boundary conditions on the pressure must be imposed
to allow the resolution of (11).

4.2 Interface tracking
Equation (2) is solved by introducing a color function F defined as the average of the phase characteristic
function χ(x, y, z) over the mesh cell. With this definition, F indicates the volume fraction occupied by
water in a mesh cell and the interface position is defined as the iso-line F = 0.5.

At the end of each time step, the local cell water volume fraction is used to recalculate local values
of density and viscosity necessary to solve the NS equations. For cells containing a fraction of water and
air, equivalent density and viscosity are calculated by interpolations (linear for density and harmonic for
viscosity) based on the water fraction. Different VOF methods are implemented in the model THETIS
to solve equation (2).

4.3 VOF-TVD method
This first method consists in solving equation (2) directly using a suitable numerical scheme. Writing
the convective term of equation (2) in the conservative form and using a first order discretization in time,
the discretization in space over the volume control (i, j) reads :

Fn+1
i, j − Fn

i, j

∆tn
∆X∆Y + ΦX∆Y + ΦY ∆X = 0 (12)

with :
ΦX = Fn+1

i+ 1
2 , j

un+1
i+1, j − Fn+1

i− 1
2 , j

un+1
i, j (13)

ΦY = Fn+1
i, j+ 1

2
un+1

i, j+1 − Fn+1
i, j− 1

2
un+1

i, j (14)

∆X (respectively ∆Y ) represents the horizontal space step (respectively vertical). At this stage, a
good approximation of the fluxes ΦX and ΦY is required to obtain an accurate representation of the
interface. A TVD scheme typically has two main properties : in the parts of the domain where the
solutions are regular, it is equivalent to a high-order scheme that reduces diffusion, and in the parts
where there are strong discontinuities it is a first order scheme that prevents oscillations.
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4.4 VOF-PLIC method
The Piecewise Linear Interface Calculation (PLIC) method is also employed (Youngs, 1982). One of the
great advantage of this Eulerian/Lagrangian method is to keep the discontinuous nature of the interface
between water and air thanks to the Lagrangian character of the transport method. The five successive
steps of the PLIC method are the followings:

• Mixed cells (i.e. 0 < F < 1) identification.

• In each cell containing air and water, calculation of the interface normal direction using a finite
difference approximation on nine points.

• Piecewise linear interface reconstruction, knowing the normal direction in each cell and the
volume fraction.

• Lagrangian advection of the interface segments using a linear interpolation of velocities calcu-
lated on the staggered mesh.

• Calculation of the new volume fraction distribution.

To ensure the conservative or stability nature of the PLIC method, a sufficient condition is that the
segments are not advected over more than half of a cell size during a time step (Abadie et al., 1998).

4.5 SVOF-PLIC method
The SVOF-PLIC method, used in complement of PLIC, consists in slightly smoothing the volume frac-
tion function by introducing a controlled diffusion zone around the interface. This is performed by using
an analogy with the thermal diffusion whose governing equation equation reads:

∂T
∂t
− ∇.(a∇T ) = 0 (15)

a > 0 being the thermal diffusivity coefficient. The smoothed volume fraction function FS is built
from equation (15) discretized in time :

−∇.a∇FS ,n+1 + FS ,n+1 = FS ,n (16)

In which the equivalent diffusion coefficient a is related to the interface thickness Li and the local
dimension of the considered cell ∆X by :

a = Li∆X2 (17)

Equation (17) is discretized in space using the finite volume method and a centered scheme. The
final smoothed function F s is obtained iteratively by applying the following algorithm :

L1 = F (18)

For k = 1...N − 1, solve (19)

−∇.τ∗d∇FS ,k+1 + FS ,k+1 = Lk (20)

Lk+1 = FS ,k+1 (21)

with τ∗d defined by τ∗d = Li∆h2/N. After resolution of (18) - (21), the condition FS = FS ,N is verified.
The function FS includes a narrow diffusion zone that represents the interface more regularly. By

this way, the discontinuities which may appear with the PLIC algorithm are smeared and the interface
is more stable while being a little less accurate. The model can then describe high interface distor-
tions. Practically, the parameters and the number of internal iterations are adjusted to limit the interface
fractioning while keeping an accurate description of the interface.
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Figure 1: Sketch of Benchmark 3

5 Benchmark problem comparison

5.1 Benchmark 3: 3D - Subaerial and Submarine solid slide with rectangular
plan and vertical sides (Liu et al., 2005)

In benchmark 3 (Figure 1), augmented Lagrangian and PLIC VOF methods are used. Instead of pre-
scribing slide motion (like in (Liu et al., 2005) for instance), we solved for the full coupling between
slide and water and hence calculated slide motion as part of the solution, where the rigid wedge is mod-
eled as a Newtonian fluid of large viscosity (105Pa.s). Here, we present in detail the first benchmark
case in which the slide initial submergence is ∆ = −0.1m and slide density ratio is 2.14; x′ is in the slope
direction, z′ is perpendicular to the slope plane (gravity being in this case inclined by 26.56◦ with respect
to z′), y = y′ is in the longshore direction. Due to symmetry with respect to the middle vertical plane, the
computational domain only represents half the experimental flume (including run-up gage 1 and wave
gage 1). Two numerical grids were tested to assess discretization effects on slide motion and, subse-
quently, on free surface deformation. Both grids were irregularly distributed over x′ and z′ to account
for the need for finer resolution close to the generation zone. The first grid (mesh 1, with 62x76x24
cells) is comparable to the mesh used in (Liu et al., 2005). The finest grid cell size is ∆x′ = 0.039 m,
∆z′ = 0.0196m, ∆y′ being constant and equal to 0.077 m. For the second mesh used (mesh 2, with
170x100x120 cells), the finest grid cell size is ∆x′ = ∆z′ = 0.015 m, ∆y′ was constant and also equal
to 0.015 m. The nondimensional finest grid sizes are respectively ∆x′/L = ∆z′/L = 3.8% for mesh 1
and 1.4% for mesh 2 (with L = 1.017 m). High resolution 3D computations are very computationally
intensive and therefore simulations were run using the parallel version of our model.

Figure 2 shows snapshots of water/air and slide/water interfaces computed at four different times
steps for the finest mesh, using the NS-PLIC model. In the last image at t = 3.5 s, the slide has stopped
on the horizontal bottom of the experimental flume, which is represented in simulations but not visible
on Fig. 3. In this snapshot sequence, we observe the generation of a wave train, and its subsequent
propagation and reflection from the vertical sidewalls of the flume. Maximum run-up, which occurs at
the plan of symmetry on the flume axis, is seen to also propagate towards and reflect of the sidewalls.

Figure 3 shows the simulated slide of mass motion as a function of time, as compared to experimental
data. The measured slide motion is well reproduced in the finer mesh grid, with a RMS deviation of 0.16
m. In the coarser grid, the slide is much slower than in experiments (larger RMS deviation of 0.80 m).
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Figure 2: Snapshots of slide/water and water/air interfaces at different times for grid 2 with
170x100x120 cells. Slide initial submergence is ∆ = −0.1 m, slide density is 2.14. (a) t=0.7s, (b)
t=1.4s, (c) t=2.1s, (d) t=3.5s.

Figure 3: Case of Figure 2. Time evolution of slide center of mass . Solid lines : numerical results
with (a) 62x76x24 cells and (b) 170x100x120 cells; (?): experimental data. Initial slide submergence
is ∆ = −0.1m, slide density is 2.14.
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A computation performed using an intermediate grid size (not presented here) yielded a slide motion
curve in between the two presented curves, indicating a consistent of the model. Other computations for
different initial submergence values also matched experimental data well, provided that a fine enough
grid (i.e., with ∆x/L ≈ 1%) is used. A closer inspection of our results indicates that, resolving the
coupling between slide motion and water flow in the numerical model is achievable with good accuracy,
but requires an overall grid about 20 times larger than when slide motion is a priori specified, as in Liu
et al. (2005).

Figure 4: Case of Fig. 3. Comparison between numerical results (solid lines) and experimental data (?)
for the time histories of free surface elevations at wave gage 1 (Fig. 5 top) and wave gage 2 (Fig 18b).
Initial slide submergence is ∆ = −0.1m, slide density is 2.14. (a) 62x76x24 cells, (b) 170x100x120
cells, and 260x200x120 : red curve Fig. 5 top.

Figure 4 compares surface elevations simulated at wave gages 1 and 2, both in the generation area,
to experimental data. At gage 1, both the first elevation wave and through are well modeled in the finer
grid 2 (respectively 17% and 5% of relative errors), whereas the second wave is much higher (162%)
than measured. Our last attempt using a finer grid step (mesh : 260x200x120) helps reducing the error
from 162% to 114% for this second wave. Both wave phase and hence celerity, however, are correctly
predicted in the finer grid 2, whereas the second wave is too slow in the coarser grid 1. Note that wave
heights are also under-predicted in the latter grid, which is consistent with a slower slide. At gage 2,
the lateral spreading of the wave is also well simulated using grid 2; the simulated wave elevations are
close to the experimental results (17%, 10%, 30% respectively for wave crest 1, through 1, wave crest
2), even though waves seem to be a bit slower. In grid 1 again, the slower slide generates both smaller
and slower waves as compared to experimental data.

Figure 5: Case of Fig. 3. Comparison between numerical results (solid lines) and experimental data
(?) for the time histories of run-up at (left) gage 2 and (right) gage 3 (Figure 1). Initial submergence is
∆ = −0.1m, slide density is 2.14. (a) 62x76x24 cells, (b) 170x100x120 cells

Figure 5, similarly, compares run-up simulated at run-up gages 2 and 3 (see Figure 1) to experimental
data. At gage 2, in the finer grid, numerical results closely match experiments, except during the first
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run-up phase where the model overestimates the recorded run-up value and generates a quicker run-up
motion. In the coarser grid, run-down and run-up values are both overestimated. A similar behavior
is observed at gage 3. Note that we used here a free slip boundary condition on the bottom, which
may explain the overestimation of the run-up results. The model accuracy may be improved by using a
no-slip condition.

Figure 6: Case 2 : ∆ = −0.025m. left : Time evolution of slide center of mass. Solid line : numerical
results with 170x100x120 cells ; (?): experimental data, right : time histories of free surface elevations
at wave gage 2

Finally, we also simulated the second benchmark case featuring the same rigid body, but with a
lower submergence ∆ = −0.25m and a higher slide density ratio of 2.79. In the finer mesh, whose
corresponding results are only shown here, slide motion is accurately predicted (Figure 6 left panel).
Also a comparison of free surface elevation at wave gage 2, presented on Figure 6 right panel, shows
the accuracy that may be expected by using THETIS in this kind of problems.

5.2 Benchmark 4: 2D - Deformable submarine slide (Grilli et al., 2017)
The experiment in the benchmark 4 consists in releasing a volume of glass beads underwater on a slope.
The flume sketch is presented on Figure 7. The numerical domain has a length of 6.27 m and 0.33 m
of water height. The resolution in the zone of interest is ∆x = 0.00285 m and ∆y = 0.00125 m. The
flow is solved using the projection method and the TVD VOF scheme. The slide is modeled has a
Newtonian fluid, first with parameters defined in Grilli et al., i.e. a viscosity of 0.01 Pa.s and a density
of 1951 kg.m−3. A few other viscosity values were also tested to evaluate the sensitivity of the model.
No simulation with the µ(I)-rheology are presented as the flow initiation has been proved to be difficult
with the usual parameters.

Results of the slide shape and wave heights are presented in Figures 8 and 9.
The slide shape evolution as well as the slide overall velocity is shown to strongly depend on the

viscosity value. For the quite weak viscosity used in Grilli et al. (2017), the slide head exhibits a bulge
head due to the presence of a strong counter-clockwise vortex generated at the water/slide interface.
This vortex is weaker and weaker when increasing the viscosity value. The experimental snapshots
also shows the occurrence of this vortex more or less consistent with the results corresponding to the
two stronger viscosities tested in our simulations. Nevertheless, in all the cases tested, the slide motion
appears to be too slow compared to the experiment. The best approximation would be with the lowest
viscosity but due to the aforementioned large vortex and the subsequent additional drag induced, velocity
can finally not reach higher values. We have tried several strategies to produce faster slides such as
vanishing the basal friction, etc. but they all turned out to fail. Our explanation is that the slide is
simulated as an equivalent phase instead of a granular water mixed medium. The latter allows water to
flow within (as a cage would for instance slide in water) whereas the former do not. This differential
flow may reduce the global slide drag and explain the final velocity reached in the experiment.

Figure 9 shows that with a slide viscosity of 0.01 Pa.s, the first wave is higher than the experimental
value and the wave train is not correctly reproduced on the first gauge. By reducing the viscosity, the
generated waves are lower. We observe that with a viscosity of 1 Pa.s, the first wave is close to the
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experimental results as well as the first waves in the train wave. Overall the results on wave height
appears satisfactory for slide motions shown to be slower than in the experiment. This calls for further
investigations.

Figure 7: Sketch of Benchmark 4

Figure 8: Comparison of the slide during the experiment (first row) and simulations for different
values of viscosity (η = 0.01, 1, 10 Pa.s for second, third and fourth row respectively) at times
t = 0.02, 0.17, 0.32, 0.47 s

5.3 Benchmark 5: 2D - Deformable subaerial slide (Viroulet et al., 2014)
In benchmark 5, a volume of glass beads is released above water unlike the benchmark 4. The 2D
experiment was carried out in a flume of dimensions 2.20 m long, 0.4 m high and 0.2 m wide. The beads
are placed on a 45◦ slope as in the Figure 10. Glass beads have a density of 2500 kg.m−3 and a diameter
of 1.5 mm in the first case, 10 mm in the second. Water depth is 14.8 cm and 15 cm for the first and second
case respectively. 4 gauges monitor the surface elevation at x1 = 0.45 m, x2 = 0.75 m, x3 = 1.05 m and
x4 = 1.35 m.

Numerically, the slide is modeled as a fluid with a Newtonian rheology. Simulations with a µ(I)-
rheology were also performed. The space and time steps are ∆x = 5 mm, ∆y = 2 mm and ∆t =

10−3 s.The flow is solved thanks to the projection algorithm and a VOF-TVD interface tracking is per-
formed.
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Figure 9: Elevation of the free surface, comparison between the experiment and the simulations with
different viscosity values

Figure 10: Sketch of Benchmark 5

For the first case, simulations with different values of viscosity were carried out. With low viscosity
values, the slide is faster and a vortex is observed similarly to the experiment (Figure 11). The best
results in terms of slide motion were obtained with a viscosity of 2 Pa.s, even though in this case the
slide is a bit slower than in the experiment.

However, if we now compare the height of the first wave at the four gauges (Figure 12), it appears to
be almost twice as high as the experimental results for this viscosity. At lower viscosity, the free surface
elevation seem to be discontinuous because it is more perturbed due to wave breaking and harder to
capture at the gauges. The first wave and the wave train that follows is well reproduced for a viscosity of
10 Pa.s, even if the slide at this viscosity is shown to be slower that in the experiment as in the previous
benchmark. The same overall behaviour is observed in the second case with a glass beads diameter of
10 mm (Figure 13), but a higher value of viscosity has to be set in order to fit the experimental wave
heights.

The density of the slide which has to be taken into account in the simulation may be questioned.
Indeed, at t = 0 s, the slide being at rest above water, with a random close pack, the maximum vol-
ume fraction of beads is about 60%, which gives a density of 1500 kg.m−3 for the slide. Yet, during
most of the experiment, the slide is into water, the maximum density for a random close pack is then
1900 kg.m−3. However, if we observe the slide, the beads do not form a close pack and its volume ex-
pands (almost a 50% expansion !), the latter density is maximal. Simulation iwere run with this density
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Figure 11: Contour of the slide during the experiment (blue line) and the simulations for different
values of slide viscosity, η = 1 Pa.s: green points, η = 2 Pa.s: cyan points, η = 5 Pa.s: yellow points
and η = 10 Pa.s: red points; 0.1 s between two figures

to show its influence on the wave heights (Figure 14). The change of density has little influence on the
wave heights. First and second waves are only slightly higher with the 1900 kg.m−3 density.

The first benchmark case was also simulated with the µ(I)-rheology using parameters of the litera-
ture: µs = 0.43, ∆µ = 0.39, I0 = 0.27. Figure 15 shows the evolution of the viscosity inside the slide
during the simulation. After entering water, the viscosity at the tip of the slide gets higher and the slide
quickly stops. It seems that the water slows down the slide too much and as deformation decreases in the
µ(I) formulation, the viscosity increases and this behavior ends up stopping the slide. However, waves
are generated very quickly in this experiment and we can see in Figure 17 that the wave height is quite
close to the experimental results. Comparing to the computation with the Newtonian fluid, during the
first 0.5 s where the waves are generated, the deformation of the slide is very similar to the Newtonian
slide (Figure 16).

6 Conclusions
In this paper, Navier-Stokes VOF simulations (THETIS) were run on benchmarks 3,4 5, involving re-
spectively, 3D solid block slide, submarine and subaerial granular slides. For benchmark 3, the results
show that if the model is able to simulate the slide motion accurately, yet the coupling with the free sur-
face is hard to capture in 3D. In benchmark 4, a Newtonian slide was simulated. The sensitivity on slide
viscosity appears to be relatively weak for this case regarding the wave train. Whereas the influence on
the slide shape is important. Tuning slide viscosity at best allows to reproduce the main features of the
wave train while the slide is always too slow. Benchmark 5 is more complex with penetration in water
and density and volume variations. The Newtonian model is shown to perform again pretty well in terms
of wave heights but generated slides are still too slow. In this case, the sensitivity on slide viscosity is
high in slide shape as well as in wave heights. Finally, the µ(I) rheology was able to produce the right
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Figure 12: Elevation of the free surface at the gauges for the experiment (blue discontinuous line) and
the simulations for different values of viscosity, η = 1 Pa.s: green line, η = 2 Pa.s: cyan line, η = 5 Pa.s:
yellow line and η = 10 Pa.s: red line; 0.1 s between two figures

wave train without any a priori calibration.
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Figure 14: Elevation of the free surface at the gauges for the experiment (blue discontinuous line) and
the simulations for two values of density, ρ = 1900 kg.m−3: green line and ρ = 1500 kg.m−3: red line
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Figure 15: Evolution of the viscosity inside the slide, 0.1 s between two figures
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Figure 16: Contour of the slide during the experiment (blue line) and the simulations for a Newtonian
fluid with η = 10 Pa.s: green points and the µ(I)-rheology: red points; 0.1 s between two figures
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Figure 17: Elevation of the free surface at the gauges for the experiment (blue discontinuous line) and
the simulations for a Newtonian fluid with η = 10 Pa.s: green points and the µ(I)-rheology: red points
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