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a b s t r a c t 

Large-scale σ -coordinate ocean circulation models neglect the horizontal variation of σ in the calcu- 

lation of stress terms and boundary conditions. Following this practice, the effects of surface and bot- 

tom slopes in the dynamic surface and bottom boundary conditions have been usually neglected in the 

available non-hydrostatic wave-resolving models using a terrain-following grid. In this paper, we de- 

rive consistent surface and bottom boundary conditions for the normal and tangential stress fields as 

well as a Neumann-type boundary condition for scalar fluxes. Further, we examine the role of surface 

slopes in the predicted near-surface velocity and turbulence fields in surface gravity waves. By com- 

paring the predicted velocity field in a deep-water standing wave in a closed basin, we show that the 

consistent boundary conditions do not generate unphysical vorticity at the free surface, in contrast to 

commonly used, simplified stress boundary conditions developed by ignoring all contributions except 

vertical shear in the transformation of stress terms. In addition, it is shown that the consistent boundary 

conditions significantly improve predicted wave shape, velocity and turbulence fields in regular surf zone 

breaking waves, compared with the simplified case. A more extensive model-data comparison of various 

breaking wave properties in different types of surface breaking waves is presented in companion papers 

(Derakhti et al., 2016a,b). 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Surface wave breaking plays an important role in numerous

nvironmental and technical processes such as air-sea interaction,

coustic underwater communications, optical properties of the wa-

er column, nearshore mixing and coastal morphodynamics. Wave

reaking is a highly dissipative process, limiting the maximum

eight of surface waves. It is also a source of turbulence, enhanc-

ng transport and mixing in the ocean surface layer ( Banner and

eregrine, 1993; Melville, 1996; Duncan, 2001; Perlin et al., 2013 ). 

Although large-eddy simulations (LES) combined with the

olume-of-fluid (VOF) method for free-surface tracking ( Watanabe

t al., 2005; Derakhti and Kirby, 2014; 2016 ) can resolve turbu-

ence and mean flow dynamics in breaking waves quite well, they

re computationally expensive even for laboratory-scale events. A

ower-resolution framework is needed to study long-term, O(days),

nd large-scale, O(100 m ∼ 10 km ) , wave-breaking-driven circula-

ion as well as transport of sediment, bubbles, and other sus-

ended materials. Computationally efficient Boussinesq-type mod-

ls (e.g., Wei et al., 1995; Shi et al., 2012 ) can often yield accept-
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ble predictions of surface elevations and depth-averaged currents

n the nearshore region. Such single layer models, however, can-

ot provide the vertical structure of mean flow or information on

nstantaneous motion over rapidly-varying bathymetry or current

elds, and thus recourse must be made to models which either

rovide estimates of vertical structures through closure hypothe-

es ( Kim et al., 2009 ) or which utilize a three-dimensional (3D)

ramework from the outset. 

During the past two decades, several multi-layered wave-

esolving non-hydrostatic models based on Reynolds-averaged

avier–Stokes (RANS) equations, such as Stansby and Zhou (1998) ,

in and Li (2002) , Bradford (2011) and Ma et al. (2012) , have

een developed for coastal applications using surface- and terrain-

ollowing curvilinear ( x, y, σ ) coordinates, hereafter referred as the

-coordinate system. In comparison with VOF-based models, a di-

ect simplification of this new framework is achieved by assuming

he free surface to be a single-valued function of horizontal loca-

ion. By using a σ -coordinate system, the free surface is always

ocated at an upper computational boundary, determined by apply-

ng free-surface boundary conditions. Using a Keller-box scheme, a

ressure boundary condition at the free surface can thus be accu-

ately prescribed, and dispersion characteristics of short waves are

ypically predicted accurately using a few vertical σ -levels. 

http://dx.doi.org/10.1016/j.ocemod.2016.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ocemod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocemod.2016.09.002&domain=pdf
mailto:derakhti@udel.edu
http://dx.doi.org/10.1016/j.ocemod.2016.09.002
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However, the effects of surface and bottom slopes in the dy-

namic boundary conditions at the top and bottom interfaces, e.g.,

the continuity of the tangential surface stress, have been ignored

in most of the previous non-hydrostatic studies using a terrain-

following grid, following the previous practice in large-scale ocean

circulation models. In the absence of surface wind stress, the sim-

plified tangential stress boundary condition at the free surface de-

veloped by ignoring all contributions except vertical shear in the

transformation of tangential stress, reads as ( Lin and Li (2002 ,

equation 41), Bradford (2011 , equation 22) and Ma et al. (2012 ,

equation 36)) 

∂ u i 

∂z 
= 

1 

D 

∂ u i 

∂σ
= 0 , (1)

where i = 1 , 2 and u i is the horizontal velocity component in the i

direction. In intermediate and deep water, we have 

ω y = 

∂u 

∂z 
− ∂w 

∂x 
= 

u 0 

L 0 

(
∂ u 

′ 
∂ z ′ −

∂ w 

′ 
∂ x ′ 

)
∼ εc 0 

L 0 
∼ ε f 0 (2)

where ω y is the vorticity component in the y direction, L 0 and u 0 
are the length and velocity scales respectively, for both the hori-

zontal and vertical directions. Here, c 0 and f 0 are the wave’s phase

speed and frequency respectively, ε = a 0 /L 0 is the wave steepness,

and a 0 is the wave amplitude. Thus, imposing (1) generates error

in wave vorticity divided by wave frequency to O(ε) , the order of

the motion itself. In other words, imposing (1) at the free surface

acts as an unphysical local source of vorticity of strength ∂ w / ∂ x
which in turn generates an unphysical near-surface residual circu-

lation. 

In breaking waves, the surface slopes are large, O(1) , and

∂ u i / ∂ σ � = 0 in a bore-like region, and thus using (1) provides a

poor estimation of the associated near-surface velocity gradient

and turbulence production. Another simplification in some of the

existing non-hydrostatic RANS models using the σ -coordinate sys-

tem is the neglect of the effects of surface and bottom slopes in

the horizontal diffusion terms ( Stansby and Zhou, 1998 ). 

Our goals here are (1) to derive consistent surface and bottom

dynamic boundary conditions for the normal and tangential stress

fields and (2) to carefully examine the role of surface slopes in

the predicted near-surface velocity and turbulence fields in sur-

face gravity waves. We compare the velocity field in a deep-water

standing wave in a closed basin predicted by the new version of

the non-hydrostatic model NHWAVE with that predicted by a pre-

vious version of the model ( Ma et al., 2012 ) (hereafter referred to

as the original model), showing that the consistent boundary con-

ditions do not generate unphysical vorticity at the free surface, in

contrast to commonly used, simplified stress boundary conditions

developed by ignoring all contributions except vertical shear in the

transformation of stress terms. In addition, it is shown that the

consistent boundary conditions significantly improve the predicted

wave shape and wave heights as well as velocity and turbulence

fields in regular surf zone breaking waves, compared with the sim-

plified case. 

The paper is organized as follows. In Section 2 , we present the

governing equations, in conservative form, describing a complete

form of the RANS equations in the σ -coordinate system together

with various turbulence closure models. In Section 3 , we derive

the consistent surface and bottom dynamic boundary conditions

for the velocity and dynamic pressure fields, using the appropriate

dynamic boundary conditions on normal and tangential stresses at

the top and bottom interfaces as well as a Neumann-type bound-

ary condition for scalar fluxes. In Section 4 , we examine the role of

surface slopes in the near-surface velocity and turbulence fields in

surface gravity waves. Wave-breaking-induced eddy viscosity and

its effect on the wave height distribution in the surf zone are dis-

cussed in Section 5 . Conclusions are given in Section 6 . A more
xtensive model-data comparison of various breaking wave prop-

rties in different types of surface breaking waves is presented in

ompanion papers ( Derakhti et al., 2016a,b ). 

. Governing equations in conservative form 

Here, the complete and conservative form of the RANS equa-

ions and the scalar transport equation in the σ -coordinate sys-

em are presented. Further, different turbulence models includ-

ng the standard k − ε ( Rodi, 1980 ) and the renormalization group

RNG) approach by Yakhot et al. (1992) , are presented. The surface

nd bottom boundary conditions will be derived in the next sec-

ion. Details of the numerical method may be found in Ma et al.

2012) and Derakhti et al. (2015) . 

.1. Continuity and momentum equations 

Assuming a uniform density field, the RANS equations in Carte-

ian coordinates (x ∗
1 
, x ∗

2 
, x ∗

3 
) , where x ∗

1 
= x ∗, x ∗

2 
= y ∗ and x ∗

3 
= z ∗

eads as 

∂ u j 

∂ x ∗
j 

= 0 (3)

∂ u i 

∂ t ∗
+ 

∂ u i u j 

∂ x ∗
j 

= 

1 

ρ0 

∂S i j 

∂ x ∗
j 

+ g i δi 3 , (4)

here (i, j) = 1 , 2 , 3 , u is the ensemble-averaged velocity, ρ0 is the

eference water density, g = (0 , 0 , −g) is the gravitational acceler-

tion, δ is the Kronecker delta function, S i j = 	i j − τi j is the to-

al ensemble-averaged stress tensor, 	ij is the ensemble-averaged

uid stress and τ ij is the Reynolds stress. For an incompress-

ble fluid, the net ensemble-averaged fluid stress, composed of

he pressure contribution p plus the viscous stress σ ij , is defined

y 	i j = −pδi j + σi j . In a Newtonian fluid, we may assume that

i j = 2 μe i j , where e i j = 1 / 2( ∂u i / ∂x ∗
j 
+ ∂u j / ∂x ∗

i 
) is the strain rate

ensor and μ is the dynamic viscosity. Although there is no uni-

ersal model for τ ij , even in the case of a single-phase flow, we

se the common eddy viscosity approach to relate the anisotropic

art of the Reynolds stress, τ de v 
i j 

, to the rate of strain, e ij as τ de v 
i j 

≡

i j −
δi j 

3 τkk = −2 ρ0 (νt ) j e i j . Here, ( νt ) j is the turbulent eddy viscos-

ty in the j direction ( j is not a free index here), obtained from an

ppropriate turbulence model. If grid resolution in the horizontal

irections is considerably different from that in the vertical direc-

ion, the horizontal turbulent eddy viscosity (νt ) x = (νt ) y may be

ifferent from that in the vertical direction ( νt ) z . 

The governing Eqs. (3) and (4) are next transformed into the

-coordinate system (see Fig. 1 ), which is given by 

 = t ∗ x = x ∗ y = y ∗ σ = 

z ∗ + h 

D 

(5)

here D = h + η is the total water depth, h is the still water depth,

nd η is a free surface elevation. In the case of a multi-valued

urface, however, the definition of a free surface elevation is ar-

itrary, and, we assume η is sufficiently smooth to be considered

s a single-valued mean air-water interface. 

Each term of (3) and (4) is transformed into the σ -coordinate

ystem by multiplying by D and using chain differentiation rule

s 

 

∂ψ 

∂x ∗
j 

= D 

∂ψ 

∂x j 
λ j + D 

∂ψ 

∂σ
σx ∗

j 

= 

∂Dψ 

∂x j 
λ j + 

(
− D x j 

D 

λ j 

)
Dψ + 

(
σx ∗

j 

)
∂Dψ 

∂σ

= 

∂Dψ 

∂x j 
λ j + 

∂σx ∗
j 
Dψ 

∂σ
, (6)
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Fig. 1. Illustration of σ -coordinate transformation. The irregular physical domain in 

the ( x ∗ , y ∗ , z ∗ , t ∗) space is transformed to a rectangular computational domain in 

the ( x, y, σ , t ) space by an algebraic mapping. Here, only the mapping in the ( x ∗ , 

z ∗)–plane is shown. In both the y ∗- and y -direction, the grid is uniform and is not 

plotted. 

w  

s  

p

c

 

w

U

�

 

b  

e  

t

w

E

w  

t  

a  

ρ  

p  

d  

o  

s  

e

2

 

o  

t

w  

b  

r  

t  

q  

(  

M

2

a  

e  

I  

v  

i  

ν  

m

 

t  

S  

l  

o  

u  

σ  

i

ν  

w  

e  

e  

f  

f

a

D  

 

0  

a  

d  

n

c  

w  

t  

0  

p

P

w  

m  

i

here λ j = 1 − δ3 j , ∂( ) / ∂t ∗ = ( ) t ∗ , ∂( ) / ∂x ∗
j 
= ( ) x ∗

j 
; hereafter

ummation inside expressions involving λj is not implied. Multi-

lying (3) by D and using (6) , the continuity equation in the σ
oordinates can be written as 

∂D 

∂t 
+ 

∂ U i 

∂ x i 
λi + 

∂�

∂σ
= 0 . (7)

here 

 i = Du i , 

= D 

(
σt ∗ + σx ∗

j 
u j 

)
= Dσt ∗ + σx ∗

j 
U j . (8) 

Multiplying (4) by D and using (6) , after doing some alge-

ra, the complete and conservative well-balanced form of the

nsemble-averaged momentum equation in the σ -coordinate sys-

em reads as 

∂U i 

∂t 
+ 

∂ 

∂x j 

(
U i U j /D + 

[
ghη + gη2 / 2 

]
δi j 

)
λ j + 

∂U i �/D 

∂σ
= 

− 1 

ρ0 

{ 

D 

∂ p h 

∂x i 

∣∣
σ=1 

− ρ0 gηh x i 

} 

λi (barotropic pressure terms) 

− 1 

ρ0 

{ 

∂P 

∂x i 
λi + 

∂σx ∗
i 
P 

∂σ

} 

(dynamic pressure terms) 

+ 

∂ 2(νe f f ) j E i j 

∂x j 
λ j + 

∂ 2 σx ∗
j 
(νe f f ) j E i j 

∂σ
(diffusion terms) , (9) 

here (νe f f ) n = ν + (νt ) n , n = 1 , 2 , 3 , and 

P = D 

(
p d + 

1 

3 

τkk 

)
= D 

(
p d + 

2 

3 

ρ0 k 

)

 i j = De i j = 

1 

2 

{ 

∂U i 

∂x j 
λ j + 

∂U j 

∂x i 
λi + 

∂ 

∂σ

(
σx ∗

j 
U i + σx ∗

i 
U j 

)} 

. (10) 

here k is the ensemble-averaged turbulent kinetic energy. Here,

he total pressure is divided into the dynamic pressure p d = p − p h ,

nd the hydrostatic pressure given by ∂ p h / ∂σ = −Dρ0 g. Thus p h =
0 gD (1 − σ ) + p a and p h 

∣∣∣
σ=1 

= p a , where p a is the imposed air

ressure at the free surface. Note that the dynamic pressure and

iffusion terms in ( 9 ) and ( 10 ) are given in a conservative form as

pposed to those given in the existing comparable formulations,

uch as Lin and Li (2002 , equations 14–16,19) and Ma et al. (2012 ,

quations 6,9,10). 
.2. Scalar transport equation 

Following the same procedure as we did for the transformation

f the momentum equation, the conservative form of the scalar

ransport equation in the σ -coordinate system can be written as 

∂C 

∂t 
+ 

∂C U j /D 

∂x j 
λ j + 

∂ 

∂σ

(
C 

[
�/D + σx ∗

j 
w c δ3 j 

])
= 

+ 

∂ν j D j 

∂x j 
λ j + 

∂σx ∗
j 
ν j D j 

∂σ
+ D �〈 c〉 . (11) 

here νn = ν + ( νt / σ〈 c〉 ) n , σ 〈 c 〉 is the corresponding Schmidt num-

er, C = D 〈 c〉 , and D j = ( ∂C / ∂x j ) λ j + ∂σx ∗
j 
C / ∂σ . Here, �〈 c 〉 rep-

esents the associated source/sink terms for 〈 c 〉 , and w c is a set-

ling or rising velocity of 〈 c 〉 , equal to zero for a neutrally buoyant

uantity. For the case of negligibly small surface and bottom slopes

 ∇ h h and ∇ h η ≈ 0), Eq. (11) simplifies to the expression given in

a et al. (2013 , 2014 ). 

.3. Turbulence model 

An appropriate turbulence model is needed to estimate νt 

s well as to provide the bulk turbulence statistics such as the

nsemble-averaged turbulent kinetic energy and dissipation rate.

n many numerical approaches, depending on the grid size in the

ertical and horizontal directions, the corresponding eddy viscos-

ty for the vertical direction, νv 
t = (νt ) 3 , and horizontal directions,

h 
t = (νt ) 1 , 2 , may not be of the same order. Here, we assume the

ore physically reasonable formulation νt = νv 
t = νh 

t . 

The Smagorinsky subgrid and k − ε models are commonly used

urbulence models, depending on the grid resolution. The constant

magorinsky model reads as νt = 

(c s �) 2 

D 

√ 

2 E i j E i j , where � is the

ength scale on the order of the grid size, and c s ∼ 0 . 1 − 0 . 2 is the

nly input parameter. Having relatively larger grid sizes, which is

sually the case in non-hydrostatic modeling using a few vertical

-levels, a k − ε turbulence model is more appropriate to estimat-

ng νt as below 

t = c μ
k 2 

ε
= c μ

K 

2 

D E , (12)

here c μ ( Rodi, 1980 ) is an empirical coefficient, k is the

nsemble-averaged turbulent kinetic energy, and ε is the

nsemble-averaged turbulent dissipation rate. Transport equations

or K = Dk and E = Dε need to be solved. The transport equation

or K and E can be simply obtained by replacing C in (11) by K
nd E respectively, where 

 �K = P s − E, D �E = 

E 
K 

[
c 1 E P s − c 2 E E 

]
. (13)

In the standard k − ε model ( Rodi, 1980 ), we have c μ =
 . 09 , c 1 E = 1 . 44 , c 2 E = 1 . 92 , σK = 1 . 0 and σE = 1 . 3 . Using the RNG

pproach with scale expansions for the Reynolds stress and pro-

uction of dissipation terms, Yakhot et al. (1992) derived a dy-

amic procedure to determine c 2 E as 

 2 E = 1 . 68 + 

c μζ 3 (1 − ζ / 4 . 38) 

1 + 0 . 012 ζ 3 
, (14)

here ζ = 

K 
D E 

√ 

2 E i j E i j is the ratio of the turbulent and mean strain

ime scales. The rest of the closure coefficients are given by c μ =
 . 085 , c 1 E = 1 . 42 , and σK = σE = 0 . 72 . Finally, the rate of shear

roduction P s is given by 

 s = −τi j 

[
∂U i 

∂x j 
λ j + 

∂σx ∗
j 
U i 

∂σ

]
, (15) 

here the Reynolds stress τ ij may be estimated using a linear

odel given by τi j = 

δi j 

3 τkk − 2 ρ0 (νt ) j e i j or a nonlinear model as

n Ma et al. (2013) . 
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3. Surface and bottom boundary conditions 

The free surface and the bottom may be expressed as F = z ∗ −
ξ = 0 where ξ = η at the free surface ( σ = 1 ), and ξ = −h at the

bottom ( σ = 0 ). We define the local coordinate system ( x ′ 
1 
, x ′ 

2 
, x ′ 

3 
) ,

such that x ′ 
3 

is the vector normal to the surface oriented in the + z ∗

sense, F = 0 , given by 

x 

′ 
3 = 

∇F 

| F | = 

1 

A 

(−ξx ∗
1 

, −ξx ∗
2 

, 1) = 

1 

A 

(−ξx , −ξy , 1) , (16)

where A = | F | = 

√ 

1 + ξ 2 
x + ξ 2 

y . The other two unit vectors can be

any orthogonal pair of vectors ( x ′ 
1 

· x ′ 
2 

= 0 ) in the plane tangent to

the F = 0 surface. Here, we choose 

x 

′ 
1 = 

1 

B 

(1 , 0 , ξx ) , B = 

√ 

1 + ξ 2 
x 

x 

′ 
2 = x 

′ 
3 × x 

′ 
1 = 

1 

AB 

(−ξx ξy , 1 + ξ 2 
x , ξy ) . (17)

The transformation of any vector, ϕ, in the Cartesian coordi-

nates into the local coordinates, ϕ 

′ , on F = 0 is given by 

ϕ 

′ 
j = C i j ϕ i , C = 

⎡ 

⎢ ⎣ 

1 
B 

−ξx ξy 

AB 
−ξx 

A 

0 

1+ ξ 2 
x 

AB 

−ξy 

A 

ξx 

B 

ξy 

AB 
1 
A 

⎤ 

⎥ ⎦ 

, (18)

where C ij is the cosine of the angle between the x ∗i and x ′ j axes. In

addition, the transformation of any tensor in Cartesian coordinates

into the local coordinates on F = 0 is given by 

ϕ 

′ 
mn = C im 

C jn ϕ i j . (19)

3.1. Kinematic boundary conditions 

Assuming no mass flux at the interface, a particle initially on

the interface will remain on the interface in which we can write

DF /Dt ∗ = ∂F /∂t ∗ + u j ∂F /∂x ∗
j 
= 0 . Thus, the kinematic surface and

bottom boundary conditions in the σ coordinates are simply writ-

ten as 

 

∣∣∣
σ=0 , 1 

= Dξt + ξx U 

∣∣∣
σ=0 , 1 

+ ξy V 

∣∣∣
σ=0 , 1 

, (20)

where ξ = η at the free surface ( σ = 1 ), and ξ = −d at the bot-

tom ( σ = 0 ). Because σt ∗
∣∣
σ=0 , 1 

= −ξt /D, σx ∗
1 

∣∣
σ=0 , 1 

= −ξx /D, and

σx ∗
2 

∣∣
σ=0 , 1 

= −ξy /D, we have 

�

∣∣∣
σ=0 , 1 

= Dσt ∗

∣∣∣
σ=0 , 1 

+ σx ∗
j 

∣∣∣
σ=0 , 1 

U j 

∣∣∣
σ=0 , 1 

= 0 

∂�

∂σ

∣∣∣
σ=0 , 1 

= −ξx 

D 

∂U 

∂σ

∣∣∣
σ=0 , 1 

− ξy 

D 

∂V 

∂σ

∣∣∣
σ=0 , 1 

+ 

1 

D 

∂W 

∂σ

∣∣∣
σ=0 , 1 

= 0 . 

(21)

Thus in the σ coordinates, the surface and bottom vertical ve-

locity as well as vertical acceleration are always zero. 

3.2. Tangential stress boundary conditions 

Using (19) , the transformed total stress on F = 0 is given by 

S 

′ 
3 i 

∣∣∣
σ=0 , 1 

= C ji 

(
− ξx 

A 

S 1 j −
ξy 

A 

S 2 j + 

1 

A 

S 3 j 

)∣∣∣
σ=0 , 1 

, (22)

where S i j = S 

p δi j + S 

v 
i j 

is the total stress including the pressure,

S 

p = −
(

p h + P/D 

)
, and viscous stress S 

v 
i j 

= 2 ρ0 (νe f f ) j 
(
E i j /D 

)
contributions. 
If the state of stress in the external media is available, the con-

inuity of the tangential stress on F = 0 reads as 

 

′ 
3 i 

∣∣
σ=0 , 1 

= S 

′ 
3 i 

ext 
∣∣
σ=0 , 1 

, (23)

here i = (1 , 2) , and S 

′ 
3 i 

ext 
∣∣
σ=0 , 1 

is the external stress on F = 0

n the i direction, e.g., the wind stress parallel to the free surface

r the bottom shear stress. Here, ( ) ′ represent the local coordinate

ystem given by (16) . However, if the external media is assumed to

e rigid, S 

′ 
3 i 

ext 
∣∣
σ=0 , 1 

is replaced by the estimated shear stress near

he rigid boundary, as discussed below. 

Multiplying (23) by D and using (22) , and assuming the same

urbulent eddy viscosity in all directions on F = 0 , we obtain 

ξx 

[
E 11 − E 33 

]
+ 

[
1 − ξ 2 

x 

]
E 13 − ξy 

[
E 12 + ξx E 23 

]
= 

AD 

2 ρ0 νe f f 

F 

ext 
1 

∣∣∣
σ=0 , 1 

ξy 

[
E 22 − E 33 

]
+ 

[
1 − ξ 2 

y 

]
E 23 − ξx 

[
E 12 + ξy E 13 

]
= 

AD 

2 ρ0 νe f f 

F 

ext 
2 

∣∣∣
σ=0 , 1 

, 

(24)

here 

 

ext 
1 = B S 

′ 
31 

ext 

 

ext 
2 = 

ξx ξy 

B 

S 

′ 
31 

ext + 

A 

B 

S 

′ 
32 

ext 
. (25)

Rearranging (24) , the condition of continuity of the tangential

tress on F = 0 finally gives 

∂U 

∂σ

∣∣∣
σ=0 , 1 

= 

D 

2 

Aρ0 νe f f 

F 

ext 
1 

∣∣∣
σ=0 , 1 

− ξx 
∂W 

∂σ

∣∣∣
σ=0 , 1 

+ 

D 

A 

2 

{ 

2 ξx (U) x −
[
1 −ξ 2 

x 

]
(W ) x + ξy 

[
(U) y + (V ) x + ξx (W ) y 

]} 

σ=0 , 1 

∂V 

∂σ

∣∣∣
σ=0 , 1 

= 

D 

2 

Aρ0 νe f f 

F 

ext 
2 

∣∣∣
σ=0 , 1 

− ξy 
∂W 

∂σ

∣∣∣
σ=0 , 1 

+ 

D 

A 

2 

{ 

2 ξy (V ) y −
[
1 −ξ 2 

y 

]
(W ) y + ξx 

[
(V ) x + (U) y + ξy (W ) x 

]} 

σ=0 , 1 

, 

(26)

here 

(U i ) x = ∂ U i /∂ x − U i D x /D = D 

∂u i 

∂x 

(U i ) y = ∂ U i /∂ y − U i D y /D = D 

∂u i 

∂y 
. (27)

If we only consider the wind stress at the free surface, using

22) we have 

 

ext 
1 

∣∣∣
σ=1 

= 

1 

A 

{ 

(1 − ξ 2 
x ) τwx − ξx ξy τwy 

} 

 

ext 
2 

∣∣∣
σ=1 

= 

1 

A 

{ 

(1 − ξ 2 
y ) τwy − ξx ξy τwx 

} 

, (28)

here τwx and τwy are the wind stresses in the x and y direc-

ions, respectively. In the case of negligibly small wind speeds,

 

ext 
1 

| σ=1 = F 

ext 
2 

| σ=1 = 0 . 

At the bottom, the external shear stress parallel to the bottom,

r bottom stress, can be estimated from the law of the wall as 

 

′ 
31 

ext 
∣∣∣
σ=0 

≈ ρ0 u 

2 
∗

U 

′ 
U 

′ 
b 

, S 

′ 
32 

ext 
∣∣∣
σ=0 

≈ ρ0 u 

2 
∗

V 

′ 
U 

′ 
b 

, (29)

here U 

′ 
b 

= 

√ 

U 

′ 2 + V ′ 2 
∣∣∣
σ=�σ1 / 2 

is the magnitude of velocity paral-

el to the bed at the first grid cell above the bed. Using (18) , U 

′ and

 

′ , the horizontal velocities (velocity times D ) parallel to the bed,
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re given by 

 

′ = C j1 U j = 

1 

B 

(
U − h x W 

)∣∣∣
σ=�σ1 / 2 

 

′ = C j2 U j = 

1 

AB 

(
− h x h y U + 

[
1 + h 

2 
x 

]
V − h y W 

)∣∣∣
σ=�σ1 / 2 

, (30) 

nd u ∗ is the friction velocity given by 

 ∗ = 

κβU 

′ 
b 

D ln 

(
z b / z 0 

) , (31) 

here κ = 0 . 41 is the Van Karman constant, and β ≤ 1 repre-

ents the stratification effects in the bottom boundary layer. Here,

 b and z 0 are the distances from the bed at which the ensemble-

veraged velocities parallel to the bed are assumed to be U 

′ 
b 
/D and

ero respectively, depending on the boundary layer characteristics

s well as the roughness length-scale, k s . For a fully rough turbu-

ent boundary layer, it is typically assumed that z 0 = k s / 30 . 

.3. Normal stress boundary condition 

If the state of stress in the external media is available, the con-

inuity of the normal stress reads as 

 S 

′ 
33 

∣∣∣
σ=0 , 1 

= 

{ 

−
(

Dp h + P 

)
+ 

2 ρ0 νe f f 

A 

2 

(
ξ 2 

x E 11 + ξ 2 
y E 22 + E 33 

+ 2 ξx ξy E 12 − 2 ξx E 13 − 2 ξy E 23 

)} 

σ=0 , 1 = D S 

′ 
33 

∣∣∣ext 

σ=0 , 1 
. 

(32) 

here the normal stress in the local coordinate, S 

′ 
33 

∣∣∣
σ=0 , 1 

, is ob-

ained using (22) . Rearranging (32) , we have 

 

∣∣∣
σ=0 , 1 

= −D 

(
p h 

∣∣∣
σ=0 , 1 

+ S 

′ 
33 

∣∣∣ext 

σ=0 , 1 

)

− ρ0 νe f f 

A 

2 

{ 

2 ξx 

[
(W ) x − ξx (U) x 

]

+ 2 ξy 

[
(W ) y − ξy (V ) y 

]
− 2 ξx ξy 

[
(U) y + (V ) x 

]} 

σ=0 , 1 

(33) 

eglecting viscous stresses in the air side, we have S 

′ 
33 

∣∣∣ext 

σ=1 
= −p a 

n the free surface. The atmospheric pressure, p a , is absorbed in

he hydrostatic pressure. Thus, the Dirichlet-type boundary condi-

ion for the modified dynamic pressure reads as 

 

∣∣∣
σ=1 

= −
ρ0 νe f f 

∣∣
σ=1 

A 

2 

{ 

2 ξx 

[
(W ) x −ξx (U) x 

]
+ 2 ξy 

[
(W ) y −ξy (V ) y 

]

− 2 ξx ξy 

[
(U) y + (V ) x 

]} 

σ=1 . (34) 

At the bottom, however, such a relation can not be applied

nless the bottom is a dynamically coupled layer. In the case of

 rigid bottom, using the vertical momentum equation we can

rite 

∂P 

∂σ

∣∣∣
σ=0 

= −Dρ0 

{ 

∂W 

∂t 
+ 

∂W U/D 

∂x 
+ 

∂W V/D 

∂y 
+ 

∂W �/D 

∂σ

} 

σ=0 

+ Dρ0 

{ ∂ 2(νe f f ) j E 3 j 

∂x j 
λ j + 

∂ 2 σx ∗
j 
(νe f f ) j E 3 j 

∂σ

} 

σ=0 

. 

(35) 

eglecting the Reynolds stress gradients at the bottom and us-

ng (21) , a Neumann-type boundary condition for the modified dy-
amic pressure at the bottom reads as 

∂P 

∂σ

∣∣∣
σ=0 

= −Dρ0 

{ 

∂W 

∂t 
+ 

∂W U/D 

∂x 
+ 

∂W V/D 

∂y 

} 

σ=0 

. (36) 

.4. Neumann-type boundary condition for a scalar quantity 

The Neumann boundary condition for a scalar quantity, 〈 c 〉 , nor-

al to the interface, F = 0 , may be expressed as 

∂〈 c〉 
∂x ′ 

3 

∣∣∣
σ=0 , 1 

= 〈 f 〉 
∣∣∣
σ=0 , 1 

, (37) 

here 〈 f 〉 
∣∣∣
σ=0 , 1 

represent the corresponding ensemble-averaged

ux of 〈 c 〉 across the interface. In the case of 〈 f 〉 
∣∣∣
σ=0 , 1 

= 0 , (37) is

alled a zero-gradient boundary condition for 〈 c 〉 on the interface,

ommonly used for passive scalars such as salinity, the turbulent

inetic energy, and dissipation rate. Multiplying (37) by D and us-

ng (16) , we have 

 

∂〈 c〉 
∂x ′ 

3 

∣∣∣
σ=0 , 1 

= D (∇〈 c〉 ) 
∣∣∣
σ=0 , 1 

· x 

′ 
3 = D 

∂〈 c〉 
∂x ∗

j 

∣∣∣
σ=0 , 1 

x ′ 3 j = F 

∣∣∣
σ=0 , 1 

. 

(38) 

here F 

∣∣∣
σ=0 , 1 

= D 〈 f 〉 
∣∣∣
σ=0 , 1 

. Using (6) , the Neumann-type bound-

ry condition for C = D 〈 c〉 normal to the interface on F = 0 can be

ritten as 

∂C 

∂σ

∣∣∣
σ=0 , 1 

= 

{ 

D 

A 

F + 

D 

2 

A 

2 

(
ξx 

∂C /D 

∂x 
+ ξy 

∂C /D 

∂y 

)} 

σ=0 , 1 

. (39)

.5. Boundary conditions for K and E

A zero-gradient boundary condition, F = 0 , is imposed for both

and E at σ = 1 , and ∂ K/∂ σ and ∂ E/∂ σ at σ = 1 are estimated

sing (39) . 

The Dirichlet-type boundary conditions for both K and E is

sed near the bottom, given by 

 b = D 

u 

2 
∗√ 

c μ
, E b = D 

u 

3 
∗

κz b 
(40)

here κ is the Von Karman constant, z b is the distance from the

ed, and u ∗ is a friction velocity given by (31) . Strictly speaking,

his is based on the mixing length assumption and the simpli-

ed k -equation (turbulence production equals to dissipation) for a

teady boundary layer. 

. The role of surface slopes in the near-surface velocity and 

urbulence fields 

In this section, model results for the time-averaged velocity

eld in a deep-water standing wave in a closed basin as well as

he free surface evolution, velocity and turbulent kinetic energy in

urf zone regular spilling breaking waves are compared with those

redicted by the original version of NHWAVE ( Ma et al., 2012 )

nd the corresponding measurements of Ting and Kirby (1994) .

n the original model, the dynamic boundary conditions described

n the previous section have been simplified by the neglect of

he terms which include the surface or bottom slopes. Derakhti

t al. (2015) show that the new boundary conditions and numeri-

al schemes are not rotationally biased in the ( x, y ) plane. 
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Fig. 2. Spatial distribution of the long-time-averaged velocity field in a standing 

wave in a closed basin. Comparison between NHWAVE results with 10 vertical σ - 

levels using the ( a ) consistent and ( b ) simplified boundary conditions. 

Fig. 3. Time variation of the normalized wave-averaged potential energy of a stand- 

ing wave in a closed basin. Comparison between NHWAVE results with (circle sym- 

bols) 3, (+ symbols) 5 and (diamonds symbols) 10 vertical σ -levels using the (solid 

lines) consistent and (dashed lines) simplified boundary conditions. 

Fig. 4. Experimental layout of Ting and Kirby (1994) . Vertical solid lines: the cross- 

shore locations of the velocity measurements. 

 

 

 

 

 

 

 

Fig. 5. Cross-shore distribution of crest and trough elevations as well as mean wa- 

ter level for the surf zone spilling breaking case of Ting and Kirby (1994) . Compar- 

ison between NHWAVE results with 10 vertical σ -levels using the new model with 

RNG-based k − ε (solid lines), standard k − ε (dotted-dashed lines), and the original 

model (blue dashed lines) and the corresponding measurements of Ting and Kirby 

(1994) (markers). Vertical dashed lines are the cross-shore locations of the results 

shown in Fig. 6 . 

Fig. 6. Phase-averaged free surface elevations for the surf zone spilling breaking 

case at different cross-shore locations shown in Fig. 5 . Definitions are the same as 

in Fig. 5 . Here, X = x − x b , is the horizontal distance from the break point. 
4.1. Standing wave in a closed basin 

Using the simplified velocity boundary condition, e.g., ∂ u/∂ σ =
0 , imposes an unphysical source of vorticity at the free surface in

the case of a non-zero horizontal gradient of the vertical velocity,

∂ w / ∂ x � = 0, generating an unphysical circulation pattern. A deep-

water standing wave in a closed basin, with length of L = 20 m and

depth of h = 10 m, is selected to examine this effect. The initial

surface elevation is η = a cos kx , where k = 2 π/L, a = 0 . 1 m is the
0 
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Fig. 7. Snapshots of the turbulent kinetic energy, k (m 

2 /s 2 ), distribution for the surf zone spilling breaking case. Comparison between NHWAVE results with 10 vertical 

σ -levels using the (a − e ) new model with RNG-based k − ε and (A − E) original model. 
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t  
mplitude of the standing wave and L is the wave length, equals

o the basin’s length. Since kh = π, it is a relatively short wave.

ased on the linear dispersion relation, the wave period is equal

o T = 3 . 59 s. A uniform grid spacing of 0.2 m in the horizontal

irection, and 10 constant σ levels are used. The simulation time

s 36 . 0 s, about 10 wave periods. To calculate a long-time aver-

ged velocity field, the results are first interpolated onto an Eule-

ian grid of �z = 0 . 1 m and �x = 0 . 2 m, and then time averaging

s performed over 10 wave periods. Fig. 2 shows the existence of

n unphysical circulation pattern in the original model results us-

ng ∂ u/∂ σ = 0 boundary conditions. Using linear theory, it can be

hown that the magnitude of the instantaneous unphysical vortic-

ty at the free surface is proportional to (ka ) T −1 . In the deep wa-

er regime, it then becomes ag −1 T −3 , and increases with increasing

ave height or decreasing wave period. 

In addition, using the consistent boundary conditions, the po-

ential energy loss is decreased compared with the linearized ana-

ytical solution, especially at cases with a few vertical σ -levels as

hown in Fig. 3 . 

.2. Surf zone regular breaking waves 

The surf zone regular spilling breaking case of Ting and Kirby

1994) is selected here, to examine the role of surface slopes

n the prediction of free surface evolution as well as wave-

reaking-induced velocity and turbulence fields in the surf zone.
ig. 4 sketches the experimental layout and the cross-shore lo-

ations of the available velocity measurements. This experiment

as been widely used by other researchers to validate both non-

ydrostatic models ( Bradford, 2011; 2012; 2014; Smit et al., 2013;

a et al., 2014 ) and VOF-based RANS models ( Lin and Liu, 1998;

radford, 20 0 0; Ma et al., 2011 ). 

A uniform grid of �x = 0 . 025 m is used in the horizontal di-

ection, and 10 σ levels are used in the vertical direction. At the

eft inflow boundary, the free surface location and velocities are

alculated using the theoretical relations for Cnoidal waves given

n Wiegel (1960) . The numerical domain is extended beyond the

aximum run-up, and the wetting/drying cells are treated as de-

cribed in Ma et al. (2012 , Section 3.4) by setting D min = 0 . 001 m.

n this section, 〈 〉 and ( ) refer to phase and time averaging over

ve subsequent waves after the results reach quasi-steady state, re-

pectively. The mean water depth is defined as D = h + η, where h

s the still water depth and η is the wave set-down/set-up. As in

ing and Kirby (1994) , x = 0 is the cross-shore location in which

 = 0 . 38 m , and X = x − x b is the horizontal distance from the ini-

ial break point, x b . In Ting and Kirby (1994) , the break point for

pilling breakers was defined as the location where air bubbles be-

in to be entrained in the wave crest ( x b = 6 . 40 m). In the model

he break point is taken to be the cross-shore location at which

he wave height starts to decrease. 

Fig. 5 shows the cross-shore distribution of crest, 〈 η〉 max , and

rough, 〈 η〉 min , elevations as well as mean water level, η in the
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Fig. 8. Time-averaged normalized (a − d) turbulent kinetic energy, 
√ 

k /g D , and 

(A − D ) horizontal velocity (undertow), u / 
√ 

g D , profiles at different cross-shore lo- 

cations close to the initial break point ( X = −0.46 m, 0.26 m) and in the inner surf 

zone ( X = 2.71 m, 3.32 m). Comparison between NHWAVE results with 10 vertical 

σ -levels using the new model with RNG-based k − ε (solid lines), standard k − ε

(dotted-dashed lines), and the original model (blue dashed lines) and the corre- 

sponding measurements of Ting and Kirby (1994) (circle markers). Here, D = h + η, 

where h is the still water depth and η is the wave set-up/set-down. 
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shoaling, transition and inner surf zone regions predicted by the

new and original model together with the corresponding measure-

ments. In the shoaling zone, the new model accurately captures

the water surface evolution compared with the observation. The

predicted cross-shore location of the initial break point is approx-

imately 0.7 m seaward of the observed one. In the transition re-

gion, 〈 η〉 max is underpredicted by the new model compared with

the measurement (see also Fig. 6 a ). Derakhti et al. (2016a ) show

that this early initiation of breaking and underprediction of 〈 η〉 max 

in the transition region occur regardless of the choice of vertical

resolution. The same trend has been reported in previous two-

dimensional VOF/RANS studies of surf zone breaking waves; see,

for example, Lin and Liu (1998 , Figure 3a), Bradford (20 0 0 , Figure

1) and Ma et al. (2011 , Figure 9). Typical vertical grid spacing near

the breaking crest in those studies were approximately four times

smaller than in the present study, suggesting that this discrepancy

is not due to a selected numerical resolution or the single-valued

free surface assumption imposed in the σ -coordinate system. The

discrepancy is believed to be related to the limitation of the k − ε
turbulence closure model in a rapidly distorted shear flow ( Lin and

Liu, 1998 ), which is the case in breaking waves. 
In the inner surf zone, the new model predicts the water sur-

ace evolution with reasonable accuracy compared with observa-

ions. The original model, on the other hand, overpredicts 〈 η〉 max 

n almost the entire surf zone (see also Ma et al. (2014 , Figure

)). Such overprediction of 〈 η〉 max or wave heights in the surf

one also was reported in the σ -coordinate non-hydrostatic RANS

imulations by Bradford (2012) and Bradford (2014) . Those studies

sed the simplified surface boundary conditions, as in the origi-

al NHWAVE model, suggesting that neglecting the effect of sur-

ace slopes in the dynamic surface boundary conditions results in a

ignificant underprediction of the total wave-breaking-induced en-

rgy dissipation in the surf zone. This observation is further dis-

ussed in the discussion section. Sawtooth-like waves in the inner

urf zone are predicted fairly reasonably by the new model com-

ared with observations, as shown in Fig. 6 ( b − d). However, the

hase-averaged free surface elevations, 〈 η〉 , predicted by the orig-

nal model deviate from the experimental data. Results show that

sing the RNG-based k − ε model gives a better estimation of the

ave phase-speed compared with that predicted by the standard

 − ε model. Using different k − ε models, however, has a negligi-

ly small effect on the predicted wave height and wave set-up, in

omparison to the corrections presented by consistent treatment of

oundary conditions. Because the wave heights predicted by both

he standard and RNG-based k − ε models are approximately the

ame, the larger apparent wave phase speed predicted by the stan-

ard k − ε model, shown in Fig. 6 , must be related to the difference

n the model prediction of wave-breaking-induced turbulence or

ean current. We note that the slightly weaker undertow current

redicted by the standard k − ε model compared with that by the

NG-based k − ε model, as shown in Fig. 8 , can explained some

art of the increase in the apparent wave phase speed. However,

he question of how turbulence can affect the phase wave speed

emains unexplained. 

Fig. 7 shows that the structure of the turbulent kinetic energy,

 , predicted by the new model is considerably different com pared

ith that predicted by the original model. In addition, the k values

redicted by the original model are much larger than those pre-

icted by the new model. As shown in Lin and Liu (1998 , Figures

2a and 13a), a roller region in the breaking wave front is a source

egion of turbulence generation, in which k values are relatively

arge. Thus, the structure of instantaneous k predicted by the new

odel is significantly improved compared to that predicted by the

riginal model. The wrong location of high k regions predicted by

he original model is mainly due to imposing ∂ u/∂ σ = 0 boundary

ondition at the free surface, leading to a significant change of the

roduction term at the bore-front region. 

Fig. 8 (a − d) shows the time-averaged k values predicted by

oth the new and original models together with the corresponding

easurements of Ting and Kirby (1994) . It is seen that the origi-

al model (dashed lines) considerably overpredicts k in the entire

urf zone compared with the experimental data. In addition, the

NG-based k − ε model (solid lines) gives a better estimation of

 compared with the standard k − ε model (dashed-dotted lines),

specially at the transition region. We also found that using the

omplete form of the diffusion terms in both the momentum and

 − ε equations has an important role in the correct prediction of

he k distribution inside the surf zone and prevents the unphysical

ontinuous seaward propagation of the k patch as observed in the

riginal model results . 

Finally, Fig. 8 (A − D ) shows that both the vertical structure and

agnitude of the predicted undertow current by the new model

re more consistent with the corresponding measurements com-

ared with those estimated by the original model. A relatively

eak vertical gradient of the predicted undertow profiles by the

riginal model shown in Fig. 8 ( C, D ) (dashed lines) is due to

he overprediction of the eddy viscosity νt as discussed in the
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Fig. 9. Snapshots of the normalized turbulent eddy viscosity, νt / ν , distribution for the surf zone spilling breaking case. Comparison between NHWAVE results with 10 vertical 

σ -levels using the (a − e ) new model with RNG-based k − ε and (A − E) original model. Contours are 250 to 9750 with interval of 500. 

f  

r  

F  

s  

i

5

0  

ν  

s  

L  

t  

n  

t  

m  

t  

n  

f  

i  

p  

t  

e  

e  

l  

a  

t  

s  

s  

a  

t  

n  

s  

r  

t  

i  

e  

z

 

t  

a  

a  

s  
ollowing section. We believe that such excessive vertical mixing

esulted in the uniform predicted undertow profiles reported in

igures 12 and 13 of Bradford (2014) , where the effect of surface

lopes in the dynamic surface boundary conditions was ignored as

n the original NHWAVE model. 

. Discussion 

The standard estimation of surf zone eddy viscosity νt ≈
 . 01 D 

√ 

g D ( Svendsen, 1987 ) gives the normalized eddy viscosity

t / ν in the range of 500 ∼ 20 0 0 in the considered surf zone

pilling case, which is consistent with that reported in Lin and

iu (1998) in the regions below the trough levels. Fig. 9 shows

he snapshots of the spatial distribution of νt / ν predicted by the

ew (panels a − e ) and original (panels A − E) models. The struc-

ure of the predicted νt / ν below the trough levels by the new

odel are consistent with that reported in the VOF/RANS simula-

ion in Lin and Liu (1998 , Figures 12 c and 13 c ), where the mag-

itude of the new model predictions is up to 30% smaller than

or the VOF/RANS simulation. Derakhti et al. (2016b ) show that

ncreasing vertical resolution resulted in a greater deviation com-

ared with the VOF/RANS simulation. The predicted νt / ν below the
rough levels by the original model, on the other hand, are consid-

rably larger (up to 300%) than that reported in Lin and Liu (1998) ,

specially in the outer surf zone and the transition region. We be-

ieve that the overprediction of νt in the original model causes

n unphysical uniform undertow current shown in Fig. 8 C, D , and

hat the use of an unphysical dynamic boundary conditions at the

urface leads to the distortion of wave shape from the expected

awtooth shape in the surf zone as shown in Figs. 6 and 7 . As

 result, the shock condition near the wave front becomes rela-

ively weaker and thus the wave energy dissipation imposed by the

umerical scheme is reduced. Due to an unphysical zero-vertical

hear boundary condition at the free surface, ∂ u/∂ σ = 0 , and the

esultant inaccurate near-surface velocity distribution above the

rough levels the physical dissipation is also underpredicted, lead-

ng to the underprediction of the total wave-breaking-induced en-

rgy dissipation and the overprediction of wave heights in the surf

one as shown in Fig. 5 . 

Close to the bore-front regions, the values of νt predicted by

he new model are significantly smaller than those reported in Lin

nd Liu (1998) ( Fig. 9 a − e ) due to a zero-tangential-stress bound-

ry condition imposed at the smooth free surface. In the present

tudy, as well as in all comparable derivations of non-hydrostatic
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models, a zero-tangential-stress boundary condition is imposed at

the smooth free surface, when wind is absent. However, in the case

of the existence of high turbulence near the free surface such as in

the bore-front region tangential stress at the smooth free-surface

location ( σ = 1 ) includes the Reynolds-type stress associated with

roughness and intermittency in a finite region around the mean

surface. The use of a smooth surface in such instances implies the

pre-application of a subgrid smoothing filter to both the surface

position and local velocity field. This smoothing has not been ap-

plied consistently in any of the presently available models of this

type (see, for more details, Brocchini and Peregrine, 2001 , Sec-

tion 5). Inclusion of the turbulence-induced stress at the free sur-

face should further improve model predictions of wave-breaking-

induced near-surface velocity and turbulence fields. We will exam-

ine such parameterization in the near future. 

6. Conclusions 

In this paper, we derived the consistent surface and bottom dy-

namic boundary conditions for the velocity and dynamic pressure

fields, using the appropriate dynamic boundary conditions on nor-

mal and tangential stresses at the top and bottom interfaces. A

Neumann-type boundary condition for scalar fluxes was also de-

rived. We focused on the examination of the role of surface slopes

in the predicted near-surface velocity and turbulence fields in sur-

face gravity waves, and thus the density field was assumed to be

constant in all considered cases. 

By comparing the predicted velocity field in a deep-water

standing wave in a closed basin, we showed that the consis-

tent boundary conditions did not generate unphysical vorticity at

the free surface, in contrast to commonly used, simplified stress

boundary conditions developed by ignoring all contributions ex-

cept vertical shear in the transformation of stress terms. 

In addition, we found that the consistent boundary conditions

significantly improve the predicted velocity and turbulence fields

in regular surf zone breaking waves, compared with the original

model. The predicted wave shapes and wave height evolution were

also improved by the new model. It was shown that the RNG-

based k − ε model gave a better estimation of k compared with

the standard k − ε model, especially in the transition region. Using

the former also gave a better estimation of the wave phase-speed

compared with that predicted by the latter. Predicted wave height

and wave set-up variations by the various k − ε models, however,

were approximately similar . 
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