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Introduction 

In the present study, two tsunamigenic landslide models are examined by a number of 

benchmark problems. The simulated cases are several sets of experimental data which 

consider landslide as either a solid or a deformable sliding mass. The first model, LS3D 

model, is applied to model the tsunami waves caused by a solid landslide and the second 

one, 2LCMFlow model, is benchmarked with deformable sliding masses. The following 

sections include a brief description of these benchmarked models. 

 

LS3D model: 

The LS3D model simulates landslide tsunamis by solving the following fourth-order 

Boussinesq-type equations: 
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Eq. 1 and 2 represent the continuity and the depth-averaged momentum equations in the 

two horizontal x and y directions, respectively.   
  

  
 and   

  

  
 are two indexes indicating 

wave nonlinearity and dispersive behaviour.   ,   , and    stand for a characteristic wave 

amplitude, wave length and water depth, respectively. The subscripts represent the partial 

derivative (e.g.    
  

  
).   is time,   water depth,   the water surface fluctuations,   the 

water pressure, and    
 

  
 

 

  
  the horizontal gradient vector. The velocity domain 

components         and   which respectively represent the vector of the horizontal 

velocity components and the vertical velocity component in the z direction, are expanded 

into 
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in perturbation analysis with    as the basic small parameter.  ̃ is a characteristic variable 

depth defined as a weighted average of two distinct water depths    and    based on 

 ̃                 .   is an optimized weighting parameter. Moreover,          , 

          
 

 
  , and         . A schematic definition of the model parameters can be 

observed in Fig. 1. 

 
Fig. 1 The LS3D model parameters and assumptions 

 

A sixth-order multi-step finite difference method was utilized for spatial discretization and 

a sixth-order Runge–Kutta method was implemented for temporal discretization of the 

higher-order depth-integrated governing equations and boundary conditions.  
 

The LS3D model describes landslide as a time variable bottom boundary with a rigid 

hyperbolic-shape geometry. The law of the mass motion is 
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Where S is the location of landslide centre of mass motion parallel to the slope, S0 =ut
2/a0, 

and t0 = ut /a0. ut is the terminal velocity of the sliding mass and a0 is its initial acceleration 

defined as 
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where γ=ρs/ρw, B is the length of the sliding mass along the inclined bed, Cd is the drag 

coefficient, Cm is the added mass coefficient, θ is the bed slope and g is the gravitational 

acceleration. ρs and ρw are the landslide and the water densities, respectively. The mass 

motion equation is obtained by transforming Eq. 5 from the bottom direction to the 

Cartesian coordinate (x, y, z) direction. Accordingly, the time variable bottom boundary is 

obtained as  
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where                      and                      are the locations of the rear 

and the front ends of the sliding mass, respectively.       is the location of the sliding mass 

centre, T is the maximum mass thickness and S=o.5/cosθ. Eq. 7 estimates the location of the 

sliding mass center at each time step. 

For the three-dimensional conditions, a truncated hyperbolic secant function of x and y 

with a specific truncation ratio, r, as introduced by Enet et al. (2003), is applied to describe 

the landslide model geometry. 
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where    is the thickness of the sliding mass moving along the bed. The specific truncation 

ratio can be modified according to the real geometry of the sliding mass. The effects of the 

solid block movements on the water surface fluctuations is inserted into the model 

equations through the kinematic boundary condition of the bed which is 
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The original LS3D was able to model submarine landslides (Ataie-Ashtiani and Najafi-Jilani 

2008). In 2011, the model was extended to handle subaerial landslide cases by Ataie-

Ashtiani and Yavari-ramshe (2011) based on  the method of Lynett and Liu (2005). 

According to Eqs. 4 and 5, the kinematic characteristics of the sliding mass depend on ut, 

and as. For subaerial cases, landslide velocity must be altered to include the aerial 

acceleration. Accordingly, they formulated the sliding velocity as a weighted average of the 

aerial and submerged velocities, where the weighting parameter is based on the fraction of 

the submerged volume. Thus, the slope-parallel velocity of the slide is given by 
 

                                                                                                                                                       (10) 
 

The coefficients    and    represent the submerged and the aerial volume fractions of the 

landslide, respectively. The time-dependent velocity of a submerged landslide, us, is 
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calculated as in (Grilli et al. 2002) 
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This linear combination of the aerial and submerged velocities is used instead of terminal 

velocity, ut, in Eq. 6.  
  

The model inputs contain the basin topography, the still water surface level,   , reflection 

factor, F (representing the reflection percentage of the lake borders), the geometrical 

properties of the landslide including the sliding mass length,  , width,  , and maximum 

thickness,  , the relative density  , the slide initial depth,    , the sliding slope angle,  , the 

drag coefficient,   , and the added mass coefficient,   . The LS3D model has been 

successfully validated using two sets of experimental data on submarine (Ataie-Ashtiani 

and Najafi-Jilani 2008) and subaerial (Ataie-Ashtiani and Nik-Khah 2008) landslides. It has 

also been applied to estimate the landslide tsunamis, wave runup, and dam overtopping for 

two real cases of Shafarood (Ataie-Ashtiani and Najafi-Jilani 2007; Ataie-Ashtiani and 

Yavari-Ramshe 2011) and Maku (Yavari-Ramshe and Ataie-Ashtiani 2009; Ataie-Ashtiani 

and Yavari-Ramshe 2011) dam reservoirs. 
 

 

2LCMFlow model: 

The 2LCMFlow model developed by Yavari-Ramshe and Ataie-Ashtiani (2015) solves the 

shallow water equations (SWEs), incompressible Euler equations, for a two-layer flow 

including a layer of granular material moving beneath a layer of water based on a state of 

the art Roe-type finite volume method introduced by Yavari-Ramshe et al. (2015). The 

sliding mass is described as a Coulomb mixture; a two-phase mixture of water and solid 

grains where its interaction with the bottom follows a Coulomb-type friction law and the 

normal and longitudinal stresses of the solid phase are related with the earth pressure 

coefficient, K. The final system of mathematical equations of this two-layer Coulomb 

mixture flow (2LCMFlow) model is 
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where subscript 1 and 2 represent the water and the granular layers, respectively.   is the 

local bed slope and      is the bottom topography. Moreover,     , ,           

   , and                 where    (          √  (
    

       
)

 

)         

and                     .   
  

  
 is the relative density of the landslide. The 

parameters   and   stand for the internal and the basal friction angles of the granular 

layer, respectively.      is the dynamically modified basal friction angle.    and    are the 

water and the landslide densities, respectively, and    is a constant. Finally,   stands for the 

Coulomb friction term defined as 
 

{
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                                  (13) 

 
where    is a basal critical stress which is defined based on   , the angle of repose of the 

granular material, as                  . Eq. 13 stops the landslide from moving when 

its angle is less than the angle of repose. The constitutive structure of the sliding material is 

defined using two coefficients    and    which distribute the water layer pressure between 

the solid and the fluid phases of the second layer on the interface and along the second 

layer, respectively (Yavari-Ramshe and Ataie-Ashtiani 2015), as 
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Fig. 2 Schematic definition of the 2LCMFlow model parameters and assumptions 

   
In Eq. 14,     is the normal stress and the superscripts f and s stands for the fluid and the 

solid phases of the second layer (the sliding mass), respectively. The 2LCMFlow is able to 

capture the simultaneous appearance of the static/flowing regions along the landslide 

motion. The model is also capable of simulating the interactions between water and a 
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variety of granular material with different water content from rockslide and dry cohesion-

less material to loose and muddy flows based on the considered rheological and 

constitutive structures. A schematic of the model parameters is illustrated in Fig. 2. The 

2LCMFlow model is successfully validated against the same experiments of Ataie-Ashtiani 

and Najafi-Jilani (2008) and Ataie-Ashtiani and Nik-Khah (2008). 

 

 

 


