
Revision Control
and GIT

On UD HPC Community Clusters

William Totten
Network & Systems Services

Why use revision control

● You can go back in time
● It makes it easy to try things out which might not work
● Facilitates multiple people making changes at once
● Helps for distribution
● Great for programming source code
● Also great for configuration files
● Helps with peer review

Revision control systems
● Git

○ Local repositories
○ Consider https://github.com/ (free for open source) or https://gitlab.com/ (free for all)
○ Allows for multiple local commits before uploading them centrally

● Subversion (svn)
○ Local repositories
○ Consider https://sourceforge.net/
○ You can check out any part of the tree you want

● Others
○ RCS
○ CVS
○ Mercurial (aka hg)
○ ...

https://github.com/
https://gitlab.com/
https://sourceforge.net/

Revision control terminology
branch A set of files under version control may be branched or forked at a point in time so that, from that time forward, two copies of those files may

develop at different speeds or in different ways independently of each other.

checkout To clone, check out (or co) is to create a local working copy from the repository. A user may specify a specific revision or obtain the latest. The
term 'checkout' can also be used as a noun to describe the working copy.

commit To commit (check in, ci or, more rarely, install, submit or record) is to write or merge the changes made in the working copy back to the repository.
The terms 'commit' and 'checkin' can also be used as nouns to describe the new revision that is created as a result of committing.

conflict A conflict occurs when different parties make changes to the same document, and the system is unable to reconcile the changes. A user must
resolve the conflict by combining the changes, or by selecting one change in favour of the other.

merge A merge or integration is an operation in which two sets of changes are applied to a file or set of files.

pull/push Copy revisions from one repository into another. Pull is initiated by the receiving repository, while push is initiated by the source. Fetch is
sometimes used as a synonym for pull, or to mean a pull followed by an update.

revision Also version: A version is any change in form.

tag A tag or label refers to an important snapshot in time, consistent across many files. These files at that point may all be tagged with a user-friendly,
meaningful name or revision number.

trunk The unique line of development that is not a branch (sometimes also called Baseline, Mainline or Master)

Revision control in action

● In SVN, revisions are numbers like shown above and tags can be any text string
● If this were Git, the revisions would have seemingly random hexadecimal strings like f7fd3d4

Local SVN
● In SVN, the repository should go someplace special
● You may want to keep an "official" checkout in a workgroup directory
● You can start out with an empty repository, then add stuff
● Try to make the names match up

between the repository & checkout
● You have to manually add the files

you want in the repository
● Once you check-in the files, anyone

with access to the repository can
create their own working copy

$ mkdir repos
$ svnadmin create repos/project1
$ svn mkdir -m Structure file:///home/work/it_nss/repo/svn_exampl
e/repos/project1/{trunk,branches,tags}
Committed revision 1.
$ svn co file:///home/work/it_nss/repo/svn_example/repos/project1
/trunk project1
Checked out revision 1.
$ cd project1
$ cp /opt/templates/dev-projects/C_Executable/* .
$ svn add *
A Makefile
A helloworld.c
A printmsg.c
A printmsg.h
$ svn ci -m 'Initial code check-in'
Adding Makefile
...
Transmitting file data
Committed revision 2.

Updating code in an SVN repository
● Always try to ensure your copy is up-to-date before making changes
● Use whatever process you are most comfortable with to change files
● Always use `svn add`, `svn rm`, and `svn mv` to add/remove/move files
● You should always provide a

comment when making changes
● SVN is centralized, so version

numbers are monotonically increasing
● SVN can tell you if any new files

aren't revision controlled

$ svn up
At revision 2.
$ vi Makefile
$ svn ci -m 'Simplify Makefile, switch to gcc'
Sending Makefile
Transmitting file data .
Committed revision 3.
$ make
gcc -g -O -c -o helloworld.o helloworld.c
gcc -g -O -c -o printmsg.o printmsg.c
gcc -g -O -o helloworld helloworld.o printmsg.o -lm
$ svn status
? helloworld
$

Initializing Git

● When you share your changes, they need to be linked to you
● You need to tell Git something unique about you to tie to your changes
● You can tell Git your email address,

this is standard practice
● You can also tell Git your name
● You can set your text editor
● The easiest way to distribute your

code is SSH, create a key if you don't
have one already

$ git config --global user.email totten@udel.edu
$ git config --global user.name "William Totten"
$ git config --global core.editor /usr/bin/vile
$ ls -la .ssh/id_rsa.pub
-rw-r--r-- 1 totten everyone 406 Aug 20 2014 .ssh/id_rsa.pub

Local Git
● Git is distributed, so every clone is a repository by definition
● You may want to keep an "official" clone in a workgroup directory
● You can start out with an empty repository, then add stuff
● You have to manually add the files

you want in the repository
● Once you check-in the files, anyone

else with access to the repository can
clone their own copy

$ mkdir project1
$ cd project1
$ git init .
Initialized empty Git repository in
/home/work/it_nss/repo/git_example/project1/.git/
$ cp /opt/templates/dev-projects/C_Executable/* .
$ git add *
$ git commit -am 'Initial code check-in'
[master (root-commit) f7fd3d4] Initial code check-in
 4 files changed, 153 insertions(+), 0 deletions(-)
 create mode 100644 Makefile
 create mode 100644 helloworld.c
 create mode 100644 printmsg.c
 create mode 100644 printmsg.h

Using github.com
● Get a login for yourself on github.com, I recommend adding some SSH keys
● Create the new repository at https://github.com/new
● Now clone a working repository for yourself
● You have to manually add the files

you want in the repository
● Once you check-in the files, anyone

else with access to the repository can
clone or pull their own copy

● The project must be Open Source on
github, or they want money

$ git clone git@github.com:biell/project1.git
Initialized empty Git repository in
/home/work/it_nss/repo/git_example/project1/.git/
remote: Counting objects: 4, done.
remote: Total 4 (delta 0), reused 0 (delta 0), pack-reused 4
Receiving objects: 100% (4/4), 850 B, done.
$ cd project1
$ vi README.md
$ cp /opt/templates/dev-projects/C_Executable/* .
$ git add *
$ git commit -am 'Initial code check-in'
[master (root-commit) 38ad2e3] Initial code check-in
 5 files changed, 153 insertions(+), 0 deletions(-)
 create mode 100644 Makefile
 create mode 100644 helloworld.c
 create mode 100644 printmsg.c
 create mode 100644 printmsg.h

+

https://github.com/new

Using gitlab.com
● Get a login for yourself on gitlab.com, I recommend adding some SSH keys
● Create the new repository at https://gitlab.com/projects/new
● Now clone a working repository for yourself
● You have to manually add the files

you want in the repository
● Once you check-in the files, anyone

else with access to the repository can
clone or pull their own copy

● The project can be public or private
on gitlab

$ git clone git@gitlab.com:biell/project1.git
Initialized empty Git repository in
/home/work/it_nss/repo/git_example/project1/.git/
Warning: You appear to have cloned an empty repository.
$ cd project1
$ vi README.md # create this file b/c gitlab doesn't do it for you
$ cp /opt/templates/dev-projects/C_Executable/* .
$ git add *
$ git commit -am 'Initial code check-in'
[master (root-commit) 38ad2e3] Initial code check-in
 5 files changed, 153 insertions(+), 0 deletions(-)
 create mode 100644 Makefile
 create mode 100644 helloworld.c
 create mode 100644 printmsg.c
 create mode 100644 printmsg.h

+

https://gitlab.com/projects/new

Updating code in a Git repository
● Pull the latest trunk when using github
● Use whatever process you are most comfortable with to change files
● Always use `git add`, `git rm`, and `git mv` to add/remove/move files
● You can choose what to commit, add

the "-a" to commit all changes.
● You commit to your local, distributed

clone, not a central repository
● You can push any number of commits

all at once

$ git pull
Already up-to-date.
$ vi Makefile
$ git commit -am 'Simplify Makefile, switch to gcc'
[master 5c0bfbd] update Simplify Makefile, switch to gcc
1 file changed, 3 insertions(+), 3 deletions(-)
$ git push
Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 416 bytes | 0 bytes/s, done.
Total 4 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), completed with 3 local
objects.
To ssh://github.com/biell/project1.git
 38ad2e3..5c0bfbd master -> master
$ make
...
$

Working with branches
● You can create a branch anytime you want to try something
● You can make as many commits and changes as you want to the branch
● You can switch back and forth

between branches
● You can review the differences

between two branches
● You can merge any branch with any

other branch
● Merging a branch doesn't delete it

$ git branch
* master
$ git branch try1
$ git branch
* master
 try1
$ git checkout try1
Switched to branch 'try1'
$ git branch
 master
* try1
$ git diff master try1
diff --git a/file1 b/file2
...
$ git checkout master
Switched to branch 'master'
$ git merge try1
Updating 7acf9b8..dcda18a
...
$ git branch -d try1
Deleted branch try1 (was dcda18a).
$ git branch
* master

Revision control in action with Git

git branch try1
git checkout try1

git commit

git checkout master
git merge try1

git tag Tag1

git checkout try1
git rebase master

git branch try2
git checkout try2

git checkout try2
git commit

git checkout master
git branch -D try2

git commit

git checkout master
git merge try1

git tag Tag2

git branch -d try1

github.com is great for scientific research

● https://github.com/gromacs/gromacs

● https://github.com/numpy/numpy

● https://github.com/FFTW/fftw3

● https://github.com/JuliaLang/julia

● https://github.com/opencollab/scilab

+

https://github.com/gromacs/gromacs
https://github.com/gromacs/gromacs
https://github.com/numpy/numpy
https://github.com/numpy/numpy
https://github.com/FFTW/fftw3
https://github.com/FFTW/fftw3
https://github.com/JuliaLang/julia
https://github.com/JuliaLang/julia
https://github.com/opencollab/scilab
https://github.com/opencollab/scilab

Useful reference

Revision Control ● https://betterexplained.com/articles/a-visual-guide-to-version-control/
● https://en.wikipedia.org/wiki/Version_control

SVN ● http://maverick.inria.fr/Members/Xavier.Decoret/resources/svn/index.html

Git ● https://try.github.io/
● https://git-scm.com/docs/gittutorial
● http://gitreal.codeschool.com/

GitHub ● https://github.com/

Gitlab ● https://gitlab.com/

Bitbucket ● https://bitbucket.org/product

https://betterexplained.com/articles/a-visual-guide-to-version-control/
https://betterexplained.com/articles/a-visual-guide-to-version-control/
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
http://maverick.inria.fr/Members/Xavier.Decoret/resources/svn/index.html
http://maverick.inria.fr/Members/Xavier.Decoret/resources/svn/index.html
https://try.github.io/
https://try.github.io/
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
http://gitreal.codeschool.com/
http://gitreal.codeschool.com/
https://github.com/
https://github.com/
https://gitlab.com/
https://gitlab.com/
https://bitbucket.org/product
https://bitbucket.org/product

Questions and Open Forum

Let's try git out

https://try.github.io/

After that, try some advanced topics

http://gitreal.codeschool.com/

https://try.github.io/
https://try.github.io/
http://gitreal.codeschool.com/
http://gitreal.codeschool.com/

