
UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Autotuning

John Cavazos
University of Delaware

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

What is Autotuning?

 Searching for the “best” code parameters, code

transformations, system configuration settings,

etc.

 Search can be

 Quasi-intelligent: genetic algorithms, hill-climbing

 Random (often quite good!)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Parameters to tune in all of these

application

runtime system

compiler

operating system

hardware

virtualization

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Traditional Compilers

 “One size fits all” approach

 Tuned for average performance

 Aggressive opts often turned off

 Target hard to model analytically
application

runtime system

compiler

operating system

hardware

virtualization

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Solution : Random Search!

 Identify large set of optimizations to search over

 Some optimizations require parameter values,
search over those values also!

 Out-performs state-of-the-art compiler

application

runtime system

compiler

operating system

hardware

virtualization

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Optimization Sequence Representation

 Use random number generator to construct
sequence

6

Example:

-LNO:interchange=1:prefetch=2:blocking_size=32:fusion=1:…

Generate each of these parameter values
 using a random number generator

Note: need to define a range of interesting values a-priori

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 PathScale compiler

 Compare to highest optimization level

 121 compiler flags

 AMD Athlon processor

 Real machine; Not simulation

 57 benchmarks

 SPEC (INT 95, INT/FP 2000), MiBench, Polyhedral

Case Study: Random vs State-of-the-Art

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 RAND

 Randomly select 500 optimization sequences

 Combined Elimination [CGO 2006]

 Pure search technique

 Evaluate optimizations one at a time

 Eliminate negative optimizations in one go

 Out-performed other pure search techniques

 PC Model [CGO 2007]

 Machine learning model using performance counters

 Mapping of performance counters to good optimizations

Evaluated Search Strategies

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Random (17%)

Combined Elimination (12%)

PC Model (17%)

Performance vs Evaluations

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 Use small input sizes that are representative

 Be careful as tuning on small inputs may not give you
the best performance on regular (larger) inputs

 Reduce application to most important kernel(s) and
tune those

 If kernels can be mapped to highly-tuned library
implementations, use those!

Some recommendations

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 No optimization search will help a
bad algorithm!

 Chose the correct algorithm first!

Some recommendations

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 Can easily setup a genetic algorithm or hill-climbing
to perform search over optimization space

 We can help you set this up.

 Random often does as well!

Using quasi-intelligent search

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 Can be used to narrow search to particular set of
optimizations

 Lots of cache misses may require loop
restructuring, e.g., blocking

 Lots of resource stalls may require instruction
scheduling

Performance counters

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

1. L1 Cache Accesses
2. L1 Dcache Hits

3. TLB Data Misses

4. Branch Instructions
5. Resource Stalls

6. Total Cycles

7. L2 Icache Hits

8. Vector Instructions

 9. L2 Dcache Hits
10. L2 Cache Accesses

11. L1 Dcache Accesses

12. Hardware Interrupts
13. L2 Cache Hits

14. L1 Cache Hits

15. Branch Misses

Most Informative Perf Counters

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependence Analysis and Loop

Transformations

John Cavazos
University of Delaware

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Lecture Overview

 Very Brief Introduction to Dependences

 Loop Transformations

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

The Big Picture

What are our goals?

 Simple Goal: Make execution time as small as

possible

Which leads to:

 Achieve execution of many (all, in the best case)

instructions in parallel

 Find independent instructions

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependences

 We will concentrate on data dependences

 Simple example of data dependence:

 S1 PI = 3.14

 S2 R = 5.0

 S3 AREA = PI * R ** 2

 Statement S3 cannot be moved before either

S1 or S2 without compromising correct results

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependences

 Formally:

There is a data dependence from statement S1 to

statement S2 (S2 depends on S1) if:

1. Both statements access the same memory location

and at least one of them stores onto it, and

2. There is a feasible run-time execution path from S1

to S2

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Load Store Classification

 Quick review of dependences classified in terms

of load-store order:

1. True dependence (RAW hazard)

2. Antidependence (WAR hazard)

3. Output dependence (WAW hazard)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Dependence in Loops

 Let us look at two different loops:

 DO I = 1, N

S1 A(I+1) = A(I)+ B(I)

 ENDDO

 DO I = 1, N

S1 A(I+2) = A(I)+B(I)

 ENDDO

• In both cases, statement S1 depends on itself

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Transformations

 We call a transformation safe if the transformed

program has the same "meaning" as the original

program

 But, what is the "meaning" of a program?

For our purposes:

 Two computations are equivalent if, on the same

inputs:

 They produce the same outputs in the same order

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Reordering Transformations

 Is any program transformation that changes the

order of execution of the code, without adding or

deleting any executions of any statements

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Properties of Reordering Transformations

 A reordering transformation does not eliminate

dependences

 However, it can change the ordering of the

dependence which will lead to incorrect behavior

 A reordering transformation preserves a

dependence if it preserves the relative execution

order of the source and sink of that dependence.

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Transformations

 Compilers have always focused on loops

 Higher execution counts

 Repeated, related operations

 Much of real work takes place in loops

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Several effects to attack

 Overhead

 Decrease control-structure cost per iteration

 Locality

 Spatial locality  use of co-resident data

 Temporal locality  reuse of same data

 Parallelism

 Execute independent iterations of loop in parallel

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Eliminating Overhead

Loop unrolling (the oldest trick in the book)

 To reduce overhead, replicate the loop body

Sources of Improvement

 Less overhead per useful operation

 Longer basic blocks for local optimization

do i = 1 to 100 by 1
 a(i) = a(i) + b(i)

end

do i = 1 to 100 by 4
 a(i) = a(i) + b(i)

 a(i+1) = a(i+1) + b(i+1)

 a(i+2) = a(i+2) + b(i+2)

 a(i+3) = a(i+3) + b(i+3)

end

becomes

(unroll by 4)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Eliminating Overhead

Loop unrolling with unknown bounds

 Generate guard loops

do i = 1 to n by 1
 a(i) = a(i) + b(i)

 end

i = 1

do while (i+3 < n)

 a(i) = a(i) + b(i)

 a(i+1) = a(i+1) + b(i+1)

 a(i+2) = a(i+2) + b(i+2)

 a(i+3) = a(i+3) + b(i+3)

 i = i + 4
 end

do while (i < n)

 a(i) = a(i) + b(i)

 i = i + 1
 end

becomes

(unroll by 4)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Eliminating Overhead

One other use for loop unrolling

 Eliminate copies at the end of a loop

t1 = b(0)

do i = 1 to 100

 t2 = b(i)
 a(i) = a(i) + t1 + t2

 t1 = t2

 end

becomes

(unroll + rename)

t1 = b(0)

do i = 1 to 100 by 2

 t2 = b(i)
 a(i) = a(i) + t1 + t2

 t1 = b(i+1)

 a(i+1) = a(i+1) + t2 + t1

 end

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Unswitching

 Hoist invariant control-flow out of loop nest

 Replicate the loop & specialize it

 No tests, branches in loop body

 Longer segments of straight-line code

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Unswitching

loop

 statements

 if test then

 then part

 else

 else part

 endif

 more statements

endloop

becomes

(unswitch)

If test then

 loop

 statements

 then part

 more statements

 endloop

else

 loop

 statements

 else part

 more statements

 endloop

endif *

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Unswitching

do i = 1 to 100
 a(i) = a(i) + b(i)

 if (expression) then

 d(i) = 0

end

becomes

(unswitch)

if (expression) then

 do i = 1 to 100
 a(i) = a(i) + b(i)

 d(i) = 0

 end

else

 do i = 1 to 100
 a(i) = a(i) + b(i)

 end

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion

 Two loops over same iteration space  one loop

 Safe if does not change the values used or defined by any

statement in either loop (i.e., does not violate deps)

do i = 1 to n
 c(i) = a(i) + b(i)

end

do j = 1 to n

 d(j) = a(j) * e(j)

end

becomes

(fuse)

do i = 1 to n
 c(i) = a(i) + b(i)

 d(i) = a(i) * e(i)

 end

*
For big arrays, a(i) may not be in
the cache a(i) will be found in the cache

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion Advantages

 Enhance temporal locality

 Reduce control overhead

 Longer blocks for local optimization & scheduling

 Can convert inter-loop reuse to intra-loop reuse

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Fusion of Parallel Loops

 Parallel loop fusion legal if dependences loop

independent

 Source and target of flow dependence map to same

loop iteration

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

 Single loop with independent statements  multiple loops

 Starts by constructing statement level dependence graph

 Safe to perform distribution if:

 No cycles in the dependence graph

 Statements forming cycle in dependence graph put in same loop

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

do i = 1 to n
 a(i) = b(i) + c(i)

 end

do i = 1 to n

 d(i) = e(i) * f(i)

 end

do i = 1 to n

 g(i) = h(i) - k(i)

 end

becomes

(fission)

do i = 1 to n
 a(i) = b(i) + c(i)

 d(i) = e(i) * f(i)

 g(i) = h(i) - k(i)

 end

} Reads b & c

Writes a

} Reads e & f

Writes d

} Reads h & k

Writes g

{
Reads b, c,
e, f, h, & k

Writes a, d,
& g

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

Has the
following

dependence
graph

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) B[I] = C[I-1]*X+C

(4) C[I] = 1/B[I]

(5) D[I] = sqrt(C[I])

(6) endfor

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop distribution (fission)

becomes

(fission)

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) B[I] = C[I-1]*X+C

(4) C[I] = 1/B[I]

(5) D[I] = sqrt(C[I])

(6) endfor

(1) for I = 1 to N do

(2) A[I] = A[i] + B[i-1]

(3) endfor

(4) for

(5) B[I] = C[I-1]*X+C

(6) C[I] = 1/B[I]

(7)endfor

(8)for

(9) D[I] = sqrt(C[I])

(10)endfor

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

40

Loop Fission Advantages

 Enables other transformations

 E.g., Vectorization

 Resulting loops have smaller cache footprints

 More reuse hits in the cache

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 Swap inner & outer loops to rearrange iteration space

Effect

 Improves reuse by using more elements per cache line

 Goal is to get as much reuse into inner loop as possible

41

do i = 1 to 50

 do j = 1 to 100

 a(i,j) = b(i,j) * c(i,j)
 end
 end

do j = 1 to 100

 do i = 1 to 50

 a(i,j) = b(i,j) * c(i,j)
 end
 end

becomes

(interchange)

Loop Interchange

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

 If one loop carries all dependence relations

 Swap to outermost loop and all inner loops executed in parallel

 If outer loops iterates many times and inner only a few

 Swap outer and inner loops to reduce startup overhead

 Improves reuse by using more elements per cache line

 Goal is to get as much reuse into inner loop as possible

42

Loop Interchange Effect

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Reordering Loops for Locality

After interchange, direction of
Iteration is changed

cache line

Runs down cache line

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

In row-major order, the opposite loop ordering causes
the same effects

In Fortran’s column-major order,
a(4,4) would lay out as

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

cache line

As little as 1 used element per line

*

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop permutation

 Interchange is degenerate case

 Two perfectly nested loops

 More general problem is called permutation

Safety

 Permutation is safe iff no data dependences are

reversed

 The flow of data from definitions to uses is preserved

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

45

Loop Permutation Effects

 Change order of access & order of computation

 Move accesses closer in time  increase

temporal locality

 Move computations farther apart  cover

pipeline latencies

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Strip Mining

 Splits a loop into two loops

do j = 1 to 100

 do i = 1 to 50

 a(i,j) = b(i,j) *
c(i,j)
 endend

becomes

(strip mine)

do j = 1 to 100

 do ii = 1 to 50 by 8

 do i = ii to min(ii+7,50)
 a(i,j) = b(i,j) * c(i,j)
 end
 end
end

Note: This is always safe, but used by itself not profitable!

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

47

Strip Mining Effects

 May slow down the code (extra loop)

 Enables vectorization

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

Want to exploit temporal locality
in loop nest.

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Loop Tiling (blocking)

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

53

Loop Tiling Effects

 Reduces volume of data between reuses

 Works on one “tile” at a time (tile size is B by B)

 Choice of tile size is crucial

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

Scalar Replacement

 Allocators never keep c(i) in a register

 We can trick the allocator by rewriting the references

The plan

 Locate patterns of consistent reuse

 Make loads and stores use temporary scalar variable

 Replace references with temporary’s name

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

55

Scalar Replacement

do i = 1 to n
 do j = 1 to n
 a(i) = a(i) + b(j)
 end
end

do i = 1 to n
 t = a(i)
 do j = 1 to n
 t = t + b(j)
 end
 a(i) = t
end

becomes

(scalar replacement)

Almost any register allocator
can get t into a register

UNIVERSITY OF DELAWARE • COMPUTER & INFORMATION SCIENCES DEPARTMENT

56

Scalar Replacement Effects

 Decreases number of loads and stores

 Keeps reused values in names that can be

allocated to registers

 In essence, this exposes the reuse of a(i) to

subsequent passes

