

HPC Seminar Series – April 28, 2015

Outline

- Model description
- Computing needs
- Coupled modeling
- Sample results

Acknowledgements: Dana Veron & Cristina Archer – UD
Brian Colle – Stony Brook University (SUNY)

Funding: US Department of Energy

Weather Research and Forecasting – WRF

- State-of-the-art regional (mesoscale) atmospheric model
- Managed by the National Center for Atmospheric Research (NCAR)
- Modules contributed by scientists around the world
- Used for both research and operational weather forecasting
- Predominantly written in Fortran, with C wrappers
- Comprehensive variable registry
- Automated code development during initial compilation

Model Computing Configuration

- Model can be run in a simple configuration on a single compute core
- Almost all modules compatible with MPI for complex model configurations and large, finely gridded domains
- Originally developed by NCAR with PGI compilers and AMD processors in mind
- Model consists of 2 primary components
 - WRF itself and all of its associated physics modules (wrf.exe, real.exe)
 - WPS: WRF Preprocessing System to prepare all of the input streams (geogrid, ungrib, metgrid)

Coupled Modeling

- Earth system is highly complex, so adding more components can improve results
- COAWST Coupled Ocean-Atmosphere-Wave-Sediment Transport Model
 - WRF
 - SWAN (Simulating Waves Nearshore)
 - ROMS (Regional Ocean Modeling System)
 - Also includes sediment transport and sea ice model components
 - Coupled using the Model Coupling Toolkit (MCT)

http://woodshole.er.usgs.gov/operations/modeling/COAWST/

Mills Configuration

- VALET packages
 - NetCDF
 - PGI
 - OpenMPI
 - MCT (for coupled model)
- Compilation of WRF takes about 20-25 minutes
- Compilation of WPS takes less than 5 minutes
- Adding SWAN with COAWST only adds several minutes to the WRF compilation

Challenges

- Compiler flags
 - DM_CC = mpicc -DMPI2_SUPPORT -DMPI2_THREAD_SUPPORT
- Package locations
 - COAWST uses some unique environment variables
 - MCT_INCDIR=/opt/shared/MCT/2.8.3/include (for example)
- COAWST initialization issue with 3 WRF grids
- MPI knowledge
- Tutorial assembly!

Model Setup

- 3 WRF domains at 36, 12, 3 km grid resolution
- 2 SWAN domains at 6, 2 km grid resolution
- Fully coupled, with information passing between models every 9 minutes of model time
- 30 hour model run time
- Initial/boundary conditions provided by North American Regional Reanalysis (NARR) data
- Run using 88 cores (64 WRF, 24 SWAN), taking
 ~6 hours

Some Results – 18 Jan 2011

Conclusions & Discussion Points

- Compute time at national labs or other universities can be expensive and/ or difficult to gain access to
- Complex Earth system modeling requires significant computing resources
- HPC at UD allows for immediate access to powerful resources
- Next Steps:
 - Dissertation work: modeling offshore wind farms in WRF
 - Operational weather model forecasting (Farber)