
Python
How You Can Do More Interesting Things With Python

(Part II)

Python for Statement

for <target-list> in <iterator>:
 statement-block

my_dict = { ‘k1’: 1, ‘k2’: 2 }
for (k,v) in my_dict.items():
 print(“Key = %s, value = %s’ % (k, v))

● For the sake of completeness, this is one way to iterate over a dict.
● Iteration of a dict directly returns the keys.
● It possible to get the values directly

Python for Statement

for <target-list> in <iterator>:
 statement-block

Do not forget that:
● continue returns to the top of the loop and executes the <iterator>.
● break ends the loop and starts execution after the statement-block.

Python while Statement

while <boolean>:
 statement-block

● This is much simpler. Runs until the boolean is False.
● I am going to skip examples here.

Python else on Iteration Statements

while <boolean>:
 statement-block
else:
 statement-block

The else executes if the loop terminates without using break.

>>> while False:
... break
... else:
... print 'else'
...
else

Python else on Iteration Statements
for i in xrange(0, 10):
 if i == 5:
 break
else:
 print ‘else’

Since the else executes if the loop terminates without using break, we can see
pretty clearly that the else will not execute in this example.

Python else on Iteration Statements

for v in my_list:
 if v == looking_for:
 <code for finding>
 break
else:
 <code when not found>

found = False
for v in my_list:
 if v == looking_for:
 found = True
if found:
 <code for finding>
else:
 <code when not found>

VS

The else portion of the statement can often eliminate the need for flag
variables in the loop that describe how the loop exited.

Python else on Iteration Statements

for v in my_list:
 if v == looking_for:
 <code for finding>
else:
 <code when not found>

● Watch the indent level to see what statement the else is associated with.
● In this case, the else is clearly associated with the for.
● Keep the code blocks pretty short so the indent can be easily read.
● Use functions to keep the code short.

Python For Statement
From the last session, question on processing multiple lists:

#!/usr/bin/python

from __future__ import print_function

l1 = [1,2,3,4,5]
l2 = [11,12,13,14,15]
l3 = [21,22,23,24,25]

for l in (l1, l2, l3):
 for i in l:
 print("%d" % i, end=',')
print('\n')

Will print:
1,2,3,4,5,11,12,13,14,15,21,22,23,24,25,

Python For Statement
From the last session, question on processing multiple lists:

#!/usr/bin/python
from __future__ import print_function

v = []
v.append([1,2,3,4,5])
v.append([11,12,13,14,15])
v.append([21,22,23,24,25])

for l in v:
 for i in l:
 print("%d" % i, end=',')
print('\n')

Will print:
1,2,3,4,5,11,12,13,14,15,21,22,23,24,25,

Python String Formatting
The old, somewhat easier way:

“Format string with % directives” % (<a-tuple-with-values-in-order>)

or

“Format string with one % directive” % <one-value>

Python String Formatting

>>> "A test %d %s" % (1, "Yep")
>>> 'A test 1 Yep'

>>> "A test %d" % 1
>>> 'A test 1'

>>> "A test %d %s" % 1, "yep"
>>> Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: not enough arguments for format
string

Python String Formatting
New Style Formatting:

>>> '{0}{1}{0}'.format('abra', 'cad')
'abracadabra'

>>> 'Coordinates: {latitude}, {longitude}'.format(latitude='37.24N',
longitude='-115.81W')
 'Coordinates: 37.24N, -115.81W'

>>> 'Coordinates: {lat}, {long}'.format(**mydict)
'Coordinates: 37.24N, -115.81W'

Python String Formatting
It easy to get help:

>>> help()
help> topics
help> FORMATTING

Comprehensions
● Comprehensions are an unusual structure that can be very

important to understanding a program.
● Comprehensions tend to look like other common programming

patterns but are in fact very different.
● Look for the keyword for.

Comprehensions
A simple list comprehension that creates a list of 0..9:

● The square brackets indicate a list
● The for keyword indicates a comprehension
● The xrange(0, 10) generates the data
● The variable after the for indicates where each value from the data is stored
● And the name immediately after the bracket receives each value generated.

>>> [i for i in xrange(0, 10)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Comprehensions

Note that a comprehension is an expression. Which means that comprehensions
can be nested. Woo hoo! Let’s pause.

>>> [0 for i in xrange(0, 10)] # The output is a constant
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> [i**2 for i in xrange(0, 10)] # The output can be an expression
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Comprehensions: Some Examples

>>> a=[[b for b in xrange(1,4)] for a in xrange(0,3)]
>>> a
[[1, 2, 3], [1, 2, 3], [1, 2, 3]]
>>> a[2][2]
3

Simple way to initialize a 2D matrix. Rows by default will have indexes 0,1,2, and
the values on each row will be 1,2,3.

A little trickier:

>>> a=[[b+(a*10) for b in xrange(0,3)] for a in xrange(0,3)]
>>> a
[[0, 1, 2], [10, 11, 12], [20, 21, 22]]
>>> a[2][2]
22

Comprehensions: Some Examples
A dict comprehension:

>>> a={ v: l for (l,v) in enumerate('The letters are keys') }
>>> a
{'a': 12, ' ': 15, 'e': 17, 'h': 1, 'k': 16, 'l': 4, 's': 19, 'r': 13, 't': 7, 'y':
18, 'T': 0}

● Note that the key T has the value 0, and e, 17 because of
the e near the end of the string.

● Dict comprehensions are easy to spot because of the curly
braces, the value with a ‘:’ and the for keyword.

Comprehensions: Some Examples
A set comprehension:

>>> a={ l for l in 'The letters are keys' }
>>> a
set(['a', ' ', 'e', 'h', 'k', 'l', 's', 'r', 't', 'y', 'T'])

● Set comprehensions are easy to spot because of the curly braces and
the for keyword, but no colon where the value is.

● The “:” is what differentiates a dict comprehension from a set
comprehension.

Comprehensions: Some Examples

>>> a=(math.cos(b/10.0) for b in xrange(0, 31))
>>> for b in a:
... print(b)
...
1.0
0.995004165278
0.980066577841
...
-0.904072142017
-0.942222340669
-0.97095816515
-0.9899924966

The important thing to notice is that the Generator Comprehension can be assigned to a
variable and then processed in the for loop. There could be different assignments to
“a” and then one for loop. One generator could use cos and one sin, for instance.

A Generator Comprehension (wow!):

Comprehensions: No More Cryptic Examples!
The take away here is that if you come across this pattern in code you need to
understand, Google Python Comprehensions and read up on the subject.

I originally had trouble really understanding comprehensions - especially nested
comprehensions. But after I wrote these slides, it made much more sense.

So, either these slides are really good or I paid more attention this time around!

Slices
Slices are a way of accessing parts of various data structures that support indexed
access. These include:

● Lists
● Tuples
● Character strings
● Various user defined types.

Slices
Slides have the following general components:

<start>:<end-excluded>:<stride>

with each part optional, but at least one “:” or an integer is required for a slice. As
we have seen:

list_name=[0,1,2,3,4]
list_name[0]

would access one element at the start of the list. And the following items 2,3,4.

list_name[2:5]

Slices
Slides have the following general components:

<start>:<end-excluded>:<stride>

“End-excluded” is a little non-obvious. However, it allows the value to take on the
default, and sensible, value of “length-of-object”. So:

a[2:] ⇒ [2, 3, 4, 5, 6, 7, 8, 9]

which is quite useful and prevents us from writing ugly len(a)-2 type of
constructs that you have to write in some other languages.

Slices
Slides have the following general components:

<start>:<end-excluded>:<stride>

“Stride” means how many elements to move to obtain the next item in the object.

● A positive stride (>0) means to move to increasing indexes (“To the right”).
● A negative stride means to move to decreasing indexes (“To the left”).

Slices
A slice of an object is itself a new object.

The default for <name>[:] is the entire object. Therefore a statement like

newlist = thelist[:]

is a handy way to make a quick, shallow, copy of an object that support slices.

Slices
>>> a=[i**2 for i in xrange(0, 10)]
>>> b=a
>>> a is b
True
>>> b=a[:]
>>> a is b # Shows that objects associated with a and b different.
False

Slices
Slices have the following general components:

<start>:<end-excluded>:<stride>

Start:

● If positive, index, 0 based from start of object. If negative, one based from
end of object.

a[0] ⇒ 0, a[-1] ⇒ 9

● Default: first item in object.

Slices
Slices have the following general components:

<start>:<end-excluded>:<stride>

End-excluded: Item to left of indexed element

● Default for end-excluded: To the end.

a[0:2] ⇒ [0, 1]
a[0:] ⇒ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a[-1:] ⇒ [9]
a[-1::-1] ⇒ [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Slices
Slides have the following general components:

<start>:<end-excluded>:<stride>

Stride: Items to skip. Negative stride lists items in reverse order.

● Default for stride: 1.

a[0::1] ⇒ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
a[-1:] ⇒ [9]
a[-1::-1] ⇒ [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
a[-1:0:-1] ⇒ [9, 8, 7, 6, 5, 4, 3, 2, 1]
a[-1:-1:-1] ⇒ [] # huh

Slices
Slides have the following general components:

<start>:<end-excluded>:<stride>

Slices are objects! (Remember when I said “Python is Objects”?)

Interesting.

s=slice(-1,None,-1)
a[s] ⇒ [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Slices

def p_list(list, forward=True):
 if forward:
 s = slice(0, None, None)
 else:
 s = slice(-1, None, -1)
 print(list[s])

l = list(xrange(10))
p_list(l)
p_list(l, forward=False)

doc => python a.py
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Slices
It’s not too hard to imagine a data structure where you might wish to sample items
at different rates.

You could define an accessor slice, and change it as you wish to access data at a
finer sample sizes from the full list.

Import
Import associates one or more names with a Python code object that is read from
a file.

There are standard modules included with Python:

import os
import argparse

Import
Import associates one or more names with a Python code object.

But, beware:

>>> import numpy as np
>>> np
>>> <module 'numpy' from '/opt/local/Library/Frameworks/.../site-
packages/numpy/__init__.pyc'>
>>> np=0
>>> np
>>> 0
>>> import numpy as np
>>> np
>>> <module 'numpy' from '/opt/local/Library/Frameworks/.../site-
packages/numpy/__init__.pyc'>

Import
Import associates one or more names with a Python code object.

So, remember that import is just a fancy assignment statement for names and
object modules. If you reuse the name that you specified in the import, you will
lose access to the module so long as that name is in scope.

Import
There are many variants of the import statement. See >>> help(‘import’)
in Python or see the tutorials.

Generally avoid use of as except when it is obvious. For instance:

all make sense to me. But, if I use the name infrequently, I do not use “as”.

import numpy as np
import copy.copy as copy
import copy.deepcopy as deepcopy
import annoyinglongname as aln

Import
A module is only actually imported once into a program unless special steps are
taken. Sample module:

On import, the def and the print are executed.

def p_list(list, forward=True):
 if forward:
 s = slice(0, None, None)
 else:
 s = slice(-1, None, -1)
 print(list[s])

print('Imported!')

Import
Importing the module:

Note that the module level statements only ran once (“Imported” printed once).
The second import statement did reassign ‘a’ to the module code object, but it did
not re-import it.

>>> import a
Imported!
>>> a
<module 'a' from 'a.pyc'>
>>> a=0
>>> a
0
>>> import a
>>> a
<module 'a' from 'a.pyc'>

Import
● Avoid from <module> import *

This imports all names into the current set of names (the current
Namespace), without any indication of which module the names came from.
This can be very confusing, and could cause names you defined to be
redefined.

Import
● from <module> import <name>[,name...]

This form is useful for importing “standard” names into your program.

from copy import copy, deepcopy

seems fine to me.

Import
Avoid using names from an imported module that start with underscore (_)

By convention, such names are private to the module and should not be used by
module importers.

Modules
A module is a python source file that is import-ed into another python module.

The top level statements in the module are evaluated at import time. Typically,
there might some assignments at the start of the module followed by some
number of import statements, and function defs.

Recall that unless special steps are taken, a module is actually only imported once
per program run. So, statements in the module will only execute once.

This means you can safely initialize a module once, no matter how many times it
is imported.

Importing Your Own Modules
The import statement does not use file names. The conversion of the module
name to a specific filename is operating system specific.

● Generally, for module mymodule, python will search the current module
search path for a file named mymodule.py.

● Module names with dots in them are converted to directory names. A search
for my_app.mymodule will search the current module search path for a
directory named my_app that contains the file mymodule.py.

Importing Your Own Modules
The current module search path includes builtin modules, currently loaded
modules and the directories listed as follows:

>>> import sys
>>> print sys.path
['', '/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python27.
zip', …,'/Library/Python/2.7/site-packages']

Importing Your Own Modules
It can be very convenient to make a directory of modules. For example:

Your main script is in the top level directory (~/bin) and the package a
subdirectory immediately under that directory (~/bin/mypackage).

The module directory (~/bin/mypackage) needs an __init__.py file. This file
can be empty or it can contain statements that initialize the package.

The module mymodule needs to be in the file mymodule.py in directory
~/bin/mypackage. Import as import mypackage.mymodule.

Importing Your Own Modules
The __init__.py file can contain statements to import the modules that are part
of the package.

For instance, file mypackage/__init__.py could contain import mymodule.

Import as import mypackage

If mymodule contains my_cool_function, you could call it as mypackage.
mymodule.my_cool_function() and import it as

from mypackage.mymodule import my_cool_function as mcf

Importing Your Own Modules
You can import a module and reference names using the full path, and also import
a few common names from the module and alias them with the

from <module> import <name> as <name>

This will not cause the module to be imported more than once (modules are only
imported once). It simply assigns new, shorter names to objects.

Importing Your Own Modules

Import is pretty similar to an assignment! Exactly? I’m not sure.

>>> from mypackage.mymodule import my_cool_function as mcf
Imported
>>> mcf()
My Cool function
>>> mcf=0
>>> mcf
0
>>> import mypackage # Note that __init__.py imported mymodule
>>> mcf=mypackage.mymodule.my_cool_function
>>> mcf()
My Cool function
>>>

Importing Your Own Modules
There are a number of ways of structuring your own modules. The simplest is as I
have shown. It will work in both versions of Python.

There are relative imports and other special cases you can research if needed.

Importing Your Own Modules
doc => ls -alR

total 8

drwxr-xr-x 4 mike staff 136 Oct 25 19:26 .
drwxr-xr-x@ 229 mike staff 7786 Oct 25 19:26 ..
-rwxr-xr-x 1 mike staff 102 Oct 25 19:26 my_prog
drwxr-xr-x 6 mike staff 204 Oct 25 19:19 mypackage

./mypackage:
total 32
drwxr-xr-x 6 mike staff 204 Oct 25 19:19 .
drwxr-xr-x 4 mike staff 136 Oct 25 19:26 ..
-rw-r--r-- 1 mike staff 16 Oct 25 19:04 __init__.py
-rw-r--r-- 1 mike staff 138 Oct 25 19:05 __init__.pyc
-rw-r--r-- 1 mike staff 77 Oct 25 19:18 mymodule.py
-rw-r--r-- 1 mike staff 278 Oct 25 19:19 mymodule.pyc

Importing Your Own Modules
Reference:

doc => cat my_prog
#!/usr/bin/python -tt

import mypackage
from mypackage.mymodule import my_cool_function as mcf

mcf()

Importing Your Own Modules
doc => cd mypackage/
doc => cat __init__.py
import mymodule

doc => cat mymodule.py
print('Imported')

def my_cool_function():
 print('My Cool function')

Testing Your Modules
doc => cat mymodule.py
print('Imported')

def my_cool_function():
 print('My Cool function')

if __name__ == '__main__':
 print('Testing the module')
 my_cool_function()

doc => python mymodule.py
Imported
Testing the module
My Cool function

Import (An Aside on the copy Module)
Note: the copy module is the standard way to copy objects.

● Copy.copy will copy the named object, but it will not look into the object for
other mutable objects to copy.

● Copy.deepcopy will copy the named object, and also copy all mutable
objects within.

Import (An Aside on the copy Module)
● copy.copy([{‘key’: ‘value’, ‘key2’: ‘value2’ }])

Copies the list, but not the dicts in the list.

● copy.deepcopy([{‘key’: ‘value’, ‘key2’: ‘value2’ }])

Copies the list and the dicts in the list.

I personally almost always use copy.deepcopy. For reasons I do not really
understand, it is often suggested copy.copy be used. copy.deepcopy seems
safer.

Scope
We have talked about:

● Modules
● Functions
● Statement blocks
● and assigning objects to names.

What we have not talked about is where names are “visible”. Names are stored in
namespaces. There is a hierarchy of searching through namespaces which
determines the scope that a name is visible and which namespace will provide the
name.

Scope
First, statement blocks. Statement blocks do not create a namespace that limits
the visibility of a name. Many other languages do.

Depending on the value of test_var, either a or b will be a defined name after
the if statement. However, which is does not depend on scope.

if test_var:
 a = 1
else:
 b = 1

Scope
Compare the previous with C:

Neither a nor b will ever be in scope after the if statement because the curly
braces start a scope block. Compound statement scoping like this does not exist
in Python.

if (test_var) {
 int a = 1;
} else {
 int b = 1;
}

Scope
● When a function starts to execute, a Local namespace is associated with it.
● Names will be searched for in the current function, any enclosing functions,

and then within the module.
● The searches in the function namespaces are called the Local and Enclosing

namespaces.
● The Enclosing namespace is a namespace associated with a function that

defined the current function. Ie: def func1():
 a = 1
 def func2():

 print(‘a = %d’ % a)

Scope
After local and enclosing, the next namespace that is searched is the Global
namespace.

● An unqualified name exists in the current module’s namespace.
● A qualified name (eg: sys.path) provides an explicit module path to find the

module’s Namespace.
● Note that the first part of the qualified name must exist in the scope of

namespaces that will be searched.

Using the above example, the sys module must be imported in the current scope
in order to find sys.path. Since the name spaces to be searched after the initial
name is explicit, those namespaces are not part of the scope per se.

Scope
● Note that the main program executing is in fact a module, named __main__

and therefore has a global namespace.
● Names within different modules exist in different namespaces and therefore

can only be accessed from outside their module using some form of an
explicit module path statement. For instance, a from … import … as
statement or a qualified name such as mymodule.name.

Scope
● The final namespace to be searched is the Builtin Namespace. __main__ is

an example name from the builtin namespace.

The scope rule is usually referred to as the LEGB rule:

● Local
● Enclosing
● Global
● Builtin

Scope
So, what namespace are names stored in when an assignment to a name is made
(using =, import, def, etc …)?

Names are stored in the current namespace with one or two exceptions -
depending on what Python version.

Recall that the current namespace is either the Global (module level) or Local
namespace. While I believe it possible to change the Builtin namespace, we will
skip that.

Scope
To change the Global namespace:

● Define the name within the module and not within any functions.
● Or include a global <name> statement within the function.
● In Python 3, a nonlocal <name> statement is used to change an existing

name in an enclosing function (Enclosing scope).

To change the Local namespace:

Define a name within a function. Use assignment, import, def, etc.

Scope - Global Names Examples
a = 1 # A name defined at the module (global) level
_pvt = 1 # A name defined at module (global) level that should not be

used outside of the module.

def myfunc(): # A function defined at the global level
 pass

def _myfunc2(): # A private function, by convention
 global a

 a = 2 # Changes the name ‘a’ at the global level

def myfunc3():
a = 4 # Adds a local name ‘a’

Scope - Global Names Examples
a = 1 # A name defined at the module (global) level

def does_not_work():
a = a # I don’t understand why the right hand ‘a’ is not located in

global scope and saved in local. In any case, this does
not work. Hmmm… stumped myself. I guess the assignment target
scope is resolved first, and then that Namespace is bound to
all copies of the name in the statement.
Or perhaps within a statement, a name can only be bound to
one namespace?

Scope - Dynamic?

a = 'The module'

def f1():
 a = 'The function f1'
 print('called f1')
 f2()

def f2():
 f3()

def f3():
 print('a = %s' % a)

continued….

f1()
<save> as a.py
python a.py
called f1
a = The ...

Scope - Dynamic?

a = 'The module'

def f1():
 a = 'The function f1'
 print('called f1')
 f2()

def f2():
 f3()

def f3():
 print('a = %s' % a)

continued….

f1()
<save> as a.py
python a.py
called f1
a = The module

Scope - Dynamic or Enclosing?

a = 'The module'

def f1():
 a = 'The function f1'
 print('called f1')

 def f2():
 print('a = %s' % a)

 f2()

continued….

f1()
<save> as b.py
python b.py
called f1
a = The ...

Scope - Dynamic or Enclosing?

a = 'The module'

def f1():
 a = 'The function f1'
 print('called f1')

 def f2():
 print('a = %s' % a)

 f2()

continued….

f1()
<save> as b.py
python b.py
called f1
a = The function f1

Scope - A final Thought
Names are looked up at run-time. We have seen numerous examples of this.

However, where we look for the names is defined when the source is written.

Scope is not dynamic.

Using Classes
● Classes are user defined types.
● Objects of these types can be constructed as needed.
● To create an object of class MyClass:

new_class_obj = MyClass()

● Classes can be imported via the import statement the same way any Python
code object can be imported.

Using Classes
● The class may require or accept optional arguments when it is created:

new_class_obj = MyClass(arg1, opt_arg)

● The special routine __init__ within the class defines what arguments are
required via its argument list. __init__ is the class constructor and
initializes a new instance of the class.

class MyClass:
def __init__(self, arg1, opt_arg = None):

pass

Using Classes
The class will likely have various attributes that you can access. The names these
attributes have act like any other Python name. They refer to an object of some
type:

nco = MyClass(1) # Makes an object
nco.set_something(10) # Calls a class method (similar to a function)
print ‘The value: %d’ % nco.something # Prints a class attribute
print ‘The function value: %d’ % nco.thisthing() # Class method value

Using Classes
Sometimes you will need to pass a routine name as a callback. A bound class
method can be used. For instance:

● Note that myobj.call_back_rtn does not have an argument list, ie:
(...).

● By providing just the name, we are passing a Python code object.
● If we had an argument list, we would have called myobj.call_back_rtn

and its value would be passed.

myobj = NewClass(‘Title’)

some.modules.rtn(xxx, callback=myobj.call_back_rtn)

Using Classes
You should not be surprised to learn that classes themselves are Python objects.

new_obj will be either of type class MyClassOne or MyClassTwo, depending on
test_val. Note that there is no argument list on the assignment to “c”

if test_val:
c = MyClassOne

else:
c = MyClassTwo

new_obj = c(arg)

Using Classes
You should not be surprised to learn that classes themselves are Python objects.

However, actually constructing the classes is valid if MyClassOne and
MyClassTwo return class objects themselves. Classes can make classes.
Whew!

if test_val:
c = MyClassOne()

else:
c = MyClassTwo()

new_obj = c(arg)

Using Classes
Classes are usually composed from different base classes. This allows the class
writer to reuse code from different classes in a new class. It looks something like
this:
class B1(object):
 def rtn_b1(self):
 print('rtn_b1')

class B2(object):
 def rtn_b2(self):
 print('rtn_b2')

class MyClass(B1, B2):
 def my_rtn(self):

print('Called my_rtn')

m = MyClass()
m.my_rtn()
m.rtn_b1()
m.rtn_b2()
dir(m)

doc => python a.py
rtn_b1
rtn_b2
Called my_rtn
['__class__', '__delattr__', ...
, 'my_rtn', 'rtn_b1', 'rtn_b2']

Using Classes
The important point to note is that class MyClass now has routines rtn_b1 and
rtn_b2. Functionality of these routines has been inherited by MyClass.

class B1(object):
 def rtn_b1(self):
 print('rtn_b1')

class B2(object):
 def rtn_b2(self):
 print('rtn_b2')

class MyClass(B1, B2):
 def my_rtn(self):

print('Called my_rtn')

m = MyClass()
m.my_rtn()
m.rtn_b1()
m.rtn_b2()
dir(m)

doc => python a.py
rtn_b1
rtn_b2
Called my_rtn
['__class__', '__delattr__', ...
, 'my_rtn', 'rtn_b1', 'rtn_b2']

Using Classes
For class writers, classes are a great way to reuse or customize pieces of code
without repeating the code.

For class users, classes are a great way to customize bits of a library.

I will have to refer you to the library of classes to see exactly what can be
customized.

Exceptions
An exception has occurred when the normal flow of the program is interrupted.

Exceptions are caused by:

● Errors in program execution
● Program detected logic errors

Note: I added this section at the last moment because
I thought it might be helpful. Please bear with me if
there are errors! (There was an error in the previous
sentence. But, this is all about errors in code, so let’s
just handle it and move on!)

Exceptions
A simple example:

Obviously, Python can not divide by zero, so the ZeroDivisionError is raised.

a = 0
b = a/0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or
modulo by zero

Exceptions
In Python, exceptions can be caught by the try… except statement.

Here, the divide by zero error was handled, a message output, and a suitable fix
for the application applied.

>>> try:
... b=1/0
... except ZeroDivisionError:
... print 'Zero divide, setting b to 0.'
... b = 0
...
Zero divide, setting b to 0.
>>>

Exceptions
Sometimes, we just want to output an error message, but still want the error
raised:

.

>>> try:
... b=1/0
... except ZeroDivisionError:
... print '*** Zero divide, setting b to 0.'
... raise
...
*** Zero divide, setting b to 0.
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
ZeroDivisionError: integer division or modulo by
zero

Exceptions
● If an exception occurs, each try statement that was executing is checked for

any except statements that could handle the error.
● If no except statements match the error, then the final exception handler

executes which prints the traceback, the error message, and causes the
program to exit.

That’s a lot to grasp, but hopefully the graphic on the next page will explain it.

Exceptions

def a(...):
 try:
 b(...)
 except...

def b(...):
 try:
 c(...)
 except...

def c(...):
 try:
 a=1/0
 except...

except statements for
● rtn c
● rtn b
● rtn a
● global exception

are tried in order. If an
except clause matches, then
the exception is said to be
handled.

Program control picks up
after the try statement that
matched.

Exceptions
So, what are exception names?

● They are actually classes.
● Usually, the class is empty.
● Class inheritance is used when matching against the except statements.
● This means you can make your own exception types if you wish.
● https://docs.python.org/2/library/exceptions.html covers the builtin exceptions.

https://docs.python.org/2/library/exceptions.html
https://docs.python.org/2/library/exceptions.html

Exceptions
For instance, we have seen ZeroDivisionError. If we read the Python
documentation, we will see that ArithmeticError is a base class for
ZeroDivisionError as well as several other errors.

This means you could write:

This except ArithmeticError would catch ZeroDivisionError,
OverflowError, etc. because ArithmeticError is the base class.

try:
 a=1/0
except ArithmeticError:
 print(‘Error detected’)

Exceptions
 These are builtin to Python, but if you saw the code, it would look roughly like:

class ArithmeticError: pass
class OverflowError(ArithmeticError): pass
class ZeroDivisionError(ArithmeticError): pass
class FloatingPointError(ArithmeticError): pass

Exceptions
Avoid the following:

Such code will catch all errors in <your code> and will tend to hide many errors
that you should know about.

try:
 <your code>
except:
 <error handling code>

Exceptions
And finally:

will print ‘integer division or modulo by zero’. The as syntax gives you
access to the error message associated with the exception.

try:
 a=1/0
except ZeroDivisionError as e:
 print(e)

Thanks!
Questions? Comments?

There are so many more topics we could cover…!

Just try to remember the basic rules of Python and when something new comes
along, try it on your favorite box and see what happens!

Michael Porter

10/26/2015 - Python 2.7 with a wee bit of version 3 mentioned.

