
Python
by Example

Linux Basics II

Why Python?

● As an interpreted language with an extensive
standard library makes it ideal for scripting

● Indented code is mandatory (makes for more
readable code by default)

● Clean and concise syntax makes for
improved readability

● Well suited for larger projects > 100 lines of
code

Objective

Write a Python script to read a file,
extract only the data from that file and
store it another file. Write a bash script
to use the Python script to extract the
data for many files in a directory.

Python Scripting Language

Python is an easy to learn and a powerful object-
oriented high-level programming language.

To meet our objective, we will use just a few of
Python's features:

● Modules and File I/O
● Loops and control structures
● Regular expressions for pattern matching

Python Key Features

● Indenting is required
● Good support for arrays
● Different programming styles are supported

■ object-oriented, procedural, functional
● Large standard library

Python Help

Python man pages give you command line
options

$ man python

Using python's internal help utility for any module,
keyword or topic

$ python
Python 2.6.6 (r266:84292, Jun 18 2012, 09:57:52)
[GCC 4.4.6 20110731 (Red Hat 4.4.6-3)] on linux2
Type "help", "copyright", "credits" or "license" for more
information.
>>> help()
....
help>

Python Libraries: Import

import modules from a Python library

For example:

import re, sys, os

re — Regular expression operations
os — Miscellaneous operating system interfaces
sys — System-specific parameters and functions

Python I/O: Open and Read

open() returns a file object, and is most commonly used
with two arguments:

fileobj = open(filename, mode)

mode = "r" for reading, "w" for writing, "a" for appending
 if omitted, default if "r"

Reading lines by looping over the file object is memory
efficient, fast, and leads to simpler code. For example:

f = open("datafile","r")
for line in f:

 print line

Python I/O: Write and Close

f.write(string) writes the contents of string to the file
object, f, if it was opened for writing. For example:

fout = open("datafile.new", "w")
fout.write("New data")

f.close() will close the file opened as file object, f, and free
up any system resources taken up by the open file. Any
attempts to use the file object will automatically fail after it
has been closed. For example:

fout.close()

Data files and scripts
Python Project

Get Exercises (Mills account)

1. If you have an account on the Mills cluster, use SSH
to connect

ssh –Y username@mills.hpc.udel.edu

2. Copy the exercise directory mlbII-python into your
home directory and change to it.

cp -r ~trainf/mlbII-python $HOME

Get Exercises (wget)

1. If you do not have an account on the Mills cluster, then
download the exercise file mlbII-python.tar.gz
using wget into your home directory.*

cd $HOME
wget http://www.udel.edu/it/research/files/cluster/workshop/mlbII-python.tar.gz

2. Untar and uncompress the exercise file to create the
mlbII directory and change to it.

tar -zxvf mlbII-python.tar.gz
cd ~/mlbII-python

* Note wget is available on most Gnu/Linux distributions.

Sample data file

SAVED BY:
DATE:
TIME:
…
…
COMMENTS:
DATA:
0.0000E+0 0.0000E+0
… …

Python script: data_extract.py

#!/usr/bin/python

usage:
python data_extract.py source
#

import re, sys, os
datdest=sys.argv[1] + '.dat'

open data source
fsrc=open(sys.argv[1], "r");

tmp file
fdat=open(datdest, "w");

data_extract.py (cont’d)

begin_extraction=0
for line in fsrc: # read through each line in fsrc
 if begin_extraction==1:
 # begin writing data to destination
 fdat.write(line)
 elif re.match("# DATA", line):
 # match the beginning pattern of data section
 begin_extraction=1
 else:
 pass

fsrc.close() # Don't forget to close files
fdat.close()

Testing data_extract.py

$ cat datafile
 ... Display contents of datafile file ...
$ python data_extract.py datafile datafile

or

$ chmod +x data_extract.py
$./data_extract.py datafile datafile
$ ls
 ... Display list of files ...

Bash script: extract_all_data

#!/bin/bash

for file in ./many_datafiles/*
do
 # If data_extract.py is executable otherwise use
 # python data_extract.py ${file}
 ./data_extract.py ${file}
done

Testing extract_all_data

$ ls -la many_datafiles
 ... List of files in many_datafiles directory ...
$ source extract_all_data
$ ls -la many_datafiles
 ... List of files in many_datafiles directory ...
 ... Note the new .dat files
 ... Note .datafile does not have .datafile.dat

Exercise

Python Tutorial

1. The Python Tutorial

This tutorial does not attempt to be comprehensive and
cover every single feature, or even every commonly
used feature. Instead, it introduces many of Python’s
most noteworthy features, and will give you a good
idea of the language’s flavor and style.

● http://docs.python.org/tutorial/index.html

http://docs.python.org/tutorial/index.html
http://docs.python.org/tutorial/index.html

