
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2007; 53:1019–1048
Published online 20 September 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1354

A higher-order Boussinesq-type model with moving
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SUMMARY

A two-dimensional depth-integrated numerical model is developed using a fourth-order Boussinesq approx-
imation for an arbitrary time-variable bottom boundary and is applied for submarine-landslide-generated
waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving
bottom boundary. The mathematical formulations are derived based on a higher-order perturbation anal-
ysis using the expanded form of velocity components. A sixth-order multi-step finite difference method
is applied for spatial discretization and a sixth-order Runge–Kutta method is applied for temporal dis-
cretization of the higher-order depth-integrated governing equations and boundary conditions. The present
model is validated using available three-dimensional experimental data and a good agreement is obtained.
Moreover, the present higher-order model is compared with fully potential three-dimensional models as
well as Boussinesq-type multi-layer models in several cases and the differences are discussed. The high
accuracy of the present numerical model in considering the nonlinearity effects and frequency dispersion
of waves is proven particularly for waves generated in intermediate and deeper water area. Copyright q
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tsunami waves may be generated by under water earthquakes, submarine landslides, rockslides or
volcano explosions. Giant submerged landslides, normally in the form of debris avalanches, can
produce impulsive waves and affect the entire coastline. Submarine-landslide-generated tsunamis
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are one of the most hazardous phenomena that occur in the coastal areas. There are several
approaches for mathematical formulation of water waves to simplify the real condition into
two-dimensional horizontal domain. The main concern in different approaches is the accuracy
of approximate equations to describe the nonlinearity effects and frequency dispersion of waves.
A simple approach for water-wave simulation was developed based on non-linear shallow water
(NSW) wave equations [1–6]. The results came from NSW improved in comparison with the
results of simpler approaches such as linear or mild slope water wave equations but the wave
frequency dispersion was not captured accurately [5].

As the next step and in order to increase the order of nonlinearity and dispersion, the Boussinesq-
type models have been derived using polynomial approximation of the vertical profile of horizontal
velocities. The classic Boussinesq equations were rewritten in depth-integrated form [7] assum-
ing the second-order variation of velocity in vertical direction ((0,2) Padé approximant). In these
equations, the nonlinearity and frequency dispersion of a wave are simulated in first and second
orders, respectively [8–12]. Some researchers rearranged the second-order Boussinesq model in a
new form to remove the spatial derivatives with an order higher than two to simplify the numerical
simulation [13]. The comparison between numerical results and laboratory or field measurements
shown that the main limitations of the NSW wave equations were improved, relatively, but the
order of accuracy of wave dispersion simulation was not improved significantly [14, 15]. The
wave heights after dispersion show significant deviation from measurements, particularly when
the wave height exceeds 20% of wave’s length. As an improvement in (0,2) Padé approxima-
tion of Boussinesq equations, some researchers rearranged the dispersive terms [3, 11, 16–19] or
introduced a significant water depth, Z�, as a characteristic water depth in which, the horizontal
velocity domain is defined. In this (2,2) Padé approximant, the value of Z� optimized using a
least-square procedure aimed at minimizing errors in approximated waves phase speed [20, 21].
This technique improved the accuracy of depth-integrated second-order approaches but the main
limitation was due to their nonlinearity and shoaling effects, particularly for high-amplitude waves
[22]. This second-order one-layer approach involving Z� was applied by some researches to study
of submarine-landslide-generated waves [23] by rearrangement of the governing equations for a
moving bottom boundary and the results were compared with lower-order Boussinesq-type models.

The extension of Boussinesq models to higher accuracy was continued by Gobbi et al. [24, 25].
They presented a (4,4) Padé approximant accurate to O(�4) for retaining terms in dispersion, and
to all consequential orders in nonlinearity. They proved conclusively that the procedure of Nwogu
[20] (i.e. definition of characteristic depth Z� based on a least-square procedure) is necessarily
not adequate for obtaining higher-order approximation. Thus, they defined a dependent variable
as a weighted average of the velocity potential at two distinct water depths. They used the higher-
order approximation in fixed bottom and a major improvement over the second-order models was
found at least in one horizontal direction. The researches on extending the range of Boussinesq
models to higher accuracy were continued by Lynett and Liu multi-layer approach [26]. They
developed a set of model equations based on piecewise integration of the primitive equations
through several arbitrary layers (two-layer in the study of submarine-landslide waves) within each
layer, an independent velocity profile is derived which allows for achieving a higher-order accuracy
while in each layer the order of approximation is O(�2).

The main objective of this work is to develop a higher-order Boussinesq-type numerical model
with a moving bottom boundary to study the landslide-generated waves, in order to accurately
capture the nonlinear affects as well as the frequency dispersion of waves. We extend the (4,4) Padé
approximation [24, 25] for an arbitrary moving bottom boundary in two horizontal dimensions.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1019–1048
DOI: 10.1002/fld



HIGHER-ORDER BOUSSINESQ-TYPE MODEL 1021

A numerical model is developed using finite difference method (FDM) in a higher-order scheme
for spatial and temporal discretization of governing equations to capture the higher accuracy and
mass conservation.

2. FOURTH-ORDER BOUSSINESQ-TYPE MODEL FOR MOVING BOTTOM BOUNDARY

In this section, we extend the second-order Boussinesq-type model of Lynett and Liu [23] to
derive a two-horizontal fourth-order approximation in dispersion and all consequential orders in
nonlinearity. The derivation procedure is also based on an extension of Gobbi [25] (4,4) Padé
approximant that developed for fixed bottom boundary. The perturbation analysis is used based
on the expansion of velocity components. A schematic of the computational domain and the main
geometric parameters are shown in Figure 1. The dimensionless form of governing equations and
boundary conditions in three-dimensional domain are described as [23]

�2∇ · u + wz = 0 on − h�z�� · � (continuity equation) (1)

ut + �u∇ · u + �

�2
wuz =−∇ p on

− h�z�� · � (momentum equation in two horizontal directions) (2)

Figure 1. A schematic of numerical wave tank and basic parameters which used in mathematical
formulation, the geometry of slide mass is described by Equation (52); the law of slide motion

is described by Equations (53) and (54).
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�wt + �2u · ∇w + �2

�2
wwz = − �Pz − 1 on

− h�z�� · � (momentum equation in z directions) (3)

w = �2(�t + � · u · ∇�) on z = � · � (KFSBC) (4)

p= 0 on z = � · � (DFSBC) (5)

w + �2u · ∇h + �2

�
ht = 0 on z = − h (BBC) (6)

where x and y are the horizontal coordinates scaled by l0 which is the horizontal length scale, z is
the vertical coordinate scaled by h0 which is the characteristic water depth, t is time and scaled by
l0/(gh0)1/2, � is the water surface displacement scaled by a0 which is the impulse wave amplitude,
h is the total depth based on still water considering the moving bottom boundary (h(x, y, t)) and
scaled by h0, u is the vector of horizontal velocity components (u, v) scaled by � · (gh0)1/2, w is
the velocity in vertical direction scaled by (�/�) · (gh0)1/2, p is the water pressure scaled by �a0,
and ∇ = (�/�x, �/�y) is the horizontal gradient vector.

The flow is considered to be irrotational. The irrotationality condition can be defined as

(wy − vz)i + (wx − uz)j + (vx − uy)k= 0 (7)

and it yields the following equations in horizontal plane:

uz =wx and vz = wy (8)

thus, we can derive the main irrotationality condition as

uz =∇w (9)

The no-flow condition is assigned for lateral boundaries and the numerical simulation shall be
stopped before the generated waves are received by lateral boundaries. The subscripts denote the
partial derivative. The nonlinearity and dispersion parameters are �= a0/h0 and � = h0/ l0, respec-
tively. In perturbation analysis, the velocity domain components ‘u’ and ‘w’ shall be expanded
into [23]

u=u0 + �2u1 + �4u2 (10)

w = �2w1 + �4w2 (11)

�2 is the basic small parameter in analysis. Substituting these expanded variables into dimensionless
continuity equation (1) leads to

O(�2) : ∇ · u0 + w1z = 0 on − h�z�� · � (12)

O(�4) : ∇ · u1 + w2z = 0 on − h�z�� · � (13)
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Similarly, from moving seafloor boundary condition (6), it can be derived

O(�2) : w1 + u0 · ∇h + 1

�
ht = 0 on z = − h (14)

O(�4) : w2 + u1 · ∇h = 0 on z = − h (15)

On the other hand, substituting the expanded velocity components from Equations (10) and (11)
into irrotational flow condition (i.e. Equation (9)), it can be derived [23]

u0z = 0, u1z =∇w1, u2z =∇w2 (16)

From Equation (15) we can derive

w1 =
∫

w1z dz = −
∫

∇ · u0 dz (17)

Considering bottom boundary condition from Equation (14), the variable w1 is obtained:

w1 = − z∇ · u0 − ∇ · (hu0) − 1

�
ht (18)

From second-order irrotational flow condition (16), we can write

u1 =
∫ z

z̃
u1z dz =

∫ z

z̃
∇w1 dz (19)

z̃ is the characteristic variable depth which is a weighted average of two distinct water depths
which can be described in normalized form as: z̃ =[� · za + (1 − �) · zb]. As shown conclusively
by Gobbi et al. [25], za and zb are the elevations that the horizontal velocity components are
described and � is a weighting parameter which can be optimized in verification stage. Based on
optimization of linear dispersion properties of fourth-order model, the characteristic depth za and
zb and the weighting parameter � can be described as [24, 25]

za =
[
1

9
−

{
8�

567(1 − �)

}1/2

+
{

�

567�(1 − �)

}1/2
]1/2

− 1 (20)

zb =
[
1

9
−

{
8�

567(1 − �)

}1/2
]1/2

− 1 (21)

The variation range of � is between 0.018 and 0.467. In this work, the weighting parameter � is
assumed 0.2 as recommended by Gobbi [25]. Thus, it can be derived from Equation (19):

u1 = − 1
2 (z

2 − z̃2)A − (z − z̃)∇B (22a)

where A is a two-component vector and B is a scalar and are defined as

A=∇(∇ · u0), B =∇ · (hu0) + 1

�
ht (22b)

The higher-order terms of z̃ in normalized form describe as

z̃n = � · zna + (1 − �) · znb (23)
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Now we repeat the above procedure for the next order (fourth order) of expanded variables
(10, 11). From higher-order continuity equation (13) it can be obtained:

w2 =
∫

w2z dz = −
∫

∇u1 dz (24)

By substituting u1 from Equation (22a) and considering bottom boundary condition from
Equation (15) for determination of integration coefficient as

w2|z=−h = − u1|z=−h · ∇h (25)

it can be derived that

w2 = 1
6 z

3∇ · A + 1
2 z

2∇ · (∇B) − 1
2 z∇ · (z̃2A) − z∇ · (z̃(∇B))

+ 1
6h

3∇ · A − 1
2h∇ · (z̃2 · A) + 1

2h
2∇ · (∇B) − h∇ · (z̃(∇B))

+ 1
2h

2A · ∇h − 1
2 z̃

2A · ∇h − h∇h · ∇B − z̃∇h · ∇B (26)

Using irrotational flow condition defined in Equation (16), it can be derived that

u2 =
∫ z

z̃
u2z dz =

∫ z

z̃
∇w2 dz (27)

Substituting w2 from Equation (24) and considering characteristic water depth z̃, we have

u2 = 1
24 (z

4 − z̃4)∇(∇ · A) − 1
4 (z

2 − z̃2)∇(∇ · (z̃2 · A)) + 1
6 (z

3 − z̃3)∇(∇ · (∇B))

− 1
2 (z

2 − z̃2)∇(∇ · (z̃(∇B))) + (z − z̃) · ∇C (28)

where A and B are as defined in Equation (22b) and C is defined as

C = 1
6h

3∇ · A − 1
2h∇ · (z̃2A) + 1

2h
2∇ · (∇B) − h∇ · (z̃(∇B)) + 1

2h
2A · ∇h

− 1
2 z̃

2 · A · ∇h − h · ∇h · ∇B − z̃∇h · ∇B (29)

We can substitute the variables w1, u1, w2 and u2 from Equations (18), (22a), (26) and (28)
into (10) and (11) and obtain the expanded form of main variables u and w which are the
velocity components in three-dimensional domain. For depth integration of domain equations,
the expanded variables should be substituted into the z-direction momentum equation to derive
the pressure distribution. Using Equation (3) and substituting expanded parameters from (10) and
(11), it can be written as

Pz = −1

�
+ �2(−w1t − �u0 · ∇w1 − �w1w1z)

+ �4(−w2t − �u0 · ∇w2 − �u1 · ∇w1 − �w1w2z − �w2w1z) + O(�6) (30)
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By integrating the above equation from �� to z, the water pressure at depth z can be obtained. Also
the pressure in the z = 0 can be derived from integration:

P|z=0 = � + �2[− 1
2∇ · u0t �2�2 + C1t �� + �u0 · (− 1

2∇(∇ · u0)�2�2 + ��∇C1)

− �∇ · u0 · (− 1
2 �

2�2∇ · u0 + C1��)]

+ �4[ 1
24�

4�4∇ · At + 1
6 �

3�3∇ · (∇Bt ) − 1
4 �

2�2∇ · (z̃2A)t − 1
2 �

2�2∇ · (z̃∇B)t + ��Ct ]

+ �4�u0 · [ 1
24 �

4�4∇(∇ · A) + 1
6 �

3�3∇(∇(∇B)) − 1
4 �

2�2∇(∇ · (z̃2A))

− 1
2 �

2�2∇(∇ · (z̃∇B)) + ��∇C]

+ �4�[ 18 �4�4A · ∇(∇ · u0) − 1
4 �

2�2 z̃2A · ∇(∇ · u0) + 1
3 �

3�3∇B · ∇(∇ · u0)

− 1
2 �

2�2 z̃2∇B · ∇(∇ · u0) − 1
6 �

3�3A · ∇C1 + 1
2 �� · z̃2A · ∇C1 − 1

2 �
2�2∇B · ∇C1

+ �� · z̃2 · ∇B · ∇C1 − 1
6 �

3�3(∇ · A)(∇ · u0) − 1
3 �

3�3(∇ · u0)(∇ · (∇B))

+ 1
4 �

2�2(∇ · u0)(∇ · (z̃2 · A)) + 1
2 �

2�2(∇ · u0)(∇ · (z̃∇B)) + 1
6 �

3�3C1(∇ · A)

+ 1
2 �

2�2C1∇ · (∇B) − 1
2 ��C1∇ · (z̃2A) − C1��∇ · (z̃∇B)

− 1
2 ��C1∇ · (z̃2A) − C1��∇ · (z̃∇B) − 1

24 �
4�4(∇ · A)(∇ · u0)

− 1
6 �

3�3(∇ · u0)(∇ · (∇B))

+ 1
4 �

2�2(∇ · u0)(∇ · (z̃2A)) + 1
2 �

2�2(∇ · u0)(∇ · (z̃ · ∇B)) − ��C∇ · u0] (31)

where C1 = −B which defined in (22b).
Now we can obtain the main governing equations in the fourth-order depth-integrated form

considering movable bottom boundary condition in two horizontal directions. Equation (1) is
integrated from z =−h to z = �� to create the depth-integrated continuity equation.

∇ ·
[∫ ��

−h
u dz

]
+ 1

�
ht + �t = 0 (32)

The horizontal velocity vector u in the above equation can be replaced by its fourth-order
expanded form which is presented in (10) using u1 and u2 variables obtained from (22a) and (28).
Thus, higher-order (O(�6, �6) in truncated terms) continuity equation in depth-integrated form
is obtained. Equation (33) is the first main equation that is solved by the other two horizontal
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momentum equations in the presented numerical model.

1

�
ht + �t + ∇ · {(�� + h)u0

+ �2[−1
6 (�3�3 + h3)A + 1

2 z̃
2(�� + h)A − 1

2 (�
2�2 − h2)(∇ · B) + z̃2(�� + h)(∇ · B)]

+ �4[ 1
120 (�

5�5 + h5)∇(∇ · A) − 1
24 (�� + h)z̃4∇(∇ · A) − 1

12 (�
3�3 + h3)∇(∇ · (z̃2 · A))

+ 1
4 (�� + h)z̃2∇(∇ · (z̃2A)) + 1

24 (�
4�4 − h4)∇(∇ · (∇B)) − 1

6 (�� + h)z̃3∇(∇ · (∇B))

− 1
6 (�

3�3 + h3)∇(∇ · (z̃∇B)) + 1
2 (�� + h)z̃∇(∇ · (z̃∇B))

+ 1
2 (�

2�2 − h2)∇C − (�� + h)z̃∇C]}= O(�6, �6) (33)

The vector A and parameters B and C in the above equation are defined in Equations (22b)
and (29), respectively. Similarly, the expanded forms of u and w and the water pressure in z = 0
presented in Equation (31) is replaced in horizontal momentum equation (2) to create the other
two main governing equations. Thus, Equation (2) changes into

u0t + �(∇ · u0)u0 + �(w1|z=0)u0z

+ �2[u1t |z=0 + �(∇ · (u1|z=0))u0 + �(∇ · u0)(u1|z=0) · +�(w2|z=0)u0z + (w1|z=0)(u1z|z=0)]

+ �4[u2t |z=0 + �(∇(·u2|z=0))u0 + �(∇ · (u1|z=0))(u1|z=0) + �(∇ · u0)(u2|z=0)

+ �(w2|z=0)(u1z|z=0) + (w1|z=0)(u2z|z=0)]

+∇(P|z=0) = O(�6, �6) (34)

Equations (33) and (34) make a fully nonlinear and highly dispersive (FN-HD) equation set
which describe the dispersion up to O(�6) and nonlinearity up to O(�6) in truncated terms. If the
bottom boundary condition assumed as a fixed arbitrary floor and ht = 0, the above equations are
identical to Equations (16) and (17) derived by Gobbi et al. [25]. These equations will be solved
simultaneously to obtain the main three variables u, v (horizontal velocity components) and �
(water wave elevation). A numerical model is developed using this set of equations to simulate
the impulsive wave generation and propagation. The details of numerical method are discussed in
the next section.

3. NUMERICAL MODEL

A numerical model is developed using finite difference method to solve the obtained fourth-order
wave equations. A sixth-order multi-step scheme is selected to discrete the governing equations in
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a two-dimensional depth-integrated horizontal domain (2HD). Based on Equations (33) and (34),
the maximum order of partial differential equations is five. Using Taylor’s expansion, a sixth-order
discretization scheme is developed. For instance, the discretized form for several orders of partial
derivatives of the main variable u can be obtained as

�u
�x

= Gxni, j (u)

= 1

24�x
(18(ui+1, j − ui−1, j ) − 3.6(ui+2, j − ui−2, j )

+ 0.4(ui+3, j − ui−3, j )) + O(�x6)

�2u
�x2

= Gx2ni, j (u)

= 1

12�x2
(18(ui+1, j + ui−1, j ) − 1.8(ui+2, j + ui−2, j )

+ 0.4/3(ui+3, j + ui−3, j ) − 97.6/3ui, j ) + O(�x6)

�3u
�x3

= Gx3ni, j (u)

= −1

15.2�x3
· (69.2/3(ui+1, j − ui−1, j )

− 40.7/3(ui+2, j − ui−2, j ) + 1.2(ui+3, j − ui−3, j )

+ 0.35/3(ui+4, j − ui−4, j )) + O(�x6) (35)

�4u
�x4

= Gx4ni, j (u)

= −3

0.5�x4
(12.2/9(ui+1, j + ui−1, j ) − 4.225/9(ui+2, j + ui−2, j )

+ 0.2/3(ui+3, j + ui−3, j ) − 0.04375/9(ui+4, j + ui−4, j ) − 17.0625/9ui, j ) + O(�x6)

�5u
�x5

= Gx5ni, j (u)

= 3

256�x5
· (5168/9(ui+1, j − ui−1, j ) − 1664/3(ui+2, j − ui−2, j )

+ 232(ui+3, j − ui−3, j ) − 608/13.5(ui+4, j − ui−4, j )

+ 104/27(ui+5, j − ui−5, j )) + O(�x6)
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Similar scheme is used for other partial derivation in the main equation sets in both x- and
y-directions. Based on this high-order finite difference scheme, the governing equations are dis-
cretized. For instance, the discretized form of Equation (33) can be derived as

Ax=Gx2(uni, j ) + Gxy(vni, j ) (36)

Ay=Gxy(uni, j ) + Gy2(vni, j ) (37)

Bn
i, j =Gx(hni, j · uni, j ) + Gy(hni, j · vni, j ) + 1

�
· h

n+1
i, j − hni, j

�t
(38)

Cn
i, j = 1

6 (h
3)ni, j · (Gx(Ax) + Gy(Ay)) − 1

2h
n
i, j · (Gx((z̃2)ni, j · Ax) + Gy((z̃2)ni, j · Ay))

+ 1
2 (h

2)ni, j (Gx2(Bn
i, j ) + Gy2(Bn

i, j )) − hni, j · (Gx(z̃ni, j · Gx(Bn
i, j ))

+Gy(z̃ni, j · Gy(Bn
i, j ))) + 1

2 (h
2)ni, j (Ax · Gx(hni, j ) + Ay · Gy(hni, j ))

− 1
2 (z̃

2)ni, j · (Ax · Gx(hni, j ) + Ay · Gy(hni, j )) − hni, j · (Gx(hni, j ) · Gx(Bn
i, j )

+Gy(hni, j ) · Gy(Bn
i, j )) − z̃ni, j · (Gx(hni, j ) · Gx(Bn

i, j ) + Gy(hni, j ) · Gy(Bn
i, j )) (39)

Now parameters Rx and Ry can be defined as

Rxni, j = un0i, j · (��ni, j + hni, j ) + �2 · [−1
6 Ax(�3(�3)ni, j + (h3)ni, j ) + 1

2Ax(z̃
2)ni, j · (��ni, j + hni, j )

− 1
2Gx(Bn

i, j )(�
2(�2)ni, j − (h2)ni, j ) + (z̃)ni, j Gx(Bn

i, j ) · (��ni, j + hni, j )]

+ �4 · [ 1
120 (�

5(�5)ni, j + (h5)ni, j ) · Gx(GAn
i, j ) − 1

24 (��
n
i, j + hni, j ) · (z̃4)ni, j Gx(GAn

i, j )

− 1
12 (�

3(�3)ni, j + (h3)ni, j )Gx((z̃2)ni, j G An
i, j ) + 1

4 (��
n
i, j + hni, j )(z̃

2)ni, j Gx((z̃2)ni, j G An
i, j )

+ 1
24 (�

4(�4)ni, j − (h4)ni, j )Gx(G2(Bn
i, j )) − 1

6 (��
n
i, j + hni, j )(z̃

3)ni, j Gx(G2(Bn
i, j ))

− 1
6 (�

3(�3)ni, j + (h3)ni, j )(G2((z̃)ni, j Gx(Bn
i, j )))

+ 1
2 (��

n
i, j + hni, j )(z̃)

n
i, j (G2((z̃)ni, j Gx(Bn

i, j )))

+ 1
2 (�

2�2 − h2) · Gx(Cn
i, j ) − (�� + h)z̃Gx(Cn

i, j )] (40)
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and

Ryni, j = un0i, j · (��ni, j + hni, j ) + �2 · [−1
6 Ay(�3(�3)ni, j + (h3)ni, j ) + 1

2Ay(z̃
2)ni, j · (��ni, j + hni, j )

− 1
2Gy(Bn

i, j )(�
2(�2)ni, j − (h2)ni, j ) + (z̃)ni, j Gy(Bn

i, j ) · (��ni, j + hni, j )]

+ �4 · [ 1
120 (�

5(�5)ni, j + (h5)ni, j ) · Gy(GAn
i, j ) − 1

24 (��
n
i, j + hni, j ) · (z̃4)ni, j Gy(GAn

i, j )

− 1
12 (�

3(�3)ni, j + (h3)ni, j )Gy((z̃2)ni, j G An
i, j ) + 1

4 (��
n
i, j + hni, j )(z̃

2)ni, j Gy((z̃2)ni, j G An
i, j )

+ 1
24 (�

4(�4)ni, j − (h4)ni, j )Gy(G2(Bn
i, j )) − 1

6 (��
n
i, j + hni, j )(z̃

3)ni, j Gy(G2(Bn
i, j ))

− 1
6 (�

3(�3)ni, j + (h3)ni, j )(G2((z̃)ni, j Gy(Bn
i, j )))

+ 1
2 (��

n
i, j + hni, j )(z̃)

n
i, j (G2((z̃)ni, j Gy(Bn

i, j )))

+ 1
2 (�

2�2 − h2) · Gy(Cn
i, j ) − (�� + h)z̃Gy(Cn

i, j )] (41)

Now, the discrete form of depth-integrated continuity equation can be obtained using sixth-order
Runge–Kutta (R-K) method for temporal discretization. The detail of derivation of sixth-order R-K
method is provided in Appendix A. Using the present one-step, six-stage extended R-K method,
the discrete form of depth-integrated continuity equation is concluded as

�Si, j = �ni, j − 1

�
(hSi, j − hni, j ) − 0.674197�t · [Gx(Rxni, j ) + Gy(Ryni, j )]

�2Si, j = �ni, j − 1

�
(h2Si, j − hSi, j ) − 0.674197�t · [Gx(RxSi, j ) + Gy(RySi, j )]

�3Si, j = �ni, j − 1

�
(h3Si, j − h2Si, j ) − 0.941974�t · [Gx(Rx2Si, j ) + Gy(Ry2Si, j )]

�4Si, j = �ni, j − 1

�
(h4Si, j − h3Si, j ) − 0.286400�t · [Gx(Rx3Si, j ) + Gy(Ry3Si, j )]

�5Si, j = �ni, j − 1

�
(h5Si, j − h4Si, j ) − 0.246018�t · [Gx(Rx4Si, j ) + Gy(Ry4Si, j )]

�n+1
i, j = �ni, j − 1

�
(hn+1

i, j − h5Si, j ) − �t · {0.080939[Gx(Rxni, j ) + Gy(Ryni, j )]

+ 0.185235[Gx(RxSi, j ) + Gy(RySi, j )]

+ 0.185235[Gx(Rx2Si, j ) + Gy(Ry2Si, j )] + 0.154226[Gx(Rx3Si, j ) + Gy(Ry3Si, j )]

+ 0.196431[Gx(Rx4Si, j ) + Gy(Ry4Si, j )] + 0.197934[Gx(Rx5Si, j ) + Gy(Ry5Si, j )]} (42)
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where hi Si, j = h(x, y, tn + �i�t) and �i for i = 1 to 5 are defined in Appendix A. Similar ap-
proach is applied for depth-integrated higher-order Boussinesq-type momentum equation (34) to
derive the discrete form of other two governing equations. Substituting the variables w1,u1, w2,
u2 and P|z=0 from Equations (18), (22a), (26), (28) and (31) into (34) and rearrangement of con-
cluded equation, the discrete form of two-component momentum equation can be determined as
follows:

A′x=Gx2(Axni, j ) + Gxy(Ayni, j ) (43)

A′y=Gxy(Axni, j ) + Gy2(Ayni, j ) (44)

B′x=Gx3(Bn
i, j ) + Gxy2(Bn

i, j ) (45)

B′y=Gyx2(Bn
i, j ) + Gy3(Bn

i, j ) (46)

C ′n
i, j = Gx(uni, j ) + Gy(vni, j ) + �2[z̃ni, j · (Ax · Gx(z̃ni, j ) + Ay · Gy(z̃ni, j )) + 1

2 (z̃
2)ni, j (Gx(Axni, j )

+Gy(Ayni, j ))Gx(z̃ni, j ) · Gx(Bn
i, j )+Gy(z̃ni, j ) · Gy(Bn

i, j )+z̃ni, j · (Gx2(Bn
i, j )+Gy2(Bn

i, j ))]

− �4[ 12 (z̃3)ni, j · (A′x · Gx(z̃ni, j ) + A′y · Gy(z̃ni, j )) + 1
8 (z̃

4)ni, j (Gx(A′xni, j ) + Gy(A′yni, j ))

+ 1
2 z̃

n
i, j · (B′x · Gx(z̃ni, j ) + B′y · Gy(z̃ni, j )) + 1

6 (z̃
3)ni, j · (Gx(B′xni, j ) + Gy(B′yni, j ))] (47)

Dn
i, j = �2(−Bn

i, j ) + �4( 13 (z̃
3)ni, j (Gx(Axni, j ) + Gy(Ayni, j ))

+ 1
2 (z̃

2)ni, j (Gx2(Bn
i, j ) + Gy2(Bn

i, j ))) (48)

R′xni, j = �(C ′ · uni, j − D · Gx(Bn
i, j )) + �2[ 12 �C ′(z̃2)ni, jAx + �C ′ z̃ni, j · Gx(Bn

i, j )

+ � · Dn
i, j · ( 13 (z̃

3)ni, j · A′x + 1
2 (z̃

2)ni, j · B′x)]

+ �4[− 1
8 �C

′(z̃4)ni, jA′x − 1
6 �C

′(z̃3)ni, jB′x] + Gx(P|z=0)
n
i, j

R′yni, j = �(C ′ · vni, j − D · Gy(Bn
i, j )) + �2[ 12 �C ′(z̃2)ni, jAy + �C ′ z̃ni, j · Gy(Bn

i, j )

+ � · Dn
i, j · ( 13 (z̃

3)ni, j · A′y + 1
2 (z̃

2)ni, j · B′y)]

+ �4[− 1
8 �C

′(z̃4)ni, jA′y − 1
6 �C

′(z̃3)ni, jB′y] + Gy(P|z=0)
n
i, j (49)
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Using sixth-order R-K method, the discrete form of momentum equation in two horizontal dimen-
sions can be derived as

uSi, j = uni, j − 0.674197�t · [(R′xni, j )]

u2Si, j = uni, j − 0.674197�t · [(R′x Si, j )]

u3Si, j = uni, j − 0.941974�t · [(R′x2Si, j )]

u4Si, j = uni, j − 0.286400�t · [(R′x3Si, j )] (50)

u5Si, j = uni, j − 0.246018�t · [(R′x4Si, j )]

un+1
i, j = uni, j − �t · {0.080939[(R′xni, j )] + 0.185235[(R′x Si, j )] + 0.185235[(R′x2Si, j )]

+ 0.154226[(R′x3Si, j )] + 0.196431[(R′x4Si, j )] + 0.197934[(R′x5Si, j )]}

for x-direction and

uSi, j = uni, j − 0.674197�t · [(R′yni, j )]

u2Si, j = uni, j − 0.674197�t · [(R′ySi, j )]

u3Si, j = uni, j − 0.941974�t · [(R′y2Si, j )]

u4Si, j = uni, j − 0.286400�t · [(R′y3Si, j )] (51)

u5Si, j = uni, j − 0.246018�t · [(R′y4Si, j )]

un+1
i, j = uni, j − �t · {0.080939[(R′yni, j )] + 0.185235[(R′ySi, j )] + 0.185235[(R′y2Si, j )]

+ 0.154226[(R′y3Si, j )] + 0.196431[(R′y4Si, j )] + 0.197934[(R′y5Si, j )]}

for y-direction. All of the computational parameters were defined in the previous equations. Using
these discretized form of equations, a numerical model is developed to solve domain equations
and determine the depth-integrated velocity domain and the water wave surface elevation. The
numerical model is verified using several experimental cases. The evaluation of the developed
numerical model and comparison of results are discussed in the next sections.

4. COMPARISON WITH THREE-DIMENSIONAL WAVE TANK EXPERIMENTS

A comparison is made with Enet et al’s. laboratory data [27], which were obtained in a three-
dimensional wave tank for a submerged rigid sliding block. In the experiments, the sliding block
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geometry was defined using truncated hyperbolic secant function as

z(x, y) = T

r
[sech(Kw · x) · sech(Kb · y) − (1 − r)]; for z�0

Kw = 2

w
· asech

(
1 − r

r

)
and Kb = 2

b
· asech

(
1 − r

r

) (52)

where in the experiments, the truncation ratio; r = 0.6, the maximum thickness of slide; T = 80mm,
the slide length along the bed slope; B = 400mm, and the slide width;W = 700mm. The parameters
are shown in Figure 1. The landslide law of motion is expressed as

S(t)= S0 · ln
(
cosh

t

t0

)
(53)

where S is the location of centre of sliding mass parallel to the slope and S0 = u2t /a
′
0 and t0 =

ut/a′
0. ut is the terminal velocity of sliding solid block and a′

0 is its initial acceleration which are
defined as

ut =
√
g · B ·

√
�(� − 1)

2Cd
· sin � and a′

0 = g · � − 1

� + Cm
sin � (54)

where � = 	l/	w, B is the length of sliding block along the inclined bed, Cd is the drag coefficient,
Cm is the added mass coefficient, � is the bed slope and g is the acceleration due to gravity. 	l and
	w are the density of landslide and water, respectively. The time-dependent bed geometry is found
from the initial geometry as: x(t)= x(0)−S(t). (i·cos �+k·sin �) where i and k denote unit vectors
in x- and z-directions, respectively, and x is the spatial vector of sliding block location in vertical
plane (i.e. (x, z)). The surface waves caused by underwater landslide simulated with the present
fourth-order model and results compared with experimental data. The comparison is made at two
wave gauges located at x = 0.57m, y = 0 and x = 1.498m, y = 0.682m. The bed slope is � = 15◦,
the sliding block density is � = 2.7, the initial submergence of sliding block is h0C = 0.07m,
the added mass coefficient is Cm = 1.79 and the drag coefficient is Cd = 0.7 [27], and the initial
horizontal location of sliding block is x0C = 0.57m. The dimensions of numerical wave tank are
5.0× 4.0m. The grid size is set to �x =�y = 10 cm and the time step is set to �t = 0.003 s.
The wave pattern obtained from presented numerical model and the locations of wave gauges are
demonstrated in Figure 2(a). In this figure, the bed slope of wave tank is truncated at a depth of
1m. The average values of the experimental data that are obtained from several runs are shown in
Figure 2(a). The three-dimensional view of computed impulse wave is shown in Figure 2(b) and
the simulated and experimental water surface time series at wave gauges are shown in Figure 2(c).
The maximum depression of water surface can be observed in this figure. As seen, an excellent
agreement can be observed between presented model and experimental data. The present model
accurately simulates the maximum depression of water surface. After passing the main negative
wave, the water surface fluctuations are negligible and close to the average values obtained from
experimental data. As shown, the present depth-integrated higher-order model can produce an
acceptable approximation for the three-dimensional problem.

The numerical results are also compared with experimental data obtained by Grilli et al. [28].
All specifications of the problem are presented in Table I. The basic parameters are defined in
Figure 1. The location of gauges is mentioned in Table I. The effect of wave propagation on the
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Figure 2. Comparison of the present higher-order model with experimental data at two wave gauges in
three-dimensional wave tank, one located at slide axis (Gauge #1; x = 0.57m, y = 0) and another located
at an arbitrary point (Gauge #2; x = 1.498m, y = 0.682m), the basic parameters are as follows: �= 15◦,
� = 2.7, h0C = 0.07m, Cm = 1.79, Cd = 0.7: (a) plan view of numerical wave tank at time t = 0.6 s and
location of wave gauges and initial location of slide mass; (b) a three-dimensional view of computed

surface elevation at time t = 0.6 s; and (c) the time series of surface elevation in both wave gauges.
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Table I. The basic parameters for comparison of presented fourth-order 2HD model with three-dimensional
experimental data [28].

Parameter Description Value Unit

� Planar bottom slope 15 degree
� Sliding block density 1.81 –
B Length of sliding block along the slope 1000 m
T Maximum thickness of sliding block 52 m
h0C Initial still water depth at centre point of sliding block 261 m
Cm Added mass coefficient 1.76 –
Cd Drag coefficient 1.53 –
L1 The length of horizontal part of numerical wave tank 142.5 m
L Total length of numerical wave tank 4051 m
x0C Initial horizontal location of sliding block centre of mass 1025.8 m
x ′
g0 Horizontal location of wave gauge ‘g0’ related to x0C 0 m
x ′
g1 Horizontal location of wave gauge ‘g1’ related to x0C 300 m
x ′
g2 Horizontal location of wave gauge ‘g2’ related to x0C 600 m
x ′
g3 Horizontal location of wave gauge ‘g3’ related to x0C 900 m
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Figure 3. Comparison of the present numerical results (- - -) with the experimental data (—) in four wave
gauges G0–G3 located at slide axis, the basic parameters are as follows (scaled up values): �= 15◦,
B = 1000m, T = 52m, h0C = 261m, x0C = 1025.8m, � = 1.81, Cd = 1.53, Cm = 1.76, xG0 = 1025.8,

xG1 = 1325.8, xG2 = 1625.8, xG3 = 1925.8.

numerical results is shown in Figure 3. The dimensions of numerical wave tank are 4.5× 4.0m.
The grid size is set to �x =�y = 8 cm and the time step is set to �t = 0.0025 s. A good agreement
is observed between the present 2HD model and experimental data. As the propagation distance
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increases, the deviation between numerical results and laboratory data increase. Furthermore, the
maximum depression of water surface in the initial location of centre of sliding block is accurately
simulated. The maximum positive and negative wave heights obtained from the 2HD presented
model are close to their experimental values.

5. COMPARISON WITH POTENTIAL FLOW MODELS

In this section, the results of the present depth-integrated fourth-order model are compared with
a higher-order boundary element numerical model (BIEM) which developed using fully nonlinear
potential theory in a three-dimensional domain [28] and its accuracy in simulating the wave
propagation has been well documented [28–30]. First, we compare the present fourth-order depth-
integrated model with BIEM results [31, 32]. The geometry of rigid submerged slide mass is
different from semi-ellipse shape and is described as a Gaussian shape by [31]

z = T

1 − 

{sech2(kx) − 
}

where

k = 2C ′

B
with C ′ = 4(tanhC − 
)

�(1 − 
)
and C = acosh

1√



(55)

The slide mass length, B, is a function of 
. Figure 4 shows the different shape of slide mass
corresponding to different values of spreading factor 
= 0.1, 0.25, 0.5, and 0.75. As the spreading
factor increases, the Gaussian shape is closer to the semi-ellipse geometry that is described by
Equation (52) (for two-dimensional slide). The landslide law of motion is the same as Equation (54).

The comparisons are made at two wave gauges and are shown in Figure 5. The time series of
water surface elevation at two wave gauges located at x = x0C = 1.168m and x = 4m are shown,
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Figure 4. The slide mass geometry based on Gaussian shape (Equation (55)) for different values of
spreading factor; 
 = 0.1 (—Bold), 0.25 (- - -), 0.5 (- - -Bold), and 0.75 (—), the maximum thickness of
landslide; T = 0.052m, and the slide length is B = 1m, the comparison of the present model with BIEM

is made based on this geometry [31].
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Figure 5. Comparison of the present numerical results (- - -) with BIEM results (—) [31] for
time series of water surface elevation at two wave gauges located at x = x0C = 1.168m (top) and
x = 4m (bottom), the basic parameters are as follows: � = 15◦, � = 1.85, B = 1m, Cm =Cd = 1,
T = 0.052m, the bed slope truncated at depth h(x)= 2m: (a) h0C = 0.625; (b) h0C = 0.259; (c)
h0C = 0.175; and (d) h0C = 0.125, the slide law of motion is according to Equation (53) and

t0 = 2.44 s, the slide geometry is according to Gaussian shape where 
 = 0.75.

for basic parameters are of � = 15◦, � = 1.85, B = 1m, Cm =Cd = 1, and T = 0.052m. The bed
slope truncates at depth h(x)= 2m. The dimensions of numerical wave tank are assumed to be
8.5× 5.5m. The grid sizes, �x and �y, are 15 cm and the time step, �t , is 0.004 s. The results are
compared for different values of submergence depth (i.e. h0C in Figure 1) to evaluate the present
model accuracy in different conditions. In this comparison, the Gaussian spreading factor, 
, is 0.75.

As seen, an excellent agreement is achieved in different cases. The maximum depression of
water surface and the height of impulsive wave are accurately simulated by the present 2HD
model. The deviations of the presented model results from BIEM results increase, by increase
in the initial submergence depth of slide mass. The maximum deviation that is occurred at the
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Figure 6. Comparison of the present numerical results (- - -) with BIEM results (—) [31]
for water surface profile along the slide axis at time t = t0 = 2.44 s (top), and t = 2t0 = 4.88 s
(bottom), all of the basic parameters are the same as described in Figure 5: (a) h0C = 0.625;

(b) h0C = 0.259; (c) h0C = 0.175; and (d) h0C = 0.125.

maximum water surface fluctuations is less than 5%. The wave height and period at both gauges are
accurately simulated in the present model. For further evaluation of the present model, the water
surface profiles along the slide axis at two different times t = t0 ( = 2.44 s) and t = 2t0 ( = 4.88 s)
are shown in Figure 6. The agreement is in an acceptable range, particularly in simulation of
maximum water depression and maximum wave height. The observed deviations at the near zone
at the upstream of slide zone that are due to the effects of upstream lateral boundary in the present
model. The high accuracy of presented depth-integrated model in simulation of wave frequency
dispersion is observed in Figures 5 and 6. The present model simulates the wave height after
dispersion far from sliding zone accurately. As the submergence depth decreases, the wave height
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and water surface depression increase and the deviation of the present model from BIEM results
partially increases. But the deviations are not amplified when the wave propagate away from the
slide zone. The maximum deviation from BIEM in the studied cases is limited by 5% both in time
series and water surface profile.

6. COMPARISON WITH MULTI-LAYER MODELS

The results of the present model are also compared with the results of a multi-layer high-accuracy
model developed by Lynett and Liu [26] which allows for a higher-order accuracy of O(�2) in
each layer. The comparison is made in water surface profile along the slide axis and it is considered
that the sliding mass is symmetric about the slide axis and the solid sliding block geometry is
not changed in width (Y -direction in Figure 1). Four data sets which are compared in this section
are as follows: (1) the fully potential theory which is used in BIEM model [28], (2) the one-layer
second-order approximation which derived by Lynett and Liu [23], (3) the two-layer approach in
which, the order of approximation in each layer is O(�2) [26], and (4) the present fourth-order
approximation O(�4). The comparisons of several data sets are made based on the definition of a
characteristic water depth ratio as Ls/hC (t) where Ls is the horizontal length of slide mass and
h0C (t) is the submergence of the sliding block centre of mass which can be changed by mass
movement. As the slide move into deeper water, h0C increases. The time-variable bottom boundary
is defined by [23]

h(x, t) = h0(x) − 0.5T

[
1 + tanh

(
x − xl(t)

S

)] [
1 − tanh

(
x − xr (t)

S

)]
(56)

where

xl(t) = xc(t) − 0.5T cos(�)

xr (t) = xc(t) + 0.5T cos(�)

S = 0.5/cos(�)

(57)

xl(t) and xr (t) are the location of left-end and right-end points of the solid sliding block. The
dimensions of numerical wave tank are 10.5× 5.5m. The grid sizes, �x,�y are 15 cm and the time
step, �t , is 0.005 s. The basic parameters are as follows: � = 6◦, B = 1m, T = 5 cm, h0C = 20 cm,
x0C = 2.37m, � = 1.85, Cd =Cm = 1 and Ls as a horizontal length scale [23] is 3.4m. Figure 7
shows the comparison of results obtained from four various approaches. Figures 7(a)–(d) show
the water surface profile along the slide axis at various times of 1.5, 3, 4.5, and 5.9 s, which are
corresponding to dimensionless time, t · (g/h0C )0.5, of 10.6, 21, 31.6, and 41, and water depth
ratios, Ls/hC (t), of 12.2, 9, 6.2, and 5. Figure 7(e) shows the location of sliding mass at these
times and its initial location. The results of all models are reasonable and there is not any major
deviation from the fully potential theory. In Figures 7(c) and (d), where the slide mass moves
into deeper water, the two horizontal dimensions (2HD) models begin to deviate from BIEM but
in both cases, the presented fourth-order model and the two-layer second-order model are in a
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Figure 7. Comparison of the present fourth-order 2HD model (- - -) with BIEM as a potential
flow model (—), second-order two-layer 2HD model (- - -) and second-order one-layer 2HD model
(- - -), (a)–(d) show the water surface profile along the slide axis at various times: (a) t1 = 1.5 s;
(b) t2 = 3 s; (c) t3 = 4.5 s; and (d) t4 = 5.9 s, which are corresponding to dimensionless times: (a)
t ·(g/h0C )0.5 = 10.6; (b) t ·(g/h0C )0.5 = 21; (c) t ·(g/h0C )0.5 = 31.6; and (d) t ·(g/h0C )0.5 = 41, and
water depth ratios: (a) Ls/hC (t)= 12.2; (b) Ls/hC (t)= 9; (c) Ls/hC (t)= 6.2; (d) Ls/hC (t)= 5;
and (e) shows the location of sliding mass at various times and its initial location, the basic parameters
are as follows: �= 6◦, B = 1m, T = 5 cm, h0C = 20 cm, x0C = 2.37m, � = 1.85, Cd =Cm = 1 and

Ls as a horizontal length scale [23] is 3.4m.
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good agreement with BIEM and the one-layer second-order model shows a major deviation from
potential theory.

7. COMPARISON WITH LOWER-ORDER APPROXIMATIONS

For a further evaluation, the results of the presented model are compared with the results of a
low-order equation set, which describe the impulse wave generation and propagation. For this
comparison we used the results presented by Lynett and Liu [23]. The first low-order equation
sets consist of fully nonlinear-weakly dispersive equations. Lynett and Liu name this set of equa-
tions as fully nonlinear-extended (FNL-EXT) equations that were introduced later as second-order
one-layer approximate. The second set of equations is obtained assuming that the thickness of slid-
ing block or the seafloor displacement is relatively small in comparison with the local water depth.
The simplified governing equations are called weakly nonlinear-weakly dispersive or extended
equations (WNL-EXT). These sets of equations can be simplified into a linear form by neglecting
nonlinear terms. Lynett and Liu named this simplified set of equations as linear-extended (L-EXT)
equations. Several sets of equations will be compared based on the comparison pattern presented by
Lynett and Liu [23]. The basic geometric parameters of each case consist of bed slope; maximum
thickness of sliding block and the initial horizontal location of sliding block are presented in
Figure 8. The main value used in comparison is the maximum depression of water surface
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Figure 8. Comparison of presented fourth-order Boussinesq-type model with lower-order approximations
in different conditions, all of the parameters are defined in Figure 1, the FN-HD describes the presented
higher-order model, the lower-order equations data are obtained from Lynett and Liu comparison [23], all

of the models are one-layer, the Lynett and Liu multi-layer approach is discussed in Figure 7.
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elevation at the initial location of sliding block centre. The dimensions of numerical wave tank
are 5.0× 5.0m. The grid size is set to �x =�y = 10 cm and the time step is set to �t = 0.002 s.
The effects of nonlinearity and the distinction between equation sets that was used for wave
description can be observed in Figure 8. As shown in this figure, the variation of maximum
water surface depression using different order equation sets has a similar pattern but in high-
order equations this value will be increased. Furthermore, for cases (a), (b) and (c) in the figure,
the available data from low-order equations sets consist of FNL-EXT, WNL-EXT and L-EXT
have shown a limitation as T/h0C<1.2 where T is the maximum thickness of sliding block.
This limitation is not observed in the present fourth-order wave model. Therefore, the superiority
of the present higher-order model is shown for steeper beds and for thicker sliding blocks. It
must be noted that all of the lower-order approximations described in this section are developed
based on one-layer approach. The comparison with multi-layer model was given in the previous
section.

8. TEST OF WAVE EVOLUTION OVER SUBMERGED SILL

In this section, the present two horizontal dimensions fourth-order model is checked using a stan-
dard test problem [24]. The test problem is related to the passing of a regular wave over an arbitrary
fixed bottom in a one-dimensional long flume. The examination of the present model is made by
comparing the results with Gobbi et al., one-dimensional fourth-order Boussinesq model [24]. It
must be noted that in this case, the bottom is fixed and there is not any landslide or impulse
wave. The incident regular wave enters to the flume from left lateral boundary and the wave
transition over a submerged sill is investigated. The incident wave and water body characteristics
are mentioned in Table II. All of the geometrical conditions of submerged sill and the location of
numerical wave gauges as well as the result comparison are shown in Figure 9. The dimensions
of numerical wave flume are 1.0 (width) ×25.0 (length)m. The grid size is set to �x = 20 cm
(along the length) and �y = 10 cm (along the width) and the time step is set to �t = 0.004 s.
As it is shown in Figure 9, the present model results are in an excellent agreement with the
fourth-order Boussinesq-type model developed by Gobbi and coworkers [24, 25] in one horizon-
tal dimension. The shoaling effects over submerged sill are accurately captured in the present
model.

Table II. The incident wave and water body characteristics in formally test of presented
fourth-order Boussinesq-type model, the results are compared in Figure 9.

No. Parameter description Symbol Values Unit

1 Incident wave amplitude a0 0.0205 m
2 Incident wave period T ′ 1.01 s
3 Incident wave length L 1.5 m
4 Water depth h0 0.40 m
5 Dispersion ratio ( = h0/ l0) � 0.2666 –
6 Nonlinearity ratio ( = a0/h0) � 0.05125 –
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Figure 9. Comparison of presented two horizontal dimension (2HD) fourth-order Boussinesq-type
model with Gobbi et al., fourth-order one-dimensional model [24] in a regular wave flume with
arbitrary fixed bottom, the water surface time series are compared at four numerical wave gauges

as a formally check of 2HD presented model.
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9. CONCLUSIONS

A two-dimensional fully nonlinear, higher-order Boussinesq model with moving bottom bound-
ary has been developed in this work. The model retains terms to O(�4), � = h0/ l0 in dispersion
and to O(�5), �= a0/h0 in nonlinearity where a0 is characterizes amplitude, l0 is the character-
izes horizontal length scale, and h0 is the characterizes water depth. The present two horizontal
dimensions (2HD) model which can be used for landslide-generated waves is an extension of (4,4)
Padé approximant which derived by Gobbi et al. [25] for fixed bottom and used in one horizontal
direction for investigation of wave propagation over a sill. A depth-integrated numerical model is
developed based on derived equations using sixth-order multi-step finite difference method in two
horizontal dimensions. The numerical results are compared with three-dimensional wave tank lab-
oratory experimental data [28]. Furthermore, the results of the present two horizontal dimensions
model is compared with the results of the three-dimensional fully potential model (BIEM) [31] and
a two-layer high-order model [26] and in all cases, an excellent agreement has been achieved. For
investigating of the effects of nonlinearity and frequency dispersion, the results are compared with
available experimental data at several wave gauges that were installed at different distances from
impulse wave source. The comparison shows that the wave height after dispersion, particularly in
gauges installed far from the sliding zone are very close to the experimental data. Moreover, the
present model checked using a standard test problem of passing a regular wave over an arbitrary
fixed sill, and an excellent agreement is also achieved for this case. Thus, the present equations sets
show a good agreement with experiments, three-dimensional, and multi-layer models and can be
recommended for application for the simulations of the problems of submarine-landslide-generated
waves.

NOMENCLATURE

� the weighting parameter for determination of a characteristic
depth (dimensionless)

� the water density [MT−2L−2]
� the nonlinearity ratio = a0/h0 (dimensionless)
� the frequency dispersion ratio = h0/ l0 (dimensionless)
� the water surface displacement from still water level scaled by a0 (dimensionless)

 the spreading factor for slide mass shape (Equation (43)) (dimensionless)
∇ the horizontal gradient vector = (�/�x, �/�y)

A a two-component vector which is used in model
derivation (Equation (22a)) (dimensionless)

a0 the impulse wave amplitude [L]
a′
0 the initial acceleration of slide mass [LT−2]
B the length of slide mass along the bed slope [L]
Cm added mass coefficient (dimensionless)
Cd drag coefficient (dimensionless)
g acceleration due to gravity [LT−2]
h0 the characteristic water depth [L]
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h(x, y, t) the depth of moving bottom boundary from still water
level scaled by h0 (dimensionless)

h0C initial still water depth at centre point of sliding block [L]
L1 the length of horizontal part of numerical wave tank [L]
L total length of numerical wave tank [L]
l0 the horizontal length scale [L]
p the water pressure scaled by �a0 (dimensionless)
r the truncation ratio of hyperbolic secant function (Equation (52)) (dimensionless)
t dimensionless time scaled by l0/(gh0)1/2 (dimensionless)
T the maximum thickness of the slide mass [L]
u the vector of horizontal velocity components (u, v)

scaled by � · (gh0)1/2 (dimensionless)
ut the terminal velocity of slide mass [LT−1]
u0,u1, u2 the dimensionless factors used for expanded

form of u (Equation (10)) (dimensionless)
w the velocity component in vertical direction

scaled by (�/�) · (gh0)1/2 (dimensionless)
W the width of slide mass [L]
w1, w2 the dimensionless factors used for expanded

form of w (Equation (11)) (dimensionless)
x, y the horizontal coordinates scaled by l0 (dimensionless)
x0C initial horizontal location of sliding block centre of mass [L]
xl(t) the horizontal location of left-end point of the solid sliding block [L]
xr (t) the horizontal location of right-end point of the solid sliding block [L]
za,zb the elevations that the horizontal velocity components are described in them,

scaled by h0 (dimensionless)
z̃ the characteristic variable depth which is a weighted average of two distinct

water depths, za and zb (dimensionless)
z the vertical coordinate scaled by h0 (dimensionless)

APPENDIX A: DERIVATION OF SIXTH-ORDER RUNGE–KUTTA METHOD FOR
TEMPORAL DISCRETIZATION

In this appendix, the sixth-order R-K temporal discretization method is presented. The main
equation is assumed as

du

dt
= f (u, t) (A1)

where the one-step, six-stage discretization R-K method can be defined as follows:

uS = un + �1 · �t · f (un, tn)

u2S = un + �2 · �t · f (uS, t S), t S = tn + �1 · �t

u3S = un + �3 · �t · f (u2S, t2S), t2S = tn + �2 · �t
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u4S = un + �4 · �t · f (u3S, t3S), t3S = tn + �3 · �t

u5S = un + �5 · �t · f (u4S, t4S), t4S = tn + �4 · �t

un+1 = un + �t · [�6 f (un, tn) + �7 f (u
S, t S) + �8 f (u

2S, t2S) + �9 f (u
3S, t3S)

+ �10 f (u
4S, t4S) + �11 f (u

5S, t5S)] (A2)

There are 11 unknown variables which shall be found based on minimization of numerical error.
The determination procedure of these variables using Taylor series is explained in the following
steps:

f (uS, t S) = f (un, tn) +
11∑
i=1

[
(�1 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

f (u2S, t2S) = f (un, tn) +
11∑
i=1

[
(�2 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

f (u3S, t3S) = f (un, tn) +
11∑
i=1

[
(�3 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12 (A3)

f (u4S, t4S) = f (un, tn) +
11∑
i=1

[
(�4 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

f (u5S, t5S) = f (un, tn) +
11∑
i=1

[
(�5 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

un+1 = un +
11∑
i=1

[
(�t)i

i ! · di

dt i
un

]
+ o(�t)12

= un + �t · f (un, tn) +
11∑
i=2

[
(�t)i

i ! · di−1

dt i−1
f (un, tn)

]
+ o(�t)12 (A4)

Using the equations in (A2), it can be derived that

Err= un+1 − un

�t
− [�6 f (un, tn) + �7 f (u

S, t S) + �8 f (u
2S, t2S)

+ �9 f (u
3S, t3S) + �10 f (u

4S, t4S) + �11 f (u
5S, t5S)] (A5)
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Substituting (un+1 − un)/�t from Equation (A4) and f (ukS, tkS) (k = 1 to 5) from Equation
(A3) into Equation (A5), the numerical error can be determined as

Err= f (un, tn) +
11∑
i=2

[
(�t)i−1

i ! · di−1

dt i−1
f (un, tn)

]
+ o(�t)11 − �6 f (u

n, tn)

− �7 ·
{
f (un, tn) +

11∑
i=1

[
(�1 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

}

− �8 ·
{
f (un, tn) +

11∑
i=1

[
(�2 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

}

− �9 ·
{
f (un, tn) +

11∑
i=1

[
(�3 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

}

− �10 ·
{
f (un, tn) +

11∑
i=1

[
(�4 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

}

− �11 ·
{
f (un, tn) +

11∑
i=1

[
(�5 · �t)i

i ! · di

dt i
f (un, tn)

]
+ o(�t)12

}
(A6)

For minimization of numerical errors, the same order terms in Equation (A6) must be equal to
zero. This leads to 11 nonlinear equations that can be described as follows:

1 − �6 − �7 − �8 − �9 − �10 − �11 = 0

11∑
n=2

[
1

n!−
1

(n − 1)! (�
(n−1)
1 · �7 + �(n−1)

2 · �8+�(n−1)
3 · �9+�(n−1)

4 · �10+�(n−1)
5 · �11)

]
= 0 (A7)

Solving the nonlinear equation system (A7) using available numerical methods, the 11 unknown
main variables can be determined as

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11

0.674197 0.674197 0.941974 0.286400 0.246018 0.080939 0.185235 0.185235 0.154226 0.196431 0.197934

The above coefficients are substituted in main equation (A2) to conclude the higher-order R-K
method. This method is used in temporal discretization of the governing equations in (42), (50)
and (51).
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