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What is Autotuning? 

 Searching for the “best” code parameters, code 

transformations, system configuration settings, 

etc.  

 Search can be 

 Quasi-intelligent: genetic algorithms, hill-climbing 

 Random (often quite good!) 
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Parameters to tune in all of these 

application 

runtime system 

compiler 

operating system 

hardware 

virtualization 
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Traditional Compilers 

 “One size fits all” approach 

 Tuned for average performance 

 Aggressive opts often turned off 

 Target hard to model analytically 
application 

runtime system 

compiler 

operating system 

hardware 

virtualization 
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Solution : Random Search! 

 Identify large set of optimizations to search over 

 Some optimizations require parameter values, 
search over those values also! 

 Out-performs state-of-the-art compiler 

application 

runtime system 

compiler 

operating system 

hardware 

virtualization 
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Optimization Sequence Representation 

 Use random number generator to construct 
sequence 

6 

Example: 

-LNO:interchange=1:prefetch=2:blocking_size=32:fusion=1:… 

Generate each of these parameter values 
 using a random number generator 

Note: need to define a range of interesting values a-priori  
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 PathScale compiler 

 Compare to highest optimization level 

 121 compiler flags 

 AMD Athlon processor 

 Real machine; Not simulation 

 57 benchmarks 

 SPEC (INT 95, INT/FP 2000), MiBench, Polyhedral 

Case Study: Random vs State-of-the-Art 
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 RAND 

 Randomly select 500 optimization sequences 

 Combined Elimination [CGO 2006] 

 Pure search technique 

 Evaluate optimizations one at a time 

 Eliminate negative optimizations in one go 

 Out-performed other pure search techniques 

 PC Model [CGO 2007] 

 Machine learning model using performance counters  

 Mapping of performance counters to good optimizations 

Evaluated Search Strategies  
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Random (17%) 

Combined Elimination (12%) 

PC Model (17%) 

Performance vs Evaluations  
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 Use small input sizes that are representative 

 Be careful as tuning on small inputs may not give you 
the best performance on regular (larger) inputs 

 Reduce application to most important kernel(s) and 
tune those 

 If kernels can be mapped to highly-tuned library 
implementations, use those! 

Some recommendations 
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 No optimization search will help a 
bad algorithm! 

 Chose the correct algorithm first! 

Some recommendations 
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 Can easily setup a genetic algorithm or hill-climbing 
to perform search over optimization space 

 We can help you set this up. 

 Random often does as well! 

Using quasi-intelligent search 
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 Can be used to narrow search to particular set of 
optimizations 

 Lots of cache misses may require loop 
restructuring, e.g., blocking 

 Lots of resource stalls may require instruction 
scheduling 

Performance counters 
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1. L1 Cache Accesses 
2. L1 Dcache Hits 

3. TLB Data Misses 

4. Branch Instructions 
5. Resource Stalls 

6. Total Cycles 

7. L2 Icache Hits 

8. Vector Instructions 

  9. L2 Dcache Hits 
10. L2 Cache Accesses 

11. L1 Dcache Accesses 

12. Hardware Interrupts 
13. L2 Cache Hits 

14. L1 Cache Hits 

15. Branch Misses 

Most Informative Perf Counters  
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Lecture Overview 

 Very Brief Introduction to Dependences  

 Loop Transformations 
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The Big Picture 

What are our goals? 

  Simple Goal: Make execution time as small as 

possible 

 

Which leads to: 

 Achieve execution of many (all, in the best case) 

instructions  in parallel 

 Find independent instructions  
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Dependences 

 We will concentrate on data dependences 

 Simple example of data dependence: 

   S1 PI = 3.14 

   S2  R = 5.0 

   S3  AREA = PI * R ** 2 

 

 Statement S3 cannot be moved before either 

S1 or S2 without compromising correct results 
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Dependences 

 Formally: 

There is a data dependence from statement S1 to 

statement S2 (S2 depends on S1) if:   

1. Both statements access the same memory location 

and at least one of them stores onto it, and 

2. There is a feasible run-time execution path from S1 

to S2 
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Load Store Classification 

 Quick review of dependences classified in terms 

of load-store order: 

1. True dependence (RAW hazard)  

2. Antidependence (WAR hazard) 

3. Output dependence (WAW hazard) 

 



UNIVERSITY OF DELAWARE  •  COMPUTER & INFORMATION SCIENCES DEPARTMENT 

Dependence in Loops 

 Let us look at two different loops: 

 DO I = 1, N 

S1   A(I+1) = A(I)+ B(I) 

 ENDDO 

 DO I = 1, N 

S1   A(I+2) = A(I)+B(I) 

 ENDDO 

• In both cases, statement S1 depends on itself 
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Transformations 

 We call a transformation safe if the transformed 

program has the same "meaning" as the original 

program 
 

 But, what is the "meaning" of a program? 
 

For our purposes: 

 Two computations are equivalent if, on the same 

inputs: 

 They produce the same outputs in the same order 
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Reordering Transformations 

 Is any program transformation that changes the 

order of execution of the code, without adding or 

deleting any executions of any statements 
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Properties of Reordering Transformations 

 A reordering transformation does not eliminate 

dependences 

 However, it can change the ordering of the 

dependence which will lead to incorrect behavior 

 A reordering transformation preserves a 

dependence if it preserves the relative execution 

order of the source and sink of that dependence. 

 

 



UNIVERSITY OF DELAWARE  •  COMPUTER & INFORMATION SCIENCES DEPARTMENT 

Loop Transformations 

 Compilers have always focused on loops 

 Higher execution counts 

 Repeated, related operations 

 Much of real work takes place in loops 

* 
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Several effects to attack 

 Overhead 

 Decrease control-structure cost per iteration  

 Locality  

 Spatial locality  use of co-resident data 

 Temporal locality  reuse of same data 

 Parallelism 

 Execute independent iterations of loop in parallel 

* 
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Eliminating Overhead 

Loop unrolling (the oldest trick in the book)  

 To reduce overhead, replicate the loop body 

 

 

 

Sources of Improvement 

 Less overhead per useful operation 

 Longer basic blocks for local optimization 

 

do i = 1 to 100 by 1 
    a(i) = a(i) + b(i) 

end 

do i = 1 to 100 by 4 
    a(i)     = a(i) + b(i) 

    a(i+1) = a(i+1) + b(i+1) 

    a(i+2) = a(i+2) + b(i+2) 

    a(i+3) = a(i+3) + b(i+3) 

end 

becomes  

(unroll by 4) 
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Eliminating Overhead 

Loop unrolling with unknown bounds  

 Generate guard loops 

 

do i = 1 to n by 1 
    a(i) = a(i) + b(i) 

    end 

i = 1 

do while (i+3 < n) 

    a(i)     = a(i) + b(i) 

    a(i+1) = a(i+1) + b(i+1) 

    a(i+2) = a(i+2) + b(i+2) 

    a(i+3) = a(i+3) + b(i+3) 

    i = i + 4 
    end 

do while (i < n) 

     a(i) = a(i) + b(i) 

     i  = i + 1 
     end 

becomes  

(unroll by 4) 
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Eliminating Overhead 

One other use for loop unrolling   

 Eliminate copies at the end of a loop 

 

 

 
 

 

t1 = b(0) 

do i = 1 to 100 

     t2 = b(i) 
      a(i) = a(i) + t1 + t2 

      t1 = t2  

 end 

becomes  

(unroll + rename) 

t1 = b(0) 

do i = 1 to 100 by 2 

       t2 = b(i) 
         a(i) = a(i) + t1 + t2 

         t1 = b(i+1) 

        a(i+1) = a(i+1) + t2 + t1 

    end 
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Loop Unswitching 

 Hoist invariant control-flow out of loop nest 

 Replicate the loop & specialize it 

 No tests, branches in loop body 

 Longer segments of straight-line code 

* 
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Loop Unswitching 

 

 

 
 

 

loop 

     statements 

     if test then 

         then part 

     else 

        else part 

     endif    

     more statements 

endloop 

 

becomes  

(unswitch) 

If test then 

    loop 

       statements 

       then part 

       more statements 

     endloop 

else 

     loop 

        statements 

         else part   

        more statements 

    endloop 

endif * 
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Loop Unswitching 

do i = 1 to 100 
    a(i) = a(i) + b(i) 

    if (expression) then 

        d(i) = 0  

end 

becomes  

(unswitch) 

if (expression) then 

    do i = 1 to 100 
         a(i) = a(i) + b(i) 

         d(i) = 0  

     end 

else  

    do i = 1 to 100 
         a(i) = a(i) + b(i) 

     end 

* 
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Loop Fusion 

 Two loops over same iteration space  one loop 

 Safe if does not change the values used or defined by any 

statement in either loop (i.e., does not violate deps) 

 

 

 

 

do i = 1 to n 
    c(i) = a(i) + b(i) 

end 

do j = 1 to n 

    d(j) = a(j) * e(j) 

end 

becomes  

(fuse) 

do i = 1 to n 
     c(i) = a(i) + b(i) 

     d(i) = a(i) * e(i) 

 end 

* 
For big arrays, a(i) may not be in 
the cache a(i) will be found in the cache 
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Loop Fusion Advantages 

 Enhance temporal locality 

 Reduce control overhead 

 Longer blocks for local optimization & scheduling 

 Can convert inter-loop reuse to intra-loop reuse 

* 
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Loop Fusion of Parallel Loops 

 Parallel loop fusion legal if dependences loop 

independent 

 Source and target of flow dependence map to same 

loop iteration 

 

* 
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Loop distribution (fission) 

 Single loop with independent statements  multiple loops 

 Starts by constructing statement level dependence graph 

 Safe to perform distribution if: 

 No cycles in the dependence graph 

 Statements forming cycle in dependence graph put in same loop 

 

 



UNIVERSITY OF DELAWARE  •  COMPUTER & INFORMATION SCIENCES DEPARTMENT 

Loop distribution (fission) 

do i = 1 to n 
    a(i) = b(i) + c(i) 

    end 

do i = 1 to n 

    d(i) = e(i) * f(i) 

    end 

do i = 1 to n 

    g(i) = h(i) - k(i) 

    end 

becomes  

(fission) 

do i = 1 to n 
     a(i) = b(i) + c(i) 

     d(i) = e(i) * f(i) 

     g(i) = h(i) - k(i) 

     end 

} Reads b & c 

Writes a 

} Reads e & f 

Writes d 

} Reads h & k 

Writes g 

{ 
Reads b, c, 
e, f, h, & k 

Writes a, d,  
& g 
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Loop distribution (fission) 

Has the 
following 

dependence 
graph 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3)    B[I] = C[I-1]*X+C 

(4)    C[I] = 1/B[I] 

(5)    D[I] = sqrt(C[I]) 

(6) endfor 
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Loop distribution (fission) 

becomes 

(fission) 

(1) for I = 1 to N do 

(2)    A[I] = A[i] + B[i-1] 

(3)    B[I] = C[I-1]*X+C 

(4)    C[I] = 1/B[I] 

(5)    D[I] = sqrt(C[I]) 

(6) endfor 

(1) for I = 1 to N do 

(2)   A[I] = A[i] + B[i-1] 

(3) endfor 

(4) for 

(5)   B[I] = C[I-1]*X+C 

(6)   C[I] = 1/B[I] 

(7)endfor 

(8)for 

(9)   D[I] = sqrt(C[I]) 

(10)endfor 
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40 

Loop Fission Advantages 

 Enables other transformations    

 E.g., Vectorization 

 Resulting loops have smaller cache footprints  

 More reuse hits in the cache 

* 
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 Swap inner & outer loops to rearrange iteration space 

Effect 

 Improves reuse by using more elements per cache line 

 Goal is to get as much reuse into inner loop as possible 

41 

do i = 1 to 50 

   do j = 1 to 100 

      a(i,j) = b(i,j) * c(i,j) 
    end 
 end 

do j = 1 to 100 

    do i = 1 to 50 

       a(i,j) = b(i,j) * c(i,j) 
    end 
 end 

becomes  

(interchange) 

Loop Interchange 

* 
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 If one loop carries all dependence relations 

 Swap to outermost loop and all inner loops executed in parallel 

 If outer loops iterates many times and inner only a few 

 Swap outer and inner loops to reduce startup overhead 

 Improves reuse by using more elements per cache line 

 Goal is to get as much reuse into inner loop as possible 

42 

Loop Interchange Effect 

* 
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Reordering Loops for Locality 

After interchange, direction of  
Iteration is changed  

cache line 

Runs down cache line 

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

In row-major order, the opposite loop ordering causes 
the same effects 

In Fortran’s column-major order, 
a(4,4)  would lay out as  

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

1,3 2,3 3,3 4,3

1,4 2,4 3,4 4,4

cache line 

As little as 1 used element  per line 

* 
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Loop permutation 

 Interchange is degenerate case 

 Two perfectly nested loops  

 More general problem is called permutation 

Safety 

 Permutation is safe iff no data dependences are 

reversed 

 The flow of data from definitions to uses is preserved 
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45 

Loop Permutation Effects 

 Change order of access & order of computation 

 Move accesses closer in time  increase 

temporal locality 

 Move computations farther apart  cover 

pipeline latencies 
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Strip Mining 

 Splits a loop into two loops 

do j = 1 to 100 

   do i = 1 to 50 

      a(i,j) = b(i,j) * 
c(i,j) 
   endend 

becomes  

(strip mine) 

do j = 1 to 100 

    do ii = 1 to 50 by 8 

      do i = ii to min(ii+7,50) 
          a(i,j) = b(i,j) * c(i,j) 
      end 
   end 
end 

Note: This is always safe, but used by itself not profitable! 
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47 

Strip Mining Effects 

 May slow down the code (extra loop) 

 Enables vectorization 
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Loop Tiling (blocking) 

Want to exploit temporal locality 
in loop nest. 
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Loop Tiling (blocking) 
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Loop Tiling (blocking) 
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Loop Tiling (blocking) 
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Loop Tiling (blocking) 
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53 

Loop Tiling Effects 

 Reduces volume of data between reuses 

 Works on one “tile” at a time  (tile size is B by  B) 

 Choice of tile size is crucial 
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Scalar Replacement 

 Allocators never keep c(i) in a register 

 We can trick the allocator by rewriting the references 
 

The plan 

 Locate patterns of consistent reuse 

 Make loads and stores use temporary scalar variable 

 Replace references with temporary’s name 
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55 

Scalar Replacement 

do i = 1 to n 
    do j = 1 to n    
       a(i) = a(i) + b(j) 
    end 
end 

do i = 1 to n 
    t = a(i) 
    do j = 1 to n    
         t =  t + b(j) 
    end 
    a(i) = t 
end 

becomes  

(scalar replacement) 

Almost any register allocator 
can get  t into a register 
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56 

Scalar Replacement Effects  

 Decreases number of loads and stores 

 Keeps reused values in names that can be 

allocated to registers 

 In essence, this exposes the reuse of a(i) to 

subsequent passes 


