Learning the vi text editor

William Totten

University of Delaware

January 06, 2017

Learning how the vi text editor works for use on research systems. The vi editor is so
named because it is a visual interface to the ex editor. By today's standards, vi might
not seem very visual, but in 1977 it was revolutionary.

Because vi is both powerfull and small, you will find it on any UNIX or Linux system.

N

© O 00

Overview

. Building a vi toolbox
. Modes
. vi Actions

a) Full Action syntax
b) Simplified Action syntax

. vi Commands

a) Commands with Motions
b) Commands without Motions
c) Miscellaneous Commands

. vi Motions

a) Common Motions
b) Why h, j, k, and 1

. ex Commands

a) Ex General Commands
b) Anatomy of Buffer Modification Syntax in ex
c) ex Buffer Modification Commands

. vi Implementations and Clones
. Key Bindings

. Hands on with vimtutor

. Appendix

Building a vi toolbox

vi is fairly orthogonal

Start with a small set of features
Learn the vi modes

Get comfortable moving around a file
Learn how to use a few commands

Build and expand those features over time

—
m
hd

vi is a Modal Editor

Command Mode

Press the "Escape" key to enter command mode.

ex engine

Press colon from within command mode to enter the ex engine.

Insert or Overtype mode

From command mode, the following keys enter different types of input modes:

Command |Description

i Enter insert mode at the current cursor position.

0 Create a new line below the current one, and enter insert
mode.

0 Create a new line before the current one, and enter insert
mode.

R Enter Overtype/Replace mode. Press Escape to exit.

Anatomy of an Action in vi
* How complex can an action get?

"b2d3w

Store original
text in buffer bl— "b @ @
The motion is
a word in vi
|

Execute the
command 2 times

The command Each execution 1is
is "Delete" on 3 x the motion

This action will delete 6 words and store that text in a buffer named ‘b’.

Luckily, you only really need to remember half of that.

Buffers are rarely used, and while powerful, you should wait to learn them.
Those two numbers always get multiplied together, let's focus on one of them.

Anatomy of a (Simple) Action 1in vi

Let's simlify down to something which can fit into our toolbox

doéw
g
The motion is
a word in vi
|
The command Execute command
is "Delete" on 6 x the motion

This action will delete 6 words and store that text the general buffer.

You can add the complete action to your toolkit when you are comfortable.
This is a pattern we can remember and expand.

Master this pattern first, then add more advanced commands to your toolbox.

Commands with Motions

The following table lists commands which follow the above methodology of accepting a
motion which describes the text to act upon. If any of these command characters are
entered ‘{wice (e.g. dd, d(J, ...), then the action will be executed against the entire
current line.

Command |Description

d Delete the text associated with the motion, an place the
deleted text into the buffer.

C Change the text. This action will delete the text
associated with the motion, then enter insert mode

y Yank text (vi's term for copy). This will place the text
associated with the motion into the buffer.

< Shift the lines left and right respectively, based on the

> shiftwidth variable, which defaults to a tab.

! Filter the lines through an external program. After you
specify the motion which includes complete lines, and so
has a limited motion set) you will be prompted for the
command to filter through.

Commands without Motions

This table contains commands which do not accept motions as arguments. The motion for
these commands is implicitly defined as a single character. You may specify a number
before these commands, which will specify the number of characters to act upon.

Command |Description

S Substitute characters, this works like the change command forced to a motion
of 1 character.

X Remove characters, this works like the delete command forced to a motion of 1
character.

r Replace characters. The same character will replace all characters if

preceded by a number.

~ Change the case of a character between upper and lower cases. Non-alpha
characters are left unaffected.

Miscellaneous Commands

Commangs which don't fit into the previous constraints. These are the non-orthogonal
commands.

Command Description
p Paste the buffer contents after the cursor.
P Paste the buffer contents before the cursor.

Redo last action sequence at the current location.

u Undo last action.

U Undo last actions on current line.

J Join the next line to this one with a space between

D Delete the rest of the current line from the cursor on.
C Change the rest of the current line from the cursor on.
Y Yank the current line into the buffer.

mc Mark current position with label c .

Common Motions

Motion | Description Motion | Description

h Left one character 1 Right one character

k Up one line j Down one line

b Back to beginning of word w Forward to before word
% Match fence pair: ()[]{} e Forward to end of word
” Back to start of line $ Forward to end of line
?re Back to re /re Forward to re

n| Column n of current line nG To line number n

{ Back to paragraph start } Forward to paragraph end
ctrl-U |Back by one screen ctrl-F |Forward by one screen
ctrl-E [Shift screen down one line ctrl-D |(Forward by one-half screen

Why h, j, k, 1 to move around?

While the arrow keys on modern keyboards work to move the cursor in vi, why was the
original choice to use the h, j, k, and 1 characters made?

N A L R I * = [({ [} [Home
1 2 3 4 5 6 7 8 9 0 : - [1 ~A
Esc |Q W E R T Y U I 0 P Line|Enter [Here

Feed| «— |Is
Ctrl{A |S |D |[F (G |H [J |[K |L |+ [° | |Rub|Brk
-) 1 - ; @ \ -
Shift [z [X |[C vV B N M |< |[> ? Shift |Rpt|Clr
2) . / f

ADM3A Keyboard used by Bill Joy when he originally wrote vi

ex General Commands

Historically, vi is just the visual mode of the ex editor. As such, many operations are
accomplished via entering the ex editor. This is done by pressing the colon key.

Command Description
q q! Quit vi, with exclamation (!) forcibly
w o w! Write file, with exclamation (!) forcibly

w file Write to file named file

e file Edit new file named file

r file Read in the contents of file named file to buffer

X Write file, but only if it modified since last write

n Start editing next file in command-line file list

w Rewind to the first file mentioned on the command-line

Anatomy of Buffer Modification Syntax in ex

:/~foo/,$-3s/foo/bar/

Range Range separator

Enter ex command
mode ——%:] /"~ foo/ $-3 s/foo/bar/

Starting address 1is For each line in the

line starting with End address is 3 range, substitute

regular expression ~foo lines prior to the string "bar" in
the last line place of RE "foo"

ex Buffer Modification commands

Command Description

s/RE/text/|Substitute text for Regular Expression

d Delete lines

p Print lines (not very useful in vi, but is in ex)

m addr Move lines to addr

ya C Yank into buffer ¢ or general buffer w/o c

g/RE/cmd |Run cmd on all lines matching RE

> Shift lines right by shiftwidth (defaults to tab)

< Shift lines left by shiftwidth (defaults to tab)

Different Implementations of vi

When you type (VJi), you don't always get the same editor.

vi

vim

vile

nvi

Notes

Uses original

The most enhanced

Enhanced, but

Relatively true

code by Bill |vi implementation|less than to original
Joy vim, popular
with SAs
Syntax Highlights|No Yes, extensive & [Yes, but fairly|No
on by default clumsy
Graphical No Yes, Yes, No
Version? gvim xvile
Where? Solaris Most Linux Optional, FreeBSD,
(Composers) [& Mac 0SX commonly in OpenBSD,
Some Linux (Mills/Farber) /usr/local/bin [& NetBSD
(Arch) at UD

vi: More than just an editor

Many applications allow editing with vi key bindings. Once you are more comfortable
with vi, you can enable these features if you like.

readline The readline library is used to obtain input for a number of programs, most

notably "bash". Bash can be put into vi input mode using the command
d). Readline is also used by python, lua, mathomatic, and gnuplot.

zsh The zsh shell has its own built-in line editing, and is widely heralded as
the best command-line among UNIX shells. It can also be enabled with
d.

abiword The abiword word processor contains an incomplete, but fairly featureful vi
key binding. Although, enabling it is a little complicated.
kate The kate text editor is a feature rich text editor with menus tabs, color

coding, etc. This is an excellent choice for people wanting vi key bindings,
but with a modern gui interface

MonoDevelop Cross platform IDE for C#, F#, and more

Firefox Firefox has multiple extensions which can be added which help configure
Firefox for vi key bindings for text area boxes, or for moving around Firefox

itself.
Switches Cisco, and other swiches have vi input modes for their command-line
interfaces.

ksh, tcsh, and other shells also have vi input modes.

Vimtutor

The most commonly installed vi clone, vim, comes with a file which walks people through
the basics needed to be comfortable using the vi editor. It can be accessed at the
shell prompt by running:

$

This will start vim on a copy of the vim tutor file. This file contains instructions on
how to edit it to learn how to use the most important functionality.

Appendix

What follows are additional commands

Add these to your toolbox later

More Motions

Motion | Description Motion | Description

Tc Back almost character c tc To before character c

Fc Back to character c fc To character c¢

Fc Inverse of last: f, F, t, T , Repeat last: f, F, t, T

(Back to sentence start) Forward to sentence end

[Back to section start] Forward to section end

H First line on screen L Last line on screen

. Entire current line M Middle line on screen

- Back to first non-whitespace|| + Forward to first non-
on previous line whitespace on next line

v Start of line of last jump t Goto spot of last jump

‘C Start of line marked c C Goto mark c

Ranges

Range Description

14 Line 14 of the current buffer

12,42 All lines from 12 to 42 (inclusive)

% Every line in the current buffer

/RE/ The next line (not all) which matches Regular Expression RE

/RE1/,/RE2/

Starting at Regular Expressin RE1l, and ending at Regular Expression RE2
inclusive)

g/RE/

Every line matching regular expression RE

Variables (settings)

Different vi implementations have different variables for their own extensions from the
original. However, a basic set is fairly common across all implementations. You should
review the manual for your implementation if you want to customize it. vim, for
example, has a very large number of settings variables and custom functionality. These

very common variables are consistent across implementations (aliases are in parenthesis
after the full name):

Boolean Variables

Boolean variables can be unset by prefixing them with the string "no".

autoindent (ai) New lines should be indented at the same level
autowrite (aw) Write buffers before leaving

number (nu) Display line numbers in the left margin

showmatch (sm) Automatically show fence pairs on ()[]{}

showmode (smd) Show if the editor is in Insert or Replace modes
wrapscan (ws) When searches reach the bottom of the file, start at top

Scalar Variables

shiftwidth (sw) Number of spaces to insert on a shift operation
tabstop The width to use when displaying tabs
wrapmargin (wm) Split long lines at a specified column

Buffers

A buffer is an internal concept which is similar to a clipboard.

There is a general buffer, one which is used as the default for actions which
require a buffer.

Buffers can have names, and can exist to store text for the entirety of a session.
Buffer names can be any letter

Buffers can be referenced by preceding the buffer name with a double quote (")
character.

