
Introduction to Unix/Linux
Part 2

Anita Schwartz
Client Support & Services

Variables and Environments
Variables are used to help control your environment. Each shell keeps track of its
own shell and environment variables to maintain your environment.

● Environment or global variables

Variables defined for the current shell and are inherited by any child shell.
Basically available in all shells.

● Shell or local variables

Variables only available in the current shell.

Variables and Environments

Typically shell and environment variables are defined with all capital lettters. You
cannot use a number as the first character of any variable.

● Use command printenv or env to list current values of all environment
variables.

● Use command set to list all shell variables, environment variables, local
variables and shell functions.

Variables and Environments
Variables are defined using

VAR_NAME=value:value

Or

VAR_NAME="string with spaces"

No spaces around the =

Variables and Environments: Exercise
Try each of the following commands

printenv or env to see your environment variables.

set | less to see all shell variables, environmental variables, local
variables and shell functions.

The | (pipe) is used to redirect the output from the command set to the program
less to display one page at a time. This is helpful when you have a lot of output
displayed from a command.

Common Environment and Shell Variables
Use command echo $VAR_NAME to display the current value of the variable,
where $VAR_NAME might be

● SHELL
● HOME
● PWD
● BASH

Variables and Environments: Exercise
Try

echo $HOME

echo $PWD

mkdir test

cd test

echo $HOME

echo $PWD

Variables and Environments
Every time a new shell is started, environment variables (list from printenv or env
command) become available in the new shell (sub-shell), basically a copy of the
environment. Shell or local variables are only available in the current shell, and not
available in the sub-shell.

$ bash
$ echo $MY_VAR
A local var in sub-shell
$ unset MY_VAR
$ echo $MY_VAR

$ exit
$ echo $MY_VAR
A local var in sub-shell
$ exit
$ echo $MY_VAR
A local var

Second sub-shell

Remove MY_VAR

Back to First sub-shell

Back to login shell

$ MY_VAR="A local var"
$ echo $MY_VAR
A local var
$ bash
$ echo $MY_VAR

$ MY_VAR="A local var in
sub-shell"
$ echo $MY_VAR
A local var in sub-shell
$ export MY_VAR

First sub-shell

No MY_VAR; create it

Make it global for
future sub-shell

Login shell

Exercise: Creating a Shell Variable
Try

HELLO_VAR="Welcome to Variables"

 set | grep HELLO_VAR

env | grep HELLO_VAR

echo $HELLO_VAR

The | (pipe) is used to redirect the output from the command set and env to the
program grep to search for the pattern HELLO_VAR and only display the lines that
contain it. This is helpful to customize your output to only display what you need.

Exercise: Creating a Shell Variable
Try

bash

echo $HELLO_VAR

exit

Exercise: Creating an Environment Variable
Try

export HELLO_VAR

env | grep HELLO_VAR

bash

echo $HELLO_VAR

exit

Removing Variables
Use command unset VAR_NAME

Aliases
Typically used to help customize commands you want to use with common options
or default values.

Use command alias to see the list of aliases.

Aliases: Exercise
Try

alias

You might see something like this:

alias ll='ls -l --color=auto'
alias ls='ls --color=auto'

Try

ll

Exercise: Create your own alias
Try

alias myscratch=”cd /lustre/scratch/anita”

alias | grep myscratch

pwd

myscratch

pwd

Permissions
Every file in Unix/Linux have permissions based on the following attributes

● type: indicates file type
● user: owner of the file (the user who created the file)
● group: any users who belong is the same group as the user who created the

file will have these permissions
● other: any user who is outside the group will have these permissions to the

file

Permissions
Using the command ls -l displays a list of files and their permissions.

Permissions

 -=regular file, d=directory, l=link r=read, w=write, x=executable (or searchable if type=d)

type user group other

Exercise: Permissions
Let’s examine in detail some of the files in the listing:

engdemo.c : is a regular file (-) and user, group and other all have read (r) access only.
Exercises : is a directory (d) and user has read, write, searchable (rwx) access, group and other have
read and searchable (r-x) access.
yprime.mexa64 : is a regular file and user has read, write, executable (rwx) access, group and other
have read and executable (r-x) access.

Change Permissions
Use chmod command to change permissions using two different methods:

● Letters: a (all (everyone)), u (user), g (group) and o (other)

use a + or - (plus or minus sign) to add or remove permissions for a file
respectively. Use an equals sign =, to specify new permissions and remove
the old ones for the particular type of user(s).

● Numbers: r (read) = 4, w (write) = 2, x (execute) = 1

Use man chmod to get help on the chmod command.

Exercise: Change Permissions
What if we wanted to change the permissions on the file engdemo.c so the user
has write (rw-) permissions too?

Letter method:

Number method:

Adding write access
 Removing write access

Permissions
More details available at

https://www.tutorialspoint.com/unix/unix-file-permission.htm

https://www.tutorialspoint.com/unix/unix-file-permission.htm
https://www.tutorialspoint.com/unix/unix-file-permission.htm

Questions and Open Forum

