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This paper describes NHWAVE, a shock-capturing non-hydrostatic model for simulating wave refraction,
diffraction, shoaling, breaking and landslide-generated tsunami in finite water depth. The governing equa-
tions are the incompressible Navier–Stokes equations in conservative form, written in surface and terrain-
following form using a r coordinate. In order to apply a Godunov-type scheme, the velocities are defined at
cell centers. The dynamic pressure is defined at vertically facing cell faces so that the pressure boundary
condition at free surface can be precisely imposed. The HLL Riemann approximation is employed to esti-
mate fluxes at horizontal cell faces. The nonlinear Strong Stability-Preserving (SSP) Runge–Kutta scheme is
used to obtain second-order accuracy in time. The model is validated using seven test cases based on ana-
lytical solutions and experimental data. The computed results show that the model can well predict wave
propagation over submerged bar, wave refraction and diffraction over an elliptical shoal as well as wave
breaking, run-up and longshore current on a plane beach using relatively few (three to five) vertical layers.
The model is also shown to provide accurate reproduction of a generated tsunami wave resulting from a
solid translating bottom feature.

Published by Elsevier Ltd.
1. Introduction

Wave propagation from deep water to coastal region is subject
to wave refraction, diffraction, shoaling and breaking. Accurate
prediction of these phenomena is crucial to studying nearshore
hydrodynamics and solute transport in the coastal area. Bous-
sinesq-type wave models with improved nonlinearity and disper-
sion characteristics provide an efficient and well-tested tool for
the simulation of wave propagation, especially in shallow water re-
gions (Madsen and Sørensen, 1992; Nwogu, 1993; Wei et al.,
1995). Means for extending these models to higher order in disper-
sion have been developed (see Gobbi et al. (2000), Lynett and Liu
(2002) and Agnon et al. (1999), for example), and more recently,
extensions to the model formulation to account for turbulent
structure of the flow field and the resulting effects on depth-aver-
aged solute or contaminant transport have been developed (Kim
et al., 2009; Kim and Lynett, 2011). All of these extensions lead
to a great deal of complexity in the resulting model equations.

An alternative approach is to solve the Navier–Stokes equations
directly with proper free surface tracking techniques, such as the
marker-and-cell (MAC) method (Harlow and Welch, 1965), the
volume-of-fluid (VOF) method (Hirt and Nichols, 1981) and the
level-set method (Osher and Sethian, 1988). These approaches
Ltd.

: +1 302 831 1228.
have wide applications on the simulations of wave shoaling and
breaking in the surf zone; see, for example, Lin and Liu (1998a,b),
Watanabe et al. (2005), Christensen (2006), Shi et al. (2010) and
Ma et al. (2011). The main drawbacks of these types of models
are: (1) they are computationally expensive, making applications
to large-scale domains infeasible; (2) the free surface normally
crosses the computational cell arbitrarily, which brings the diffi-
culty of applying the pressure boundary condition precisely on
the free surface and may eventually affect the accuracy of velocity
computation (Lin and Li, 2002); and (3) the grid resolution in the
surf zone and swash zone, where the water depth is relatively shal-
low, is usually poor due to the use of Cartesian grid system on most
of applications.

A direct simplification of the above-mentioned approach is to
assume that the free surface elevation is a single value function
of the horizontal coordinates. By doing so, the free surface is
always located at the upper computational boundary and can be
determined by applying the free surface boundary conditions. It
is computationally more efficient with the lack of free surface
tracking. The pressure boundary condition at the free surface can
be accurately prescribed with some proper treatments. This simpli-
fication leads to a new set of non-hydrostatic models, which are
not only suitable for modeling short wave propagation but also
for the simulation of turbulence and solute transport in the surf
zone. To solve the non-hydrostatic equations, the pressure is
decomposed into hydrostatic and non-hydrostatic components.
The governing equations can be discretized by finite difference
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method (Casulli and Stelling, 1998; Casulli, 1999; Namin et al.,
2001; Casulli and Zanolli, 2002; Lin and Li, 2002; Chen, 2003; Stell-
ing and Zijlema, 2003; Zijlema and Stelling, 2005; Yuan and Wu,
2004a,b; Lee et al., 2006; Young et al., 2007, 2009; Young and
Wu, 2010; Wu et al., 2010), finite element method (Walters,
2005) and finite volume method (Bradford, 2005; Fringer et al.,
2006; Ai and Jin, 2010; Lai et al., 2010). A major concern addressed
in recent developments of non-hydrostatic models is the accurate
prediction of wave dispersion characteristics with relatively few
vertical grid points. It has been recognized that 10–20 vertical lay-
ers are normally required to describe wave dispersion up to an
acceptable level with some simple treatments of pressure bound-
ary conditions at the top layer, for example, Casulli and Stelling
(1998), Casulli (1999), Casulli and Zanolli (2002), Li and Fleming
(2001), Namin et al. (2001), Lin and Li (2002) and Chen (2003).
To address this issue, Stelling and Zijlema (2003) proposed the Kel-
ler-box method to replace the staggered grid in the vertical direc-
tion, which enables the pressure to be located at the cell faces
rather than the cell centers. The pressure boundary condition at
the free surface can be exactly assigned to zero without any
approximation. Yuan and Wu (2004a,b) proposed an integral
method to remove the top-layer hydrostatic assumption using a
staggered grid framework. Young and Wu (2010) used the Bous-
sinesq-type-like equations with the reference velocity to provide
an analytical-based non-hydrostatic pressure distribution at the
top layer. All of these methods significantly reduce the errors in dy-
namic pressure estimation and allow for use of a very small num-
ber of vertical layers for accurate simulation of dispersive waves.

It is non-trivial to apply non-hydrostatic models to the simula-
tion of breaking waves in the surf zone and wave run-up in the
swash region, because the numerical scheme involved must treat
shock propagation adequately in order to model broken waves
(Zijlema and Stelling, 2008). Shock-capturing schemes based on
Godunov-type approach, which can deal with discontinuous flow,
are well-suited for breaking wave simulations. These schemes are
able to track actual location of wave breaking without requiring
any criterion that tells the model when and where the wave break-
ing happens. An application of this approach to simulation of
breaking waves in the surf zone was given by Bradford (2011). It
was showed that the non-hydrostatic model with Godunov-type
scheme can predict wave height distribution, turbulence and
undertow under breaking waves at least as accurate as the VOF
model. However, eight or more vertical layers are needed in his
model to accurately predict the surface elevation around the outer
surf zone as well as velocity profiles within the surf zone.

In this paper, we describe a new nonhydrostatic model (called
NHWAVE, for Non Hydrostatic WAVE model) based on a Godu-
nov-type scheme. NHWAVE solves the incompressible Navier–
Stokes equations in terrain and surface-following r coordinates.
Bottom movement is included in order to simulate tsunami gener-
ation by three-dimensional underwater landslides. To apply Godu-
nov-type scheme, the velocities are defined at cell centers. The
dynamic pressure is defined at vertically-facing cell faces as in the
Keller-box method, allowing the pressure boundary condition at
the free surface to be precisely imposed. The hydrostatic equations
are solved by a well-balanced finite volume method. The fluxes at
cell faces are estimated by HLL Riemann approximation. To obtain
second-order temporal accuracy, the nonlinear Strong Stability-Pre-
serving (SSP) Runge–Kutta scheme (Gottlieb et al., 2001) is adopted
for adaptive time stepping. The model is fully parallelized using
Message Passing Interface (MPI) with non-blocking communica-
tion. The poisson equation is solved by the high performance pre-
conditioner HYPRE software library (http://acts.nersc.gov/hypre/).

The paper is organized as follows. In Section 2, the governing
equations in conservative form are presented. The numerical meth-
od, boundary conditions and wetting–drying scheme are introduced
in Section 3. Finally, seven test cases are given in Section 4 to show the
model’s capability of simulating wave refraction, diffraction, shoal-
ing, breaking, landslide tsunami generation and longshore current.

2. Governing equations

The incompressible Navier–Stokes equations in Cartesian coor-
dinates ðx�1; x�2; x�3Þ, where x�1 ¼ x�; x�2 ¼ y� and x�3 ¼ z� and time t⁄

are given by
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¼ 0 ð1Þ
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where (i,j) = 1,2,3, ui is velocity component in the x�i direction, p is
total pressure, q is water density, gi = �gdi3 is the gravitational body

force and sij ¼ mt @ui=@x�j þ @uj=@x�i
� �

is turbulent stress with mt the

turbulent kinematic viscosity.
In order to accurately represent bottom and surface geometry, a

r-coordinate developed by Phillips (1957) is adopted in this study

t ¼ t� x ¼ x� y ¼ y� r ¼ z� þ h
D

ð3Þ

where D(x,y, t) = h(x,y, t) + g(x,y, t), h is water depth, g is surface ele-
vation. This coordinate transformation basically maps the varying
vertical coordinate in the physical domain to a uniform transformed
space where r spans from 0 to 1 (Lin and Li, 2002). Using the prin-
ciple of chain differentiation, the partial differentiation of a variable
f = f(x⁄,y⁄,z⁄, t⁄) in the physical domain is transformed as follows:
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Plugging Eq. (4) into (1) and (2), we obtain the governing equa-
tions in the new coordinate (x,y,r) and time t
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where U = (Du,Dv,Dw)T. The fluxes are
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The source terms are given by
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where the total pressure has been divided into two parts: dynamic
pressure p (use p as dynamic pressure hereinafter for simplicity)
and hydrostatic pressure qg(g � z). x is the vertical velocity in
the r coordinate image domain, given by
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Fig. 1. Layout of computational variables. Velocities (u,v,w) are placed at cell center
and dynamic pressure (p) is defined at vertical cell face.
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In the current paper, turbulent diffusion terms Ssx ; Ssy ; Ssz are
included for the cases involving wave breaking, which are given by
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and the stresses in the transformed space are calculated as
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The turbulent kinematic viscosity mt is estimated by the Smagorin-
sky subgrid model

mt ¼ ðCsDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
ð11Þ

where Cs is the Smagorinsky coefficient, which is taken as 0.1–0.2, D
is the filter width, which is calculated as D = (DxDyDrD)1/3, and

Sij ¼ 1
2
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is the stress tensor.

Integrating Eq. (5) from r = 0 to 1 and using the boundary con-
ditions at the bottom and surface for x, we get the governing equa-
tion for free surface movement.
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3. Numerical method

A combined finite-volume and finite-difference scheme with a
Godunov-type method was applied to discretize equations (6)
and (12). It is straightforward to define all dependent variables at
cell centers to solve Riemann problem. However, this treatment re-
sults in checkerboard solutions in which the pressure and velocity
become decoupled when they are defined at the same location
(Patankar, 1980). Therefore, most existing models use a staggered
grid in which the pressure is defined at the centers of computa-
tional cells and the velocities are defined at cell faces (Bradford,
2005). However, staggered grids do not lend themselves as easily
as co-located grids to the use of Godunov-type schemes. Mean-
while, difficulty in treating the cell-centered pressure at the top
layer may arise when applying the pressure boundary condition
at the free surface (Yuan and Wu, 2004a,b).

With these considerations, a different kind of staggered grid
framework is introduced, in which the velocities are placed at
the cell centers and the pressure is defined at the vertically-facing
cell faces as shown in Fig. 1. The momentum equations are solved
by a second-order Godunov-type finite volume method. The HLL
approximate Riemann solver (Harten et al., 1983) is used to esti-
mate fluxes at the cell faces. As in Stelling and Zijlema (2003),
the pressure boundary condition at the free surface can be pre-
cisely assigned to zero.

3.1. Time stepping

To obtain second-order temporal accuracy, the two-stage sec-
ond-order nonlinear Strong Stability-Preserving (SSP) Runge–Kutta
scheme (Gottlieb et al., 2001) was adopted for time stepping. At the
first stage, an intermediate quantity U(1) is evaluated using a typi-
cal first-order, two-step projection method given by

U� � Un
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where Un represents U value at time level n, U⁄ is the intermediate
value in the two-step projection method, and U(1) is the final first
stage estimate. In the second stage, the velocity field is again up-
dated to a second intermediate level using the same projection
method, after which the Runge–Kutta algorithm is used to obtain
a final value of the solution at the n + 1 time level
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2
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2
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Each stage of the calculation requires the specification of the non-
hydrostatic component of the pressure force as expressed through
the quantities Sp. The pressure field needed to specify these is based
on the solution of the Poisson equation described below. Also at
each stage, the surface elevation is obtained by solving Eq. (12)
explicitly. The time step Dt is adaptive during the simulation, fol-
lowing the Courant–Friedrichs–Lewy (CFL) criterion

Dt¼C min min
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where C is the Courant number, which is taken to be 0.5 to ensure
accuracy and stability in the current model.
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3.2. Spatial finite volume scheme

We discretize equations (13) and (15) using a second-order Godu-
nov-type finite volume method. It is noticed that applying a standard
finite volume Godunov-type scheme directly to the equation does not
lead to an automatic preservation of steady state (Zhou et al., 2001;
Kim et al., 2008; Liang and Marche, 2009). Therefore, It is desirable
to reformulate the equation so that the flux and source terms can
be automatically balanced at the discrete level in the steady state.
In this study, the method by Liang and Marche (2009) is employed.
Taking the x component source term as an example, notice that the
total water depth is D = h + g. The source term can be rewritten as

gðhþ gÞ @h
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¼ @

@x
1
2

gh2
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þ gg
@h
@x

ð19Þ

in which the first term in the right hand side can be combined to-
gether with the flux terms.

Based on this, the flux and source terms may be expressed as
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The main advantage of the above formulation is that the flux
and source terms are well-balanced so that no artificial flow due
to bottom slope will be generated.

To solve Eqs. (13) and (15), fluxes based on the conservative vari-
ables are required at the cell faces. In high-order Godunov-type
methods, the values of the conservative variables within a cell are
calculated using a reconstruction method based on the cell center
data (Zhou et al., 2001). Usually a piecewise linear reconstruction
is used, leading to a second order scheme. For U in the cell i, we have

U ¼ Ui þ ðx� xiÞDUi ð20Þ

where DUi is the gradient of U, which is calculated by

DUi ¼ avg
Uiþ1 � Ui

xiþ1 � xi
;
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xi � xi�1

� �
ð21Þ

in which avg is a slope limiter which is used to avoid spurious oscil-
lations in the reconstruction data at the cell faces. In this study, the
van Leer limiter is adopted, which is given by

avgða; bÞ ¼ ajbj þ jajb
jaj þ jbj ð22Þ

The left and right values of U at cell face ðiþ 1
2Þ are given by
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The flux F(UL,UR) is calculated by solving a local Riemann problem
at each horizontally-facing cell face. In the present study, HLL Rie-
mann solver is employed. The flux at the cell interface iþ 1

2
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with wave speed sL and sR defined by
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To obtain the non-hydrostatic velocity field, the dynamic pres-
sure p has to be calculated first. From Eqs. (14) and (16), we get
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where k = 1,2 represents the kth stage in the Runge–Kutta
integration.

Applying Eqs. (3) and (4), the continuity Eq. (1) is transformed as
@u
@x
þ @u
@r

@r
@x�
þ @v
@y
þ @v
@r

@r
@y�
þ 1

D
@w
@r
¼ 0 ð33Þ

Substituting Eqs. (30)–(32) into (33), we obtain the Poisson
equation in (x,y,r) coordinate system
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The above equation is discretized with the second-order space-cen-
tered finite difference method. The velocities of (u⁄,v⁄,w⁄) at vertical
cell faces are interpolated from adjacent cell-centered values. The
resulting linear equation is given by
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where rx ¼ @r
@x� and ry ¼ @r

@y�.
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Uniform gridding is used in the horizontal direction while grid-
ding in the vertical direction is generalized to be non-uniform in
order to capture the bottom and surface boundary layers when de-
sired. The coefficient matrix is asymmetric and has a total of 15
diagonal lines. The linear system is solved using the high perfor-
mance preconditioner HYPRE software library. With p solved, the
non-hydrostatic velocities at each stage can be updated from Eqs.
(30)–(32).

3.3. Boundary conditions

To solve the governing equations, boundary conditions are re-
quired for all the physical boundaries. At the free surface, the con-
tinuity of normal and tangential stresses is enforced. With wind
effects absent, the tangential stress equals zero, resulting in

@u
@r

����
z¼g
¼ @v
@r

����
z¼g
¼ 0 ð36Þ

The vertical velocity w at the ghost cells is obtained to ensure that w
at free surface satisfies the kinematic boundary condition

wjz¼g ¼
@g
@t
þ u

@g
@x
þ v @g

@y
ð37Þ

The zero pressure condition on the free surface is applied when the
Poisson equation is solved

pjz¼g ¼ 0 ð38Þ

At the bottom, the normal velocity and the tangential stress are
prescribed. The normal velocity w is imposed through the kine-
matic boundary condition

wjz¼�h ¼ �
@h
@t
� u

@h
@x
� v @h

@y
ð39Þ

For the horizontal velocities, either free-slip boundary conditions

@u
@r

����
z¼�h

¼ @v
@r

����
z¼�h

¼ 0 ð40Þ

or bottom shear stresses are considered

mt
@u
@r

����
z¼�h

¼ Dcdjubjub ð41Þ

where cd is the bed drag coefficient, which can be computed from
the law of the wall for fully rough, turbulent flow as cd = 0.16
[ln2(15Dz1/ks)]�2, Dz1 = DDr1 is the thickness of the cell above the
bed, ks is the bottom roughness height. ub is velocity at the cell
above the bed.

The Neumann boundary condition is used for dynamic pressure,
which is directly obtained from the governing equation for w

@p
@r

����
z¼�h

¼ �qD
dw
dt

����
z¼�h

ð42Þ

where w at z = �h is given by (39). In the application to an underwa-
ter landslide in Section 4.6 below, we linearize the resulting bound-
ary condition which gives

@p
@r

����
z¼�h

¼ qD
@2h
@t2 ð43Þ

At the closed boundaries or vertical walls, free-slip boundary
conditions are imposed, so that the normal velocity and the tan-
gential stress are set to zero. The normal pressure gradient is zero.
At inflow, both free surface and velocities calculated from the ana-
lytical solutions are specified. In the lateral direction, periodic
boundary conditions can be applied. To facilitate the parallel
implementation, we used two ghost cells at each boundaries. The
boundary conditions are specified at the ghost cells.
3.4. Wetting–drying treatment

It is straightforward to use a wetting–drying scheme for model-
ing moving boundaries. In the present study, a simple wetting–
drying scheme is implemented. The wet and dry cells are judged
by total water depth D. If a cell has the total water depth D greater
than Dmin, it is a wet cell with Maski,j = 1. Otherwise it is a dry cell
with Maski,j = 0. Dmin is the minimum water depth allowed for
computation. The surface elevation in the dry cells are defined as
gi,j = Dmin � hi,j. For a dry cell surrounded by wet cells, Maski,j has
to reevaluated as

Maski;j ¼ 1 if gi;j 6 gneighbor

Maski;j ¼ 0 if gi;j > gneighbor

ð44Þ

In the dry cells, the normal flux at cell faces are set to zero. The
wave speed of Eqs. (26) and (27) for a dry bed are modified as
(Zhou et al., 2001)

sL ¼ uL �
ffiffiffiffiffiffiffiffi
gDL

p
sR ¼ uL þ 2

ffiffiffiffiffiffiffiffi
gDL

p
ðright dry bedÞ ð45Þ

sL ¼ uR � 2
ffiffiffiffiffiffiffiffi
gDR

p
sR ¼ uR þ

ffiffiffiffiffiffiffiffi
gDR

p
ðleft dry bedÞ ð46Þ
4. Numerical results

The numerical method presented in the above section has been
tested with several analytical solutions and laboratory experiments.
Seven test cases are given in this section: (1) standing wave in closed
basin; (2) solitary wave propagation in constant depth; (3) periodic
wave over submerged bar; (4) wave transformation over an ellipti-
cal shoal on a sloped bottom; (5) breaking solitary wave runup; (6)
tsunami generation by three-dimensional rigid underwater land-
slides; and (7) longshore current on a plane beach. These test cases
have been widely used to validate non-hydrostatic models.

4.1. Standing wave in closed basin

The numerical model was first tested by the analytical solution
of a standing wave in closed basin with length of L = 20 m and
depth of D = 10 m. This test case has been studied by various
researchers, for example, Casulli and Stelling (1998), Casulli
(1999) and Chen (2003). They used more than 20 vertical layers
in order to correctly simulate wave dispersion. With Keller-box
scheme, Stelling and Zijlema (2003) obtained good agreement with
analytical solution by using two layers. These models are all solved
in Cartesian coordinate system. In this section, we will show that
the present model in r coordinates can reproduce accurate waves
with relatively few vertical layers.

The initial surface elevation is given by

g ¼ a cos
px
10

� �
ð47Þ

where g is the surface elevation in meters, a = 0.1 m is the ampli-
tude of the standing wave. The wave length equals the length of
the basin. Since kD = p > 1, the wave is highly dispersive. From the
dispersion relationship r2 = gktanh(kD), where r = 2p/T, k = 2p/L,
we can calculate wave period T = 3.59 s. The linearized analytical
solution for this standing wave is

g ¼ a cosðkxÞ cosðrtÞ ð48Þ

For the numerical setup, a uniform grid spacing of 0.2 m was
used in the horizontal direction. This is a finely resolved horizontal
mesh corresponding to 100 grid cells per wavelength. Hence one
does not expect large discretization errors due to the horizontal
grid effects. In the vertical direction, five layers are employed.
Fig. 2 shows the comparisons of numerical and analytical surface
elevations at x = 0.1 m and x = 17.5 m. The computed surface eleva-
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Fig. 2. Comparisons between numerical (solid line) and analytical (circles) surface elevations at x = 0.1 m (upper panel) and x = 17.5 m (lower panel) for the standing wave in
closed basin.
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tions agree very well with the analytical solution. The amplitude of
the wave has no significant change. Fig. 3 gives the normalized
root-mean square errors at x = 17.5 m as a function of the number
of vertical layers and wave dispersion parameter kD, which is ob-
tained by varying water depth D. The numerical error is defined

as error ¼ 1
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
j¼1ðga � gjÞ

2
q

, where N is the number of data that

are compared, ga is the analytical solution, H is the wave height
at x = 17.5 m. The simulation time is 30 s. As expected, the numer-
ical errors are decreased by increasing the number of vertical lay-
ers. The numerical results are less accurate for higher dispersive
wave with the same vertical layers. Therefore, more vertical layers
are required to obtain sufficiently accurate predictions for highly
dispersive waves.
4.2. Solitary wave propagation in constant depth

The second test case is the solitary wave propagation in con-
stant water depth. The computational domain is two-dimensional
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Fig. 3. Numerical errors at x = 17.5 m as a function of the number of vertical layers
and wave dispersion parameter kD.
with length of 200 m and water depth of 1.0 m. The solitary wave
is initially at x = 8.0 m. An exact solution of the fully nonlinear
equations, obtained using Tanaka’s (1986) method, was used to
specify the initial surface elevation and velocity field (t = 0 s at Figs.
4 and 5). The solitary wave has the wave height to the still water
depth ratio H/h = 0.5, indicating that the solitary wave is highly
nonlinear. The domain is discretized by a uniform grid in the hor-
izontal direction with Dx = 0.1 m and three layers in the vertical
direction. The time step Dt is adjusted during the simulation based
on the Courant number, which is taken as 0.5.

Fig. 4 shows the comparisons of simulated surface elevations
and Tanaka solutions at t = 10, 20, 40 s. We can see that the agree-
ments are almost perfect. As the wave propagates to the right, the
wave shape hardly change. Fig. 5 shows the comparisons of hori-
zontal and vertical velocities at the middle elevation between
numerical results and Tanaka solutions (Tanaka, 1986). The good
agreement of vertical velocity indicates that the dynamic pressure
has been well simulated by the model with three vertical layers. To
quantitatively assess the comparisons, we calculate the relatively
error j(/comp � /ana)//anaj, where / is the peak value of surface ele-
vation and velocities. At t = 40 s, the relatively errors for surface
elevation g, horizontal velocity u and vertical velocity w are 2.7%,
2.6% and 0.8%, respectively. These relatively small errors indicate
that the solitary wave is rarely decayed by the numerical diffusion.
4.3. Periodic wave over submerged bar (Beji and Battjes, 1993)

In this section, the model is applied to simulate wave shoaling
over a submerged bar. The experimental data by Beji and Battjes
(1993) is used to validate our non-hydrostatic model. This case
has been used to verify a number of non-hydrostatic free surface
models including Casulli (1999), Lin and Li (2002), Chen (2003),
Stelling and Zijlema (2003), Yuan and Wu (2004a,b) and Bradford
(2005). The data has also frequently been used as a test of Bous-
sinesq models, as the case falls outside the range of typical O(l2)
models such as Wei et al. (1995), but is handled by various higher
order approaches such as Gobbi and Kirby (1999) or Lynett and Liu
(2002).

The model setup and bottom geometry is shown in Fig. 6. The
wave flume has a length of 30 m. The still water depth is 0.4 m,
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Fig. 4. Comparisons between simulated surface elevations (solid line) and Tanaka solutions (circles) at t = 0, 10, 20, 40 s for solitary wave propagation in constant depth.
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which is reduced to 0.1 m at the bar. The offshore slope of the bar is
1/20 and the onshore slope is 1/10. Periodic waves with period
2.02 s and amplitude 1.0 cm are incident at the left boundary.
The computational domain is 35 m long with 10 m of sponge layer
at the right end. The sponge layer technique introduced by Larsen
and Dancy (1983) is employed. This technique has been widely
used to absorbing shortwaves (Chen et al., 1999). To discretize
the computational domain, 1750 constant horizontal grids and
three vertical layers are used to ensure that the free higher har-
monics can be properly calculated.
Fig. 7 shows the comparisons of free surface elevation at six
measurement locations between numerical results and experimen-
tal data. Wave shoaling at station a and propagation over the bar at
station b are well simulated by the model. The bound higher har-
monics generated by the nonlinear shoaling wave on the upward
slope of the bar become free on the downward slope, resulting in
irregular wave pattern at station c–f. The model generally predicts
free surface evolution at these stations well, indicating that the dis-
persion for higher frequency components is well simulated with
three vertical layers.
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Fig. 7. Comparisons between numerical (solid line) and experimental (circles) surface elevations at (a) x = 10.5 m; (b) x = 12.5 m; (c) x = 13.5 m; (d) x = 14.5 m; (e) x = 15.7 m;
(f) x = 17.3 m.
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4.4. Wave transformation over an elliptical shoal on a sloped bottom

This example is to test the model’s capability of simulating
wave refraction and diffraction over a 3D uneven bottom. The cor-
responding experiment was conducted by Berkhoff et al. (1982).
The model setup and bottom geometry is shown in Fig. 8. An ellip-
tical shoal is located on a plane beach with a slope of 1/50. Let
(x0,y0) be the slope-oriented coordinates, which are related to
(x,y) coordinate system by means of rotation over �20�. The still
water depth without shoal is given by

h ¼ 0:45 x0 < �5:84
h ¼ maxð0:07;0:45� 0:02ð5:84þ x0ÞÞ x0 P �5:84

ð49Þ

Since the minimum water depth is 0.07 m, the wave is non-break-
ing. The boundary of the shoal is given by
0.150.250.350.45
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Fig. 8. Bottom geometry for periodic wave propagation over an elliptical shoal,
experimental setup by Berkhoff et al. (1982).
x0

3

� �2

þ y0

4

� �2

¼ 1 ð50Þ

where the thickness of the shoal is

d ¼ �0:3þ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x0

3:75

� �2

� y0

5

� �2
s

ð51Þ

Regular wave with wave period of 1.0 s and wave height of 4.64 cm
are incident at the left boundary x = �12 m. At the right end, waves
are completely absorbed by a sponge layer with L = 5 m. Two walls
are located at y = �10 m and 10 m, where free-slip boundary condi-
tions are imposed.

To well simulate wave refraction and diffraction, a fine grid
with Dx = 0.025 m and Dy = 0.05 m is used. Five vertical layers
are used in the vertical direction. The time step is adjusted during
the simulation, with courant number 0.5. The simulation period is
30 s. The final five waves are employed to estimate wave height. To
quantitatively assess the model results, we calculate normalized

root mean square error rms ¼ 1
Xobs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðXmod � XobsÞ2

q
, where X

is the variable being compared, mod and obs stand for model re-
sults and observations, X is mean value. Fig. 9 shows the compar-
isons of wave height between numerical results and experiment
data at eight measurement sections. Due to refraction, wave focus-
sing occurs behind the shoal with a maximum wave height of
approximately 2.2 times the incident wave height (around
x = 5 m, y = 0 m). The model slightly under-predicts the peak wave
height at Sections 3 and 5. However, the wave height variations
along these two section are well captured. The normalized rms er-
rors for both sections are 0.11. In other sections, the predictions
agree quite well with the measurements. For example, the normal-
ized rms error at Section 1 is 0.07. These results demonstrate that
wave refraction and diffraction can be well simulated by the
model.
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Fig. 9. Comparisons between numerical (solid line) and experimental (circles) wave height at eight stations.
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4.5. Breaking solitary wave run-up

To show the model’s capability of simulating breaking waves
and wetting–drying, we applied the model to study breaking soli-
tary wave run-up and run-down in a slope beach. The correspond-
ing laboratory experiment was conducted by Synolakis (1987). The
beach slope is 1/20. The still water depth varies from 0.21 m to
0.29 m. A solitary wave which has a wave height to still water
depth ratio of 0.28 was incident on the left. Wave gauges were
used to record the free surface displacement during the run-up
and run-down.

In the numerical simulation, the solitary wave is initially at
1.5 m on the left from the toe of the beach. An exact solution of
the fully nonlinear equations, obtained using Tanaka’s (1986)
method, was used to specify the initial surface elevation and veloc-
ity field, see Fig. 10. The computational domain extends to a loca-
tion beyond the maximum run-up point. The entire domain is
discretized by 550 uniform grid in the horizontal with
Dx = 0.02 m. Three layers are used in the vertical direction. The
minimum water depth is 5 mm, which determines wetting-and-
drying of the computational cells.

The numerical results were compared with the experimental
data after normalization. The length scale is normalized by the still
−35 −30 −25 −20 −15
−1

−0.5

0

0.5

z/
d

β

d

A

Fig. 10. Computational domain and model setup. The beach slope is 1/20. The
water depth d and the time scale is normalized by
ffiffiffiffiffiffiffiffi
g=d

p
. Fig. 11

shows comparisons of simulated and measured free surface profile
during wave shoaling, breaking, run-up and run-down. Panels (a)
and (b) show the shoaling process of the solitary wave. The wave
becomes more asymmetric and the wave height increases as water
depth decreases. Around t

ffiffiffiffiffiffiffiffi
g=d

p
¼ 20, the wave starts to break as

shown in panel (c), the surface profile is dramatically changed
and the wave height is rapidly reduced. The wave continuously
breaks as its turbulent front moves towards the shoreline. After
the wave front passes the still-water shoreline, it collapses and
the consequent run-up process commences. The run-up process
is shown in the panel (d) and (e). After reaching the maximum
run-up point, the front starts to run-down which is shown in the
panel (f). The comparisons between the simulation and experiment
data are fairly good. The shoaling, breaking, run-up and run-down
processes of the solitary wave are well reproduced. In Fig. 11, we
also shown the numerical results without turbulent diffusion
terms. During wave shoaling and breaking (panel (a)–(c)), the pre-
dicted surface elevation is seldom impacted by neglecting turbu-
lence diffusion. The shock-capturing scheme employed in the
model can well describe the initiation of wave breaking process.
However, the model without turbulence dissipation slightly over-
predicts wave runup as shown in panel (e) and (f). Generally,
−10 −5 0 5 10
x/d

still water depth is 0.21 m. The amplitude of solitary wave is 0.0588 m.
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Fig. 11. Comparisons between numerical (with subgrid model: solid line; without subgrid model: dashed line) and experimental (circles) free surface elevation for breaking
solitary wave run-up and run-down at (a) t
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g=d

p
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g=d

p
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g=d

p
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p
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ffiffiffiffiffiffiffiffi
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p
¼ 30; (f) t
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g=d

p
¼ 50.
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neglecting turbulence had little impact on the predicted surface
elevations, which have been found by Bradford (2011) and Zijlema
and Stelling (2008), who successfully simulated breaking waves
with Euler equations.

4.6. Tsunami generation by three-dimensional underwater landslides

Submarine landslides are one of the most dangerous mecha-
nisms for tsunami generation in the coastal areas. In this section,
we applied the model to simulate tsunami generation by an ideal-
ized three-dimensional underwater landslides. Experiments have
recently been performed by Enet and Grilli (2007) in a 3.7 m wide,
1.8 m deep and 30 m long wave tank with a plane underwater
slope with h = 15� angle. This data set has also been used recently
by Fuhrman and Madsen (2009) to test the accuracy of a higher-
order Boussinesq model.

The vertical cross section of the landslide is shown in Fig. 12. The
geometry is defined using truncated hyperbolic secant functions

f ¼ T
1� � ½sechðkbxÞsechðkwyÞ � �� ð52Þ
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Fig. 12. Vertical cross section for numerical setup of tsunami landslide. The gaussian
T = 0.082 m and is initially located at submergence depth d. The beach slope has an ang
where kb = 2C/b, kw = 2C/w and C = acosh(1/�). The landslide has
length b = 0.395 m, width w = 0.680 m and thickness T = 0.082 m.
The truncation parameter � = 0.717. The landslide is initially located
at the submergence depth d. The movement of the landslide is pre-
scribed as

sðtÞ ¼ s0 ln cosh
t
t0

� �
ð53Þ

which closely approximates the landslide displacement measured
in experiments. s0 and t0 are given by

s0 ¼
u2

t

a0
; t0 ¼

ut

a0
ð54Þ

where ut and a0 are the landslide terminal velocity and initial accel-
eration, respectively. To represent the landslide, the horizontal do-
main is discretized by a uniform grid with Dx = 0.02 m and
Dy = 0.02 m. Three vertical layers are employed in the simulation.
The landslide parameters are ut = 1.70 m/s and a0 = 1.12 m/s2.

Three wave gauges are located at (x,y) locations (1469,350),
(1929,0) and (1929,500), where all distances are in mm and where
x denotes distance from the still water shoreline and y denotes dis-
1 1.2 1.4 1.6 1.8 2
(m)

(t)

θ

shape landslide model has length b = 0.395 m, width w = 0.680 m and thickness
le of h = 15�.
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Fig. 13. Comparisons between nonhydrostatic numerical results (solid lines), hydrostatic numerical results (dash-dot lines) and experimental data (dashed lines) for free
surface elevation for landslide-generated waves at three wave gauges with initial depth of submergence d = 61 mm. Gauge coordinates (x,y): (a) (1469,350) mm; (b)
(1929,0) mm; (c) (1929,500) mm, where x is distance from shoreline and y is perpendicular distance from the axis of the shore-normal slide trajectory.

Fig. 14. Snapshots of landslide-generated waves simulated using nonhydrostatic
model at times (a) t = 1.0 s; (b) t = 2.0 s and (c) t = 3.0 s after release of the sliding
mass. The surface elevation is exaggerated 5 times.
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tances off the centerline axis of the sliding mass. Model results are
presented as time series in comparison to measured data at each of
the three gages, with two representative tests chosen. Fig. 13
shows model/data comparisons for the case of an initial submer-
gence of the landslide center of d = 61 mm. The model is seen to
represent the amplitude and the phase structure of the generated
wave train well. As would be expected, wave heights are highest
at the gage lying along the axis of the landslide motion and drop
off with distance away from the centerline axis. Fig. 13 also dis-
plays the results of a hydrostatic model simulation, which are ob-
tained by neglecting the pressure correction steps indicated in Eqs.
(14) and (16). These results are markedly different from the non-
hydrostatic model results, indicating the great importance of dis-
persion in this test. The hydrostatic result basically consists of a
strong drawdown of the water column immediately behind the
sliding mass. This drawdown first grows in magnitude and then
decreases as the relative depth of submergence becomes larger.
In contrast, the nonhydrostatic model result consists of a packet
of dispersive waves which lag behind the relatively faster moving
slide as the slide accelerates. This behavior is further illustrated
in snapshots of the generated wave trains at times t = 1, 2 and
3 s shown in Figs. 14 and 15, with nonhydrostatic behavior shown
in the sequence of panels in Fig. 14 and hydrostatic behavior
shown in the sequence in Fig. 15. The absence of dispersion in
the generated waves in Fig. 15 is clear, emphasizing the impor-
tance of frequency dispersion in the present example. We note that
the results of Fuhrman and Madsen (2009), obtained using a high-
er-order Boussinesq model, showed comparable capabilities in
predicting wave phase structure as the nonhydrostatic model here,
but tended to overpredict crest and trough heights to some degree
in comparison to the results here; see their Fig. 14.

Fig. 16 illustrates similar results for the case of an initial depth
of submergence of d = 120 mm. Generated wave heights are lower
here than in the previous case due to the greater depth of submer-
gence, but the pattern of sea surface response is qualitatively sim-
ilar to the previous case. Hydrostatic results for this case have not
been computed as the problem is in relatively deeper water than
the previous case.
4.7. Longshore current on a plane beach

The implementations of turbulence closure and periodic bound-
ary condition enable us to simulate longshore current in the surf
zone. The laboratory measurements of breaking-generated long-
shore currents on plane beaches reported by Visser (1991) are em-
ployed to demonstrate the capability of the model. We particularly



Fig. 15. Snapshots of landslide-generated waves simulated using hydrostatic model
at times (a) t = 1.0 s; (b) t = 2.0 s and (c) t = 3.0 s after release of the sliding mass. The
surface elevation is exaggerated 5 times.
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choose case 4 in Visser’s (1991) experiments. This data set has
been employed by Chen et al. (2003) to test wave-resolving Bous-
sinesq model. In the physical model, the slope of the smooth con-
crete beach is 1:20, which starts from an offshore water depth of
35 cm. The obliquely incident, regular wave train has an amplitude
of 3.9 cm, with a period of 1.02 s and an angle of incidence of 15.4�
in the offshore boundary.

The computational domain is chosen to be 8.4 m long with a
0.6 m flat bottom placed in front of the slope. The width of the do-
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Fig. 16. Comparisons between numerical nonhydrostatic results (solid lines) and experim
three wave gauges with initial depth of submergence d = 120 mm. Gauge coordinates (x,
not available for (b).
main is determined on the basis of periodic lateral boundary con-
dition. The domain is discretized by 280 � 128 grid cells with
Dx = 0.03 m and Dy = 0.04325 m. Five vertical layers are used. Tur-
bulence model is turned on to account for wave breaking-induced
energy dissipation. The bottom roughness height is chosen as
ks = 0.08 cm by tuning the model to match the measurement.

Fig. 17 shows a snapshot of computed surface elevation. Due to
the nonlinear shoaling effects, the wave crest becomes narrow and
asymmetric near the shoreline. The wave height is greatly reduced
by the depth-limited wave breaking. The breaking-generated long-
shore current is obtained by time-averaging the depth-averaged
current over five wave periods, which is demonstrated in Fig. 18.
The computed time-averaged flow field is longshore uniform and
no shear instabilities occur, which is consistent with the Bous-
sinesq model simulation (Chen et al., 2003). The cross-shore veloc-
ity is nearly zero, indicating that the mass is balanced. Fig. 19 gives
the comparisons of computed wave setup and longshore current
with the laboratory measurements. Generally, the comparisons
are quite good. The model slightly underestimates wave setdown
near the breaking region. It might be because the breaking wave
is a plunging breaker in the laboratory experiment, which cannot
be well simulated by the model. The computed longshore current
is estimated at t = 110 s. We notice that the difference of computed
longshore currents at t = 100 s and t = 110 s is minor, indicating
that a steady solution of longshore current has been achieved at
the end of simulation. The magnitude and the location of maxi-
mum longshore current are well predicted by the model. The cor-
rect prediction of cross-shore variation of longshore current
indicates that the model can reasonably simulate wave breaking
and associated energy dissipation. We also show the computed
wave setup and longshore current without turbulent diffusion,
which are demonstrated as dash-dotted lines in Fig. 19. The differ-
ence of predicted wave set-down with and without turbulent dif-
fusion is minor. The model without turbulent diffusion predicts
slightly smaller wave setup inside surf zone. However, the turbu-
lent diffusion has significant effects on the longshore current.
Without turbulent diffusion, the longshore current peaks further
onshore than that with turbulent diffusion and measurement.
1.5 2 2.5

1.5 2 2.5

1.5 2 2.5
t/t0

ental data (dashed lines) for free surface elevation for landslide-generated waves at
y): (a) (1469,350) mm; (b) (1929,0) mm; (c) (1929,500) mm. Experimental data are



Fig. 17. A snapshot of computed surface elevation of case 4 in Visser’s experiment
(1991).
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Fig. 18. Phase-averaged current field (averaged by 5 waves) of case 4 in Visser’s
experiment (1991).
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Fig. 19. Comparisons of computed wave setup (upper panel) and longshore currents (lower panel) at t = 110 s with experimental data (Visser, 1991). The dashed line shows
the computed phase-averaged longshore current at 100 s. The dash-dotted line shows the computed wave setup and longshore currents without turbulent diffusion at
t = 110 s.
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Meanwhile, the longshore current is largely underestimated and
not as smooth as that with turbulent diffusion. These results fur-
ther prove that turbulent diffusion has little impact on free surface
predictions in the surf zone, but has significant effects on wave-in-
duced currents as found by Bradford (2011).

5. Conclusions

In this paper, NHWAVE, a shock-capturing non-hydrostatic
model for nonlinear free-surface wave processes is presented.
The governing equations are solved in a r coordinate system and
discretized by a combined finite volume and finite difference
scheme with a Godunov-type method. In order to apply Godu-
nov-type scheme, the velocities are collocated at the cell center.
The dynamic pressure is defined at the vertical cell faces, which en-
sure that the pressure boundary condition at the free surface can
be precisely prescribed. The HLL approximate Riemann solver
was employed to estimate fluxes at horizontal cell faces. The sec-
ond-order nonlinear Strong Stability-Preserving (SSP) Runge–Kutta
scheme were adopted for adaptive time stepping.

The model was tested using seven benchmarks based on analyt-
ical solutions or experimental data. Unlike some other non-hydro-
static models which need 10–20 vertical layers to well simulate
short waves, the present model can achieve good predictions of
wave shoaling, wave dispersion, refraction and diffraction using
3–5 vertical layers. With the Godunov-type scheme, which is suit-
able for solving discontinuous solutions, the model can be used to
study complex problems such as wave breaking in the surf zone.
For the landslide generated tsunami, the model predicts the evolu-
tion of surface elevation generally well.
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