
Introduction to Python
Environments

Encapsulating packages and their dependencies

How does Python structure code?

● Namespace
○ A container used at runtime to hold Python symbols (and their values)
○ A symbol could be:

■ A variable
■ A class definition
■ A function definition
■ A module (containing its own namespace of functions, variables, classes, etc.)

How does Python structure code?

● Namespace
● Adding to a namespace

○ Variable assignment
○ Define a function or class

my_str = 'hello, world'

def my_function(s = ''):
 print 'I say: {0:s}'.format(s)

How does Python structure code?

● Namespace
● Adding to a namespace

○ Variable assignment
○ Define a function or class

string

"hello, world"

callable

print 'I say…'
namespace

namespace

my_str

my_function

How does Python structure code?

● Namespace
● Adding to a namespace

○ Variable assignment
○ Define a function or class
○ Import a module

my_str = 'hello, world'

def my_function(s = ''):
 print 'I say: {0:s}'.format(s)

import sys

from os import path

How does Python structure code?

● Namespace
● Adding to a namespace

○ Variable assignment
○ Define a function or class
○ Import a module

module

[..]/os/

module

[..]/sys/
namespace

namespace

namespace

path module

[..]/os/path/

path

sys

namespace

What is a module?

● A Python module is a directory containing Python scripts
○ Most often, the scripts represent a reusable code library
○ __init__.py script initializes the namespace when the module is loaded

■ set variables
■ define functions
■ import entities from other scripts in the directory
■ check for presence of dependencies (requisite version, etc.)

○ the module can, in turn, have subdirectories that define additional modules within its own
namespace: e.g. "xml" is a module; "xml.dom," "xml.parsers," "xml.sax," "xml.etree" are all
modules defined within the "xml" module

What is a module?

● A Python module is a directory containing Python scripts
● An installable package for a module contains:

○ The module directory with all scripts and subdirectories
○ A setup.py script to drive the installation process

■ Name of the module
■ Version of the module
■ Other modules required by this module

● OPTIONAL: Minimum/maximum versions of those dependencies
○ The setup.py script is used for all aspects of the distribution process:

■ Building distributable packages (source, binary)
■ Installing/updating the package

How is a module located?

● Similar to how Unix finds the
executable for a command

○ A series of directories are searched
for a file with:

■ the specified name
■ accessible or exec by the

current user (e.g. "x" bit set)
○ First one found matching the

criterion is executed

● The user can influence this
behavior with the PATH
environment variable

$ ls
bin sw workgroup

$ which ls
/usr/bin/ls

$ export PATH="/home/1001/bin:$PATH"

$ ls
Bet you thought you'd see files, eh?

$ which ls
/home/1001/bin/ls

How is a module located?

● Python has the PYTHONPATH
environment variable to serve the
same purpose

○ The directories are searched in order
for a directory with the module name

○ If no match found, the default
locations are searched

■ e.g. /usr/lib64/python2.7
■ typically where modules like

"os" or "sys" will be found

import os
import sys
import re

import my_cool_module

How is a module located?

● Python has the PYTHONPATH
environment variable to serve the
same purpose

● One way to add modules to
Python: install each separately
and add to PYTHONPATH

○ This is OK, but for a large number of
modules the PYTHONPATH will grow
toward the inherent length limit and
could slow down module import in
general

$ echo $PYTHONPATH
/opt/shared/python/add-ons/numpy/0/lib/python2.7/site-
packages:/opt/shared/python/add-ons/scipy/0/lib/python
2.7/site-packages:/opt/shared/python/add-ons/matplotli
b/1/lib/python2.7/site-packages:/opt/shared/python/add
-ons/six/2/lib/python2.7/site-packages:/opt/shared/pyt
hon/add-ons/distutils/5/lib/python2.7/site-packages:/o
pt/shared/python/add-ons/yaml/0/lib/python2.7/site-pac
kages

When "os" is imported, all 6 of the

directories in PYTHONPATH need

to be scanned before the runtime

resorts to checking the default

locations

How is a module located?

● Primary problem with installing
modules individually is
dependencies

○ "I need the pandas module"
○ No, you need:

■ "pandas"
■ "pyyaml"
■ "numpy"
■ "scipy"
■ "sqlite"
■ "blas"
■ et al.

$ … install pandas …

The following NEW packages will be INSTALLED:

 blas: 1.0-mkl
 ca-certificates: 2018.03.07-0
 certifi: 2018.8.24-py37_1
 intel-openmp: 2019.0-118
 libedit: 3.1.20170329-h6b74fdf_2
 libffi: 3.2.1-hd88cf55_4
 libgcc-ng: 8.2.0-hdf63c60_1
 libgfortran-ng: 7.3.0-hdf63c60_0
 libstdcxx-ng: 8.2.0-hdf63c60_1
 mkl: 2019.0-118
 mkl_fft: 1.0.6-py37h7dd41cf_0
 mkl_random: 1.0.1-py37h4414c95_1
 ncurses: 6.1-hf484d3e_0
 numpy: 1.15.2-py37h1d66e8a_1
 numpy-base: 1.15.2-py37h81de0dd_1
 openssl: 1.0.2p-h14c3975_0
 :

Solution 1: Store all modules into a common directory

● Only one path to add to
PYTHONPATH (thus, one path to
be checked)

● The common directory holds all
dependencies for your modules,
too

$ ls my_python_env
drwxr-xr-x 2 frey everyone bin
drwxr-xr-x 2 frey everyone lib

$ ls my_python_env/lib
drwxr-xr-x 2 frey everyone python2.7

$ ls my_python_env/lib/python2.7
drwxr-xr-x 2 frey everyone site-packages

$ ls my_python_env/lib/python2.7/site-packages
drwxr-xr-x 35 frey everyone scipy
drwxr-xr-x 35 frey everyone numpy
drwxr-xr-x 17 frey everyone matplotlib
drwxr-xr-x 17 frey everyone pandas
 :

Solution 1: Store all modules into a common directory

● Only one path to add to
PYTHONPATH (thus, one path to
be checked)

● The common directory holds all
dependencies for your modules,
too

● Caveat: you must download,
build, and install each module —
and all its dependencies — by
hand!

$ ls my_python_env
drwxr-xr-x 2 frey everyone bin
drwxr-xr-x 2 frey everyone lib

$ ls my_python_env/lib
drwxr-xr-x 2 frey everyone python2.7

$ ls my_python_env/lib/python2.7
drwxr-xr-x 2 frey everyone site-packages

$ ls my_python_env/lib/python2.7/site-packages
drwxr-xr-x 35 frey everyone scipy
drwxr-xr-x 35 frey everyone numpy
drwxr-xr-x 17 frey everyone matplotlib
drwxr-xr-x 17 frey everyone pandas
 :

Solution 2: Use PIP and a common directory

● PIP ("PIP Installs Packages")
references online repositories of
installable Python modules

○ Dependencies can be resolved
recursively — and automatically — by
PIP

○ Installs into the default locations for
modules (e.g. /usr/lib64/python2.7)

■ ...but a --prefix option specifies
an alternative directory

■ --ignore-installed forces default
modules to be ignored

● https://pypi.org/

$ pip install --prefix="$(pwd)/my_python_env" \
> --ignore-installed \
> matplotlib==2.2.3
Collecting matplotlib==2.2.3
 Downloading https://files.pythonhosted.org/packages/a2/c
 100% |#######################| 133kB 5.9MB/s
Collecting six>=1.10 (from matplotlib==2.2.3)
 :
Building wheels for collected packages: matplotlib
 Running setup.py bdist_wheel for matplotlib ... done
 Stored in directory: /home/1001/.cache/pip/wheels/f8/9e
Successfully built matplotlib
Installing collected packages: six, python-dateutil, pytz
Successfully installed backports.functools-lru-cache-1.5

$ ls -l my_python_env/lib/python2.7/site-packages
drwxr-xr-x 2 frey everyone backports
 :
drwxr-xr-x 14 frey everyone matplotlib
drwxr-xr-x 2 frey everyone matplotlib-2.2.3.dist-info
 :

Solution 2: Use PIP and a common directory

● PIP ("PIP Installs Packages")
references online repositories of
installable Python modules

● Add the necessary paths to
PATH and PYTHONPATH to use
the common directory

● I've employed this method in the
past for LARGE module
collections (e.g. pandas)

$ pip install --prefix="$(pwd)/my_python_env" \
> --ignore-installed \
> matplotlib==2.2.3
Collecting matplotlib==2.2.3
 Downloading https://files.pythonhosted.org/packages/a2/c
 100% |#######################| 133kB 5.9MB/s
Collecting six>=1.10 (from matplotlib==2.2.3)
 :
Building wheels for collected packages: matplotlib
 Running setup.py bdist_wheel for matplotlib ... done
 Stored in directory: /home/1001/.cache/pip/wheels/f8/9e
Successfully built matplotlib
Installing collected packages: six, python-dateutil, pytz
Successfully installed backports.functools-lru-cache-1.5

$ ls -l my_python_env/lib/python2.7/site-packages
drwxr-xr-x 2 frey everyone backports
 :
drwxr-xr-x 14 frey everyone matplotlib
drwxr-xr-x 2 frey everyone matplotlib-2.2.3.dist-info
 :

Side note: other helpful PIP stuff

● You can use PIP to download
module packages

● You can use PIP to install
packages not present in the
online repositories

○ E.g. your own packaged modules,
like PyMuTT

$ pip download matplotlib==2.2.3
 :
Successfully downloaded matplotlib six python-dateutil

$ ls matplotlib*
matplotlib-2.2.3-cp27-cp27m-manylinux1_x86_64.whl

$ ls PyMuTT*
PyMuTT-1.0.0.tar.gz

$ pip install PyMuTT-1.0.0.tar.gz
Processing ./PyMuTT-1.0.0.tar.gz
Collecting ASE>=3.16.2 (from PyMuTT==1.0.0)
 :
Collecting matplotlib>=2.2.3 (from PyMuTT==1.0.0)
 :
Collecting numpy>=1.15.1 (from PyMuTT==1.0.0)
 :
Successfully built PyMuTT
Installing collected packages: numpy, kiwisolver, six, cy
Successfully installed ASE-3.16.2 Jinja2-2.10 MarkupSafe-

So what's the problem with Solution 2?

● PIP knows about Python code and
its Python-oriented dependencies

○ Major issues when working with
modules that contain compiled
components

$ pip3 install --prefix="$(pwd)/tf" \
> --ignore-installed \
> tensorflow
Collecting tensorflow
 Downloading
https://files.pythonhosted.org/packages/ce/d5/38cd4543401
 :
Installing collected packages: six, numpy, h5py, keras-ap
Successfully installed absl-py-0.5.0 astor-0.7.1 gast-0.2

$

So what's the problem with Solution 2?

● PIP knows about Python code and
its Python-oriented dependencies

● E.g. person who packaged-up
TensorFlow did so on an Ubuntu
system

■ All Python dependencies are
satisfied by PIP…

■ …but the pre-built shared libraries
were linked against glibc 2.17…

■ …so on our CentOS 6 system with
glibc 2.12, the compiled
component crashes and burns

$ PATH="$(pwd)/tf/bin:$PATH" \
> PYTHONPATH="$(pwd)/tf/lib/python3.6/site-packages" \
> python3 test.py
Traceback (most recent call last):
 :
ImportError: /lib64/libc.so.6: version `GLIBC_2.17' not
found (required by
/tmp/tf/lib/python3.6/site-packages/tensorflow/python/_py
wrap_tensorflow_internal.so)

During handling of the above exception, another exception

Traceback (most recent call last):
 :
ImportError: /lib64/libc.so.6: version `GLIBC_2.17' not
found (required by
/tmp/tf/lib/python3.6/site-packages/tensorflow/python/_py
wrap_tensorflow_internal.so)

Failed to load the native TensorFlow runtime.

Preface to Solution 3: Game the system

● Every "python" interpreter finds its Python script library by:
○ assume "python" => "/home/1001/myenv/bin/python"
○ check for "lib/pythonX.Y/os.py" at a sequence of paths:

■ "/home/1001/myenv/bin/lib/pythonX.Y/os.py"
■ "/home/1001/myenv/lib/pythonX.Y/os.py"
■ "/home/1001/lib/pythonX.Y/os.py"
■ "/home/lib/pythonX.Y/os.py"

○ if not found there, check PYTHONPATH, compiled-in library path, etc.
■ e.g. "/usr/lib64/pythonX.Y/os.py"

● Someone figured out that any directory setup in this specific way will be
treated like a standalone Python installation

● Thus were born Python virtual environments

Solution 3: Virtual Environments

● With the "virtualenv" module
installed, any Python installation
becomes the basis for standalone
containers

○ no PYTHONPATH necessary
○ pip automatically installs into the

container
○ modules in container override those in

the base installation…
○ …but base installation will still be

checked for any module NOT in the
container

$ vpkg_require python/3.6.5
Adding package `python/3.6.5` to your environment

$ virtualenv myenv
Using base prefix '/opt/shared/python/3.6.5'
New python executable in /home/1001/myenv/bin/python3
Also creating executable in /home/1001/myenv/bin/python
Installing setuptools, pip, wheel...done.

$ source myenv/bin/activate

(myenv) $ file myenv/lib/python3.6/os.py
myenv/lib/python3.6/os.py: symbolic link to
`/opt/shared/python/3.6.5/lib/python3.6/os.py'

(myenv) $ du -sk myenv
21203 myenv
3540840 /opt/shared/python/3.6.5

Solution 3: Virtual Environments

● Activate virtual environment, then
use pip to install modules

○ The virtualenv setup added
setuptools-40.4.3 to the container…

○ …and tensorflow wants an older version
(hence the uninstall)

○ but this did NOT alter the base Python
installation at all

(myenv) $ pip install tensorflow
Collecting tensorflow
 :
 Found existing installation: setuptools 40.4.3
 Uninstalling setuptools-40.4.3:
 Successfully uninstalled setuptools-40.4.3
Successfully installed absl-py-0.5.0 astor-0.7.1 gast-0.2

(myenv) $ python3
Python 3.6.5 (default, Jun 13 2018, 10:30:54)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import tensorflow as tf
>>> tf.__version__
'1.11.0'
>>> ^D

(myenv) $ deactivate
$

Solution 3: Virtual Environments

● Inherits the same problem as
solution 2

○ If the PyPI package was built against
libraries not present on my system, pip
will happily install it…

○ …and it will happily crash when I try to
use it.

○ This virtual environment was created on
Caviness, where glibc 2.17 is present, so
it actually works (versus Farber)

(myenv) $ pip install tensorflow
Collecting tensorflow
 :
 Found existing installation: setuptools 40.4.3
 Uninstalling setuptools-40.4.3:
 Successfully uninstalled setuptools-40.4.3
Successfully installed absl-py-0.5.0 astor-0.7.1 gast-0.2

(myenv) $ python3
Python 3.6.5 (default, Jun 13 2018, 10:30:54)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-16)] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> import tensorflow as tf
>>> tf.__version__
'1.11.0'
>>> ^D

(myenv) $ deactivate
$

Preface to Solution 4: Fix that problem!

● The virtual environments are a nice way to put together (somewhat) lightweight
collections of Python modules

● Address the issue of compiled components
○ Completely change pip/PyPI to track OS or library dependencies for compiled components

■ Not going to happen: pip/PyPI is very good at handling the Python stuff, why mess that
up?

○ Create a separate package management infrastructure that DOES!

Solution 4: [Ana]conda

● The conda package management
framework

○ In the spirit of many operating systems'
package management

○ Software to access package metadata,
download and install packages, keep
track of what's installed

○ Various distributions containing the
packages and metadata behind that
software

● anaconda is one such distribution
○ principally targets scientific applications

$ vpkg_require anaconda/5.2.0:python3
Adding package `anaconda/5.2.0:python3` to your environme

$ conda create --prefix=$(pwd)/myenv
Solving environment: done

Package Plan

 environment location: /home/1001/myenv

Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use:
> source activate /home/1001/myenv
#
To deactivate an active environment, use:
> source deactivate
#

$

Solution 4: [Ana]conda

● Each conda container is
a virtual environment

○ pip can still be used to
manage pure Python
modules

○ conda used to
best-manage modules
with compiled
components

$ source activate /home/1001/myenv

(/home/1001/myenv) $ conda search tensorflow
Loading channels: done
Name Version Build Channel
tensorflow 0.10.0rc0 np111py27_0 pkgs/free
tensorflow 0.10.0rc0 np111py34_0 pkgs/free
tensorflow 0.10.0rc0 np111py35_0 pkgs/free
tensorflow 1.0.1 np112py27_0 pkgs/free
tensorflow 1.0.1 np112py35_0 pkgs/free
 :
tensorflow 1.11.0 gpu_py36h4459f94_0 pkgs/main
tensorflow 1.11.0 gpu_py36h9c9050a_0 pkgs/main
tensorflow 1.11.0 mkl_py27h25e0b76_0 pkgs/main
tensorflow 1.11.0 mkl_py36ha6f0bda_0 pkgs/main

(/home/1001/myenv) $

Solution 4: [Ana]conda

● Each conda container is
a virtual environment

○ pip can still be used to
manage pure Python
modules

○ conda used to
best-manage modules
with compiled
components

● In this example, I setup
an environment with a
GPU variant of TF 1.11.0

(/home/1001/myenv) $ conda install tensorflow=1.11.0=gpu_py36h9c9050a_0
Solving environment: done

Package Plan

 environment location: /home/1001/myenv

 added / updated specs:
 - tensorflow==1.11.0=gpu_py36h9c9050a_0
 :
 wheel: 0.32.1-py37_0 --> 0.32.1-py36_0

The following packages will be DOWNGRADED:

 python: 3.7.0-h6e4f718_3 --> 3.6.6-h6e4f718_2

Proceed ([y]/n)? y

Downloading and Extracting Packages
tensorflow-1.11.0 | 3 KB | ##
 :
python-3.6.6 | 28.9 MB | ##
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

Solution 4: [Ana]conda

● What's in that virtual
environment?

○ TensorFlow Python code
○ shared libraries needed

by this variant of
TensorFlow's compiled
code

■ INCLUDING CUDA
libraries for running
on GPU

● Different build would
have different pieces

(/home/1001/myenv) $ ls -l myenv/lib/lib*cuda*
lrwxrwxrwx 1 frey everyone myenv/lib/libcudart.so -> libcudart.so.9.2.148
lrwxrwxrwx 1 frey everyone myenv/lib/libcudart.so.9.2 -> libcudart.so.9.2.148
-rwxrwxr-x 1 frey everyone myenv/lib/libcudart.so.9.2.148

Summary

● Part of the draw of Python is the wealth of code libraries available
● The interdependencies as projects reuse more and more existing code

become difficult to manage/satisfy
○ For standard (or simple) Python libraries, the PyPI repositories and pip work well
○ For large, compiled/optimized Python libraries, conda distributions are necessary

● Python "environments" can be a simple directory (PYTHONPATH) or a
virtualenv and allow for:

○ isolation of one or more modules from the base Python installation
○ low overhead (no duplication of entire Python installation)
○ easy module maintenance with pip and conda

Questions?

https://pypi.org

https://www.python.org

https://anaconda.org

Appendix 1: Modules import once

1. test.py imports mymod
a. mymod/__init__.py executed
b. "mymod" namespace imports os, creates

symbol "os" in itself pointing to that
namespace

c. adds a variable to the "os" namespace

2. test.py imports os
a. namespace already imported
b. creates symbol "os" pointing to the

already-imported namespace

3. ∴ all namespaces' symbol "os"
refer to the same namespace

$ cat mymod/__init__.py
import os

def add_something():
 os.also_set_by_mymod = 'Still the same'

os.set_by_mymod = 'See, I told you'
print 'inside mymod: os.set_by_mymod = ' +
 os.set_by_mymod

$ cat test.py
import mymod
import os

print 'in test.py: os.set_by_mymod = ' +
 os.set_by_mymod
mymod.add_something()
print os.also_set_by_my_mod

Appendix 1: Modules import once

● Test
● If test.py had cloned a copy of the

"os" namespace augmented by
mymod…

○ The add_something() function would not
produce an alteration visible to test.py

○ The final print statement in test.py would
produce an exception and stack dump

$ PYTHONPATH=$(pwd) python test.py
inside mymod: os.set_by_my_mod = See, I told you
in test.py: os.set_by_my_mod = See, I told you
Still the same

Appendix 2: Copying conda virtual environments

● For all modules installed using
conda, export a description of the
virtual environment

○ Single YAML file

● That YAML file can be used to
recreate the conda environment

○ …on any machine with Anaconda
present

○ Also what gets uploaded to your
Anaconda account when publishing
environment descriptions

$ conda env export --prefix=$(pwd)/myenv \
> --file=myenv.yaml

$ conda env create --prefix=$(pwd)/based_on_myenv \
> --file=myenv.yaml
Using Anaconda API: https://api.anaconda.org
Solving environment: done
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate /Users/frey/env2
#
To deactivate an active environment, use
#
$ conda deactivate

$

Appendix 2: Copying conda virtual environments

● Can also make direct copies
○ Clone one environment into a new

environment
○ Eliminates the production of the YAML

description of the environment

$ conda create --clone=$(pwd)/myenv \
> --prefix=$(pwd)/otherenv
Source: /home/1001/myenv
Destination: /home/1001/otherenv
Packages: 35
Files: 0
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate /home/1001/otherenv
#
To deactivate an active environment, use
#
$ conda deactivate

