
Caviness HPC Basics
Caviness HPC Tutorial Series

Objectives

● Overview: Caviness Community Cluster
● Part I: Get your feet wet
● Part II: Jump in

Caviness Community
Cluster

Overview: Caviness HPC Basics

http://docs.hpc.udel.edu/abstract/caviness/caviness

http://docs.hpc.udel.edu/abstract/caviness/caviness

Background

What is the Caviness cluster?
● It is the third UD community cluster
● Technical and financial partnership between

UD-IT and UD faculty and researchers

Who can use it?
● UD faculty and researchers who purchased

compute nodes (stakeholders)
● Researchers sponsored by a stakeholder

Caviness Cluster

https://sites.udel.edu/research-computing/caviness-cluster/

https://sites.udel.edu/research-computing/caviness-cluster/

Getting your feet wet
Part I: Caviness HPC Basics

Getting your feet wet

● Accounts
● Connecting with SSH
● Bash Shell and Working Directory
● File Storage
● Groups and Workgroup(s)
● VALET
● Workgroup, Load Packages and Run Jobs
● Help

Accounts

Caviness Accounts

Username and Password
● UD = UDelNet ID and password; can only be

changed via the on the Network page.
www.udel.edu/network

● non-UD = hpcguest<uid> and password is
generated by IT staff and securely sent via the
UD Dropbox; please change it using:
www.hpc.udel.edu/user?authn=login

http://www.udel.edu/network
http://www.hpc.udel.edu/user/?authn=login

Connecting with SSH

Overview

SSH Client

● SSH is typically used to connect to the
cluster's head (login) node.

● Standard Linux and Mac distributions
provide an ssh client.

● Windows distributions require installation of
an ssh client such as PuTTY.

SSH Public/Private Keys

● Eliminates entering your password for each
remote connection - only need to remember
a passphrase of your choice

● More convenient and efficient especially with
other applications such as scp and sftp

SSH Help

● Follow documentation for Mac and Linux, or
Windows configuration to get connected
using X11 and SSH with public/private keys.

http://www.udel.edu/it/research/training/config_laptop/

http://www.udel.edu/it/research/training/config_laptop/

Connecting to Caviness

ssh -Y username@caviness.hpc.udel.edu

Using username "traine".

..

Caviness cluster (caviness.hpc.udel.edu)

This computer system is maintained by University of Delaware
IT. Links to documentation and other online resources can be
found at:

 http://docs.hpc.udel.edu/abstract/caviness/

For support, please contact consult@udel.edu

..

Bash Shell and
Working Directory

Bash Shell

Bash prompt

● user name = referred to as $USER
● cluster name = head (login) node
● ~ = current working directory
● $ = end of prompt

[traine@login00 ~]$

Working Directory

At login, you start in your home directory (~)

● /home/<uid>
● Referred to as $HOME

[traine@login00 ~]$ pwd
/home/1201
[traine@login00 ~]$ echo $HOME
/home/1201

File Storage

File Storage on Caviness

● Home directory (/home)

Other file storage available:

● Workgroup directory (/work/<investing-entity>)
● Lustre (/lustre/scratch)
● Node-local scratch (/tmp)

Groups and Workgroups

Workgroup(s)

Groups in the investing-entity category are
used to control access to compute nodes,
partitions and storage (HPC resources).

workgroup -g <investing_entity>

starts a new shell in your workgroup. You must
set your workgroup to run a job on the cluster.
[traine@login00 ~]$ workgroup -q workgroups
 1002 it_css
[traine@login00 ~]$ workgroup -g it_css
[(it_css:traine)@login00 traine]$ echo $WORKDIR
/work/it_css

VALET

VALET

● UD-developed software to help configure your
environment for all IT-installed software packages.

● Changes environment such as PATH, LD_LIBRARY_PATH
and MANPATH

● Changes software development environment such as
LDFLAGS and CPPFLAGS

● An alternative to the Modules software used at other HPC
sites

man valet

VALET Commands

vpkg_list
● a list of all available software packages installed by IT

Available packages:
 in /opt/shared/valet/2.1/etc

abaqus
ambertools
anaconda
arpack
arpack-ng
atlas
bazel
binutils
blacs
boost
cdo
cgal
chargemol

...

...

VALET Commands

vpkg_versions <package_id>
● a list of versions available for <package_id>
● default version marked with *
[(it_css:traine)@login00 ~]$ vpkg_versions intel
Available versions in package (* = default version):

[/opt/shared/valet/2.1/etc/intel.vpkg_yaml]
intel Intel Compiler Suite
 2013 alias to intel/2013u6
 2013u6 Version 2013, SP1 Update 6 (2013_sp1.6.214)
 2015 alias to intel/2015u7
 2015u7 Version 2015, Update 7 (2015.7.235)
 2016 alias to intel/2016u5
 2016u5 Version 2016, Update 5 (2016.8.266)
 2017 alias to intel/2017u7
 2017u7 Version 2017, Update 7 (2017.7.259)
* 2018 alias to intel/2018u4
...

VALET Commands

vpkg_require <package_id>
vpkg_devrequire <package_id>

● set your environment or development
environment for <package_id>

[(it_css:traine)@login00 ~]$ vpkg_require intel
Adding package `intel/2015.0.090` to your environment
[(it_css:traine)@login00 ~]$

[(it_css:traine)@login00 ~]$ vpkg_devrequire intel
Adding package `intel/2015.0.090` to your environment
[(it_css:traine)@login00 ~]

VALET Commands

vpkg_rollback all

● undo all changes to your environment

[(it_css:traine)@login00 ~]$ vpkg_rollback all
[(it_css:traine)@login00 ~]$

Workgroup, Load
Packages, and Run Jobs

Workgroup

To use any of your HPC resources (compute nodes) you
need to set your workgroup. This will create a new
shell session and change the prompt.

workgroup -g <investing_entity>

[traine@login00~]$ workgroup -g it_css
[(it_css:traine)@login00 ~]$

Load Packages for
Applications

● Use VALET to set up your runtime environment
and/or compile-time environment.

vpkg_require
or

vpkg_devrequire

Compilers

There are three 64-bit compiler suites on
Caviness:

● PGI Portland Compiler Suite
● Intel Parallel Studio XE
● GSS (GNU Compiler Collection)

We generally recommend that you use the gcc compilers with its rich collection
of tools and libraries. If your software/application use libraries designed for Intel
or PGI compilers, you might see improved performance by using the
corresponding compiler. Intel Fortran, ifort, is a better implementation of
modern Fortran standards than gfortran.

Run Applications

In general, applications (executables) must be run on the
compute nodes, not on the login (head) node.

Use one of Slurm’s job submission commands to run an
application.

salloc (interactive)
sbatch (batch)

Compile Code

C and Fortran Examples

C and Fortran program examples
● cmatmul and fmatmul

Compile scripts for each compiler to create
executables (“application”)

● compile-gcc and compile-intel

Batch scripts for each compiler to run job
● serial-gcc.qs and serial-intel.qs

Copy Examples

cp -r ~trainf/fhpcI .
cd fhpcI
pwd
ls

[traine@login00 ~]$ cp -r ~trainf/fhpcI .
[traine@login00 ~]$ cd fhpcI/
[traine@login00 fhpcI]$ pwd
/home/1201/fhpcI
[traine@login00 fhpcI]$ ls
cmatmul fmatmul

Compile Code: system cc

● Basic programs can be compiled on the login (head)
node or compute nodes (“devel” partition only).

● Use VALET to set up your compile-time environment.

This example uses the system compiler (gcc) to compile a C
program on the head node to create the executable tmatmul

[traine@login00 fhpcI]$ cd cmatmul
[traine@login00 cmatmul]$ ls *.c
 tmatmul.c
[traine@login00 cmatmul]$ vpkg_require gcc
 Adding package `gcc/system` to your environment
[traine@login00 cmatmul]$ make tmatmul
 cc tmatmul.c -o tmatmul
[traine@login00 cmatmul]$ mv tmatmul tmatmul-gcc
[traine@login00 cmatmul]$ ls -la tmatmul*
 -rw-r--r-- 1 traine everyone 818 Sep 24 17:07 tmatmul.c
 -rwxr-xr-x 1 traine everyone 8860 Sep 28 22:26 tmatmul-gcc

Compile Code: intel icc

● Basic programs can be compiled on the login (head)
node or compute nodes (“devel” partition only).

● Use VALET to set up your compile-time environment.

This example uses a script, compile-intel, on the head
node which has the commands to create an Intel version
executable tmatmul-intel

[traine@login00 cmatmul]$ source compile-intel
 Adding package `intel/2018u4` to your environment
 icc -Wall -g -debug all tmatmul.c -o tmatmul
 debug executable in ./tmatmul-intel
[traine@login00 cmatmul]$ ls -la tmatmul*
 -rw-r--r-- 1 traine everyone 818 Sep 24 17:07 tmatmul.c
 -rwxr-xr-x 1 traine everyone 8860 Sep 28 22:26 tmatmul-gcc
 -rwxr-xr-x 1 traine everyone 8781 Sep 28 22:28 tmatmul-intel

Run Jobs

Run Jobs

● Interactively using salloc

Slurm will submit an interactive job to the queuing
system.

● Batch using sbatch <job_script>

Slurm will submit a batch job <job_script> to the
queuing system.

Note: Running Jobs is based on using the compiled code
examples from the previous section, Compiling Code.

Interactive (session) job

salloc

Set workgroup (reminder this starts a new shell) before using
salloc

Note: Remember we used the “devel” partition to compile code on the
compute node since libraries are likely not available on the standard or
workgroup partitions.

[traine@login00 cmatmul]$ workgroup -g it_css
[(it_css:traine)@login00 cmatmul]$ salloc --partition=devel
salloc: Pending job allocation 7289274
salloc: job 7289274 queued and waiting for resources
salloc: job 7289274 has been allocated resources
salloc: Granted job allocation 7289274
salloc: Waiting for resource configuration
salloc: Nodes r01n46 are ready for job

Interactive Run
Run tmatmul-gcc on a compute node and exit
[(it_css:traine)@r01n46 cmatmul]$ vpkg_require gcc
Adding package `gcc/4.8.5` to your environment
[(it_css:traine)@r01n46 cmatmul]$. compile-gcc
gcc -g -Wall tmatmul.c -o tmatmul
debug executable in ./tmatmul-gcc
[(it_css:traine)@r01n46 cmatmul]$./tmatmul-gcc
B:
 1.00000 1.00000 1.00000
 1.00000 1.50000 2.25000
 1.00000 2.00000 4.00000
 1.00000 3.00000 9.00000
C:
 1.00000 0.00000
 0.00000 1.00000
 0.50000 0.50000
B*C with loops:
 1.50000 1.50000
 2.12500 2.62500
 3.00000 4.00000
 5.50000 7.50000
[(it_css:traine)@r01n46 cmatmul]$ exit
exit
salloc: Relinquishing job allocation 7289274

Batch Job Example I

sbatch <job_script>

[traine@login00 cmatmul]$ workgroup -g it_css
[traine@login00 cmatmul]$ cd fhpcI/cmatmul/
[(it_css:traine)@login00 cmatmul]$ sbatch --partition=devel serial-gcc.qs
 Submitted batch job 7499728
[(it_css:traine)@login00 cmatmul]$ more slurm-7499728.out
Adding package `gcc/4.8.5` to your environment
B:
 1.00000 1.00000 1.00000
 1.00000 1.50000 2.25000
 1.00000 2.00000 4.00000
 1.00000 3.00000 9.00000
C:
 1.00000 0.00000
 0.00000 1.00000
 0.50000 0.50000
B*C with loops:
 1.50000 1.50000
 2.12500 2.62500
 3.00000 4.00000
 5.50000 7.50000

Note: We can also use the
“devel” partition to test
simple code rather than
using the standard or
workgroup partitions.

Batch Job Example II

● Sample <job_script> was copied from
/opt/templates/slurm/generic/serial.qs and
modified as serial-intel.qs

#SBATCH --job-name=tmatmul-intel_job
#SBATCH --partition=devel
...
#SBATCH --mail-user='<user_email>@udel.edu'
#SBATCH --mail-type=END,FAIL,TIME_LIMIT_90
…
vpkg_require intel
#srun date
./compile-intel
srun ./tmatmul-intel

Batch Job Script: Part I
serial-intel.qs

[(it_css:traine)@login00 cmatmul]$ cat serial-intel.qs
#!/bin/bash -l
#
Sections of this script that can/should be edited are delimited by a
[EDIT] tag. All Slurm job options are denoted by a line that starts
with "#SBATCH " followed by flags that would otherwise be passed on
the command line. Slurm job options can easily be disabled in a
script by inserting a space in the prefix, e.g. "# SLURM " and
reenabled by deleting that space.
#
This is a batch job template for a program using a single processor
core/thread (a serial job).
#
#SBATCH --ntasks=1
#
[EDIT] All jobs have memory limits imposed. The default is 1 GB per
CPU allocated to the job. The default can be overridden either
with a per-node value (--mem) or a per-CPU value (--mem-per-cpu)
with unitless values in MB and the suffixes K|M|G|T denoting
kibi, mebi, gibi, and tebibyte units. Delete the space between
the "#" and the word SBATCH to enable one of them:
#
SBATCH --mem=8G
SBATCH --mem-per-cpu=1024M
#

[EDIT] Each node in the cluster has local scratch disk of some sort
that is always mounted as /tmp. Per-job and per-step temporary
directories are automatically created and destroyed by the
auto_tmpdir plugin in the /tmp filesystem. To ensure a minimum
amount of free space on /tmp when your job is scheduled, the
--tmp option can be used; it has the same behavior unit-wise as
--mem and --mem-per-cpu. Delete the space between the "#" and the
word SBATCH to enable:
#
SBATCH --tmp=24G
#
[EDIT] It can be helpful to provide a descriptive (terse) name for
the job (be sure to use quotes if there's whitespace in the
name):
#
#SBATCH --job-name=tmatmul-intel_job
#
[EDIT] The partition determines which nodes can be used and with what
maximum runtime limits, etc. Partition limits can be displayed
with the "sinfo --summarize" command.
#
SBATCH --partition=standard
#SBATCH --partition=devel
#
To run with priority-access to resources owned by your workgroup,
use the "_workgroup_" partition:
#
SBATCH --partition=_workgroup_

Batch Job Script: Part II
serial-intel.qs

#
[EDIT] The maximum runtime for the job; a single integer is interpreted
as a number of minutes, otherwise use the format
#
d-hh:mm:ss
#
Jobs default to the default runtime limit of the chosen partition
if this option is omitted.
#
#SBATCH --time=0-02:00:00
#
You can also provide a minimum acceptable runtime so the scheduler
may be able to run your job sooner. If you do not provide a
value, it will be set to match the maximum runtime limit (discussed
above).
#
SBATCH --time-min=0-01:00:00
[EDIT] By default SLURM sends the job's stdout to the file "slurm-<jobid>.out"
and the job's stderr to the file "slurm-<jobid>.err" in the working
directory. Override by deleting the space between the "#" and the
word SBATCH on the following lines; see the man page for sbatch for
special tokens that can be used in the filenames:
#
SBATCH --output=%x-%j.out
SBATCH --error=%x-%j.out
#

Batch Job Script: Part III
serial-intel.qs

[EDIT] Slurm can send emails to you when a job transitions through various
states: NONE, BEGIN, END, FAIL, REQUEUE, ALL, TIME_LIMIT,
TIME_LIMIT_50, TIME_LIMIT_80, TIME_LIMIT_90, ARRAY_TASKS. One or more
of these flags (separated by commas) are permissible for the
--mail-type flag. You MUST set your mail address using --mail-user
for messages to get off the cluster.
#
#SBATCH --mail-user='traine@udel.edu'
#SBATCH --mail-type=END,FAIL,TIME_LIMIT_90
#
[EDIT] By default we DO NOT want to send the job submission environment
to the compute node when the job runs.
#
#SBATCH --export=NONE
#

#
[EDIT] Define a Bash function and set this variable to its
name if you want to have the function called when the
job terminates (time limit reached or job preempted).
#
PLEASE NOTE: when using a signal-handling Bash
function, any long-running commands should be prefixed
with UD_EXEC, e.g.
#
UD_EXEC mpirun vasp
#

Batch Job Script: Part IV
serial-intel.qs

#
If you do not use UD_EXEC, then the signals will not
get handled by the job shell!
#
#job_exit_handler() {
Copy all our output files back to the original job directory:
cp * "$SLURM_SUBMIT_DIR"
#
Don't call again on EXIT signal, please:
trap - EXIT
exit 0
#}
#export UD_JOB_EXIT_FN=job_exit_handler

#
[EDIT] By default, the function defined above is registered
to respond to the SIGTERM signal that Slurm sends
when jobs reach their runtime limit or are
preempted. You can override with your own list of
signals using this variable -- as in this example,
which registers for both SIGTERM and the EXIT
pseudo-signal that Bash sends when the script ends.
In effect, no matter whether the job is terminated
or completes, the UD_JOB_EXIT_FN will be called.
#
#export UD_JOB_EXIT_FN_SIGNALS="SIGTERM EXIT"

Batch Job Script: Part V
serial-intel.qs

#
If you have VALET packages to load into the job environment,
uncomment and edit the following line:
#
#vpkg_require intel/2019
#
Do general job environment setup:
#
. /opt/shared/slurm/templates/libexec/common.sh
#
[EDIT] Add your script statements hereafter, or execute a script or program
using the srun command.
#
#srun date
. compile-intel
srun ./tmatmul-intel

Batch Job Script: Part VI
serial-intel.qs

sbatch <script_name>.qs

The serial-intel.qs job script specifies to run
this job on the “devel” partition and send an email
notification to traine@udel.edu when the job is
complete.

Note: There is a possibility of a slight delay between when the
job completes and the generation of the slurm output file.

Example Batch Job template
running serial script

[traine@login01 ~]$ workgroup -g it_css
[(it_css:traine)@login00 ~]$
[(it_css:traine)@login00 cmatmul]$ sbatch serial-intel.qs
Submitted batch job 7319222

Batch Run Output

Output in slurm-<job_id>.out
[(it_css:traine)@login00 cmatmul]$ more slurm-7319222.out
Adding package `intel/2018u4` to your environment
icc -Wall -g -debug all tmatmul.c -o tmatmul
debug executable in ./tmatmul-intel
B:
 1.00000 1.00000 1.00000
 1.00000 1.50000 2.25000
 1.00000 2.00000 4.00000
 1.00000 3.00000 9.00000
C:
 1.00000 0.00000
 0.00000 1.00000
 0.50000 0.50000
B*C with loops:
 1.50000 1.50000
 2.12500 2.62500
 3.00000 4.00000
 5.50000 7.50000
[(it_css:traine)@login01 cmatmul]$

Exercise

Exercise

● Pick a compiler: gcc or intel
● Compile and batch run the Fortran example

in fmatmul using

compile-<compiler> to compile
serial-<compiler>.qs to batch run

This example is using a simple Fortran program to create
the executable tmatmul-gcc using the system gfortran
(gcc) compiler

Set Workgroup and Change
Directory

● Set your workgroup if not already done.

● Change into the fmatmul directory.

[(it_css:traine)@login00 cmatmul]$ cd ~/fhpcI/fmatmul
[(it_css:traine)@login00 fmatmul]$ pwd
/home/1201/fhpc/fmatmul
[(it_css:traine)@login00 fmatmul]$

[traine@login00 cmatmul]$ workgroup -g it_css
[(it_css:traine)@login00 cmatmul]$

Compile Code

● Create tmatmul-gcc fortran executable by
sourcing the compile script compile-gcc

source compile-gcc

[(it_css:traine)@login00 fmatmul]$ cat compile-gcc
vpkg_devrequire gcc
export FC=gfortran
export FFLAGS='-ffree-form -Wall -g'
make tmatmul && mv tmatmul tmatmul-gcc
test -x tmatmul-gcc && echo "debug version in ./tmatmul-gcc"
[(it_css:traine)@login00 fmatmul]$ source compile-gcc
Adding package `gcc/4.8.5` to your environment
gfortran -ffree-form -Wall -g tmatmul.f -o tmatmul
debug version in ./tmatmul-gcc
[(it_css:traine)@login00 fmatmul]$

Batch Job Run

● Submit a batch job to run the fortran
executable tmatmul-gcc

sbatch serial-gcc.qs
[(it_css:traine)@login00 fmatmul]$ sbatch serial-gcc.qs
 Submitted batch job 7321828

[(it_css:traine)@login00 fmatmul]$ cat serial-gcc.qs
#!/bin/bash -l
...
vpkg_require gcc
...
[EDIT] Add your script statements hereafter, or execute a script or
program
using the srun command.
#
#srun date
srun ./tmatmul-gcc

[(it_css:traine)@login01 fmatmul]$

Batch Job Output

[(it_css:traine)@login00 fmatmul]$ more slurm-7321828.out
Adding package `gcc/4.8.5` to your environment
 B:
 1.0000 1.0000 1.0000
 1.0000 1.5000 2.2500
 1.0000 2.0000 4.0000
 1.0000 3.0000 9.0000
 C:
 1.0000 0.0000
 0.0000 1.0000

0.50000 0.50000
 B*C with intrinsic matmul
 1.5000 1.5000
 2.1250 2.6250
 3.0000 4.0000
 5.5000 7.5000
 B*C with loops
 1.5000 1.5000
 2.1250 2.6250
 3.0000 4.0000
 5.5000 7.5000

Need Help?

● Submit a Research Computing Help
Request form

● Phone: (302) 831-6000

Please select High Performance Computing as
the Problem Type, and specify Caviness in the
details of your problem in the Description when
submitting your request or calling IT Support
Center.

https://services.udel.edu/TDClient/32/Portal/Requests/TicketRequests/NewForm?ID=D5ZRIgFlfLw_
https://services.udel.edu/TDClient/32/Portal/Requests/TicketRequests/NewForm?ID=D5ZRIgFlfLw_

Jumping in
Part II: Caviness HPC Basics

Jumping in

● File Storage and recovery options
● Bash startup files
● Setting Environment, Running and

Monitoring Jobs
● Local (non-standard) Commands

File Storage

File Storage on Caviness

● Home directory 72 TB of usable space
■ Personal directory: 20GB (/home/<uid>)

df -h $HOME
■ Workgroup directory: 1 TB+

(/work/<investing-entity>)
df -h $WORKDIR

● Lustre ~191 TB of usable space
■ Public scratch directory (/lustre/scratch)
■ IT staff will run regular cleanup procedures to purge

aged files or directories
● Node-local scratch (/tmp)

Recovery Options

Recovering files /home

/home filesystem is a larger permanent storage
with snapshots.
● Use read-only $HOME/.zfs/snapshot to recover files

[traine@login00 cmatmul]$ ls -al tmatmul.c
-rw-r--r-- 1 traine everyone 818 Sep 24 17:07 tmatmul.c
[traine@login00 cmatmul]$ rm tmatmul.c
[traine@login00 cmatmul]$ ls -al tmatmul.c && echo 'oops !!'
ls: cannot access tmatmul.c: No such file or directory
oops !!
[traine@login00 cmatmul]$ pwd
/home/1201/fhpcI/cmatmul
[(it_css:traine)@login00 fmatmul]$ ls ~/.zfs/snapshot
20200314-1315 20200316-0115 20200317-0115 20200318-0115 20200319-0115
20200315-1315 20200316-1315 20200317-1315 20200318-1315 20200319-1315
[traine@login00 cmatmul]$ cp -p
~/.zfs/snapshot/20200319-1315/fhpcI/cmatmul/tmatmul.c .
[traine@login00 cmatmul]$ ls -al tmatmul.c
-rw-r--r-- 1 traine everyone 818 Sep 24 17:07 tmatmul.c

Recovering workgroup files

Workgroup files have their own read-only
snapshots, which span a week in
 $WORKDIR/.zfs/snapshot

[traine@login00 cmatmul]$ workgroup -g it_css
[(it_css:traine)@login00 cmatmul]$ ls $WORKDIR/.zfs/snapshot/
20200304-1815 20200305-1815 20200306-1815 20200307-1815
20200308-1815 20200309-1815 20200310-1815 20200311-1815
20200312-1815 20200313-1815 20200314-1815 20200315-1815
20200316-0615 20200316-1815 20200317-0615 20200317-1815
20200318-0615 20200318-1815 20200319-0615

Bash Startup Files

Keep startup files clean

● Make sure you understand what your startup
files are doing.

● Environments are different for the login
(head) node versus the compute nodes.

● If you make changes, test by starting a new
login, don't logout.

● You can always restore your startup files to
the system versions, if you make a mistake.
Which is why it is important to not log out
until you have tested with a new login.

Startup files

● .bash_profile
● .bashrc
● .bash_udit
● .bash_logout

Note: A “.” as part of the file or directory name causes the
file to be hidden. To see these files or directories, use the
command “ls -a” instead of “ls” with no options.

.bash_profile

● Executed once at login
● .bashrc in your home directory is sourced
● Add lines to set your environment and start

programs after the comment line in red
[traine@login00 ~]$ more .bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin

export PATH

.bashrc

● Executed by each new shell, including your
login shell via .bash_profile

● Add lines to create aliases and bash functions
after the comment line in red

[(it_css:traine)@login00 ~]$ more .bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

User specific aliases and functions

.bash_udit: Part I

● Executed by each new shell
● Opt into IT suggested environment changes

●

●

●

[(it_css:traine)@login00 ~]$ more .bash_udit
##
Change from "no" to "yes" to enable IT's suggested environment changes.
The behaviors enabled by the remainder of this file are contingent on
enabling IT_WANT_ENV_EXTENSIONS:
##
IT_WANT_ENV_EXTENSIONS="no"

##
If you have multiple workgroups available to you, change this to the one
you want to be the default; otherwise, the first one listed by
"workgroup -q workgroups" will be your default:
##
IT_DEFAULT_WORKGROUP=""

##
If you want the "workgroup" command to by default change your working
directory to the $WORKDIR, change from "no" to "yes".
##
IT_WORKGROUP_CHDIR="no"

.bash_udit: Part II

##
By default when you login to the cluster head node you are in the
"everyone" group and need to issue a "workgroup" command to prepare
for submitting jobs, etc.
##
Change this flag from "no" to "yes" if you want your login shell to
automatically issue the command to change into your default
workgroup. Your default workgroup will come from IT_DEFAULT_WORKGROUP
if set above, or it will be the first group in the list produced by
the command
##
/opt/bin/workgroup --query workgroups
##
IT_SET_WORKGROUP_ON_LOGIN="no"

[(it_css:traine)@login00 ~]$

.bash_logout

● Executed only when you log out from the head
(login) node, but not when you exit from a
compute when you use salloc or sbatch.

[(it_css:traine)@login00 ~]$ more .bash_logout
~/.bash_logout

Restore your startup files

To restore all your startup files (.bashrc,
.bash_profile, .bash_udit, and
.bash_logout) to the system default, type
the command

cp /etc/skel/.bash* $HOME

Exercise (.bash_udit)

Exercise (.bash_udit)

To see what aliases are defined use
alias

[(it_css:traine)@login00 ~]$ alias
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias mc='. /usr/libexec/mc/mc-wrapper.sh'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot
--show-tilde'

[(it_css:traine)@login00 ~]$

Exercise (.bash_udit): Part I

Customize our startup file .bash_udit to opt
into IT suggested environment changes by
setting a default workgroup so we only need to
type

workgroup

instead of

workgroup -g <investing_entity>

Exercise (.bash_udit): Part I

Edit (nano) .bash_udit
[(it_css:traine)@login00 ~]$ vim .bash_udit
##
Change from "no" to "yes" to enable IT's suggested environment changes.
The behaviors enabled by the remainder of this file are contingent on
enabling IT_WANT_ENV_EXTENSIONS:
##
IT_WANT_ENV_EXTENSIONS=" yes"

##
If you have multiple workgroups available to you, change this to the one
you want to be the default; otherwise, the first one listed by
"workgroup -q workgroups" will be your default:
##
IT_DEFAULT_WORKGROUP=" it_css"

##
If you want the "workgroup" command to by default change your working
directory to the $WORKDIR, change from "no" to "yes".
##
IT_WORKGROUP_CHDIR="no"

Exercise (.bash_udit): Part I

Try out our new .bash_udit

● Do not logout! Start a new login session
● Now you only need to type workgroup

[traine@login00 ~]$ alias
alias egrep='egrep --color=auto'
alias fgrep='fgrep --color=auto'
alias grep='grep --color=auto'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias mc='. /usr/libexec/mc/mc-wrapper.sh'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot
alias workgroup='/usr/local/bin/workgroup -g it_css'
[traine@login00 ~]$ workgroup
[(it_css:traine)@login00 ~]$

Exercise (.bash_udit): Part II

Customize our startup file .bash_udit to
opt into IT suggested environment changes
so the login shell is automatically set to your
workgroup and also changes into your
default workgroup directory $WORKDIR.

First, let’s get back to the login shell

[(it_css:traine)@login00 ~]$ exit
[traine@login00 ~]$

Exercise (.bash_udit): Part II

Edit (vim) .bash_udit
[traine@login00 ~]$ vim .bash_udit
##
Change from "no" to "yes" to enable IT's suggested environment changes.
The behaviors enabled by the remainder of this file are contingent on
enabling IT_WANT_ENV_EXTENSIONS:
##
IT_WANT_ENV_EXTENSIONS="yes"

##
If you have multiple workgroups available to you, change this to the one
you want to be the default; otherwise, the first one listed by
"workgroup -q workgroups" will be your default:
##
IT_DEFAULT_WORKGROUP="it_css"

##
If you want the "workgroup" command to by default change your working
directory to the $WORKDIR, change from "no" to "yes".
##
IT_WORKGROUP_CHDIR=" yes"

Exercise (.bash_udit): Part II

Edit (vim) .bash_udit
##
By default when you login to the cluster head node you are in the
"everyone" group and need to issue a "workgroup" command to prepare
for submitting jobs, etc.
##
Change this flag from "no" to "yes" if you want your login shell to
automatically issue the command to change into your default
workgroup. Your default workgroup will come from IT_DEFAULT_WORKGROUP
if set above, or it will be the first group in the list produced by
the command
##
/opt/bin/workgroup --query workgroups
##
IT_SET_WORKGROUP_ON_LOGIN=" yes"

Exercise (.bash_udit): Part II
Try out our new .bash_udit

● Do not logout! Start a new login session

..

Caviness cluster (caviness.hpc.udel.edu)

This computer system is maintained by University of Delaware
IT. Links to documentation and other online resources can be
found at:

 http://docs.hpc.udel.edu/abstract/caviness/

For support, please contact consult@udel.edu
..

Last login: Tue Mar 24 09:40:31 2020 from 71.56.238.196
WARNING: Your working directory has been changed to /work/it_css

[(it_css:traine)@login00 it_css]$ pwd
/work/it_css
[(it_css:traine)@login00 it_css]$

Exercise (.bashrc)

Exercise (.bashrc)

Customize our startup file .bashrc to create
aliases for whatis, workgroups and other file
storage directories

● Create a new alias whatis
● Create a new alias for each <investing_entity>

to define a workgroup
● Create a new alias for each file storage

personal work directory and change to it

Exercise (whatis)

Create an alias to determine what is the type of a
command.

Example line shown in red
[(it_css:traine)@login00 ~]$ vim .bashrc
 1 # .bashrc
 2
 3 # Source global definitions
 4 if [-f /etc/bashrc]; then
 5 . /etc/bashrc
 6 fi
 7
 8 # User specific aliases and functions
 9
 10 alias whatis='builtin type -t'

Exercise (whatis)

Try out our new .bashrc
● Do not logout! Start a new login session.

[traine@login00 ~]$ alias
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias mc='. /usr/libexec/mc/mc-wrapper.sh'
alias vi='vim'
alias whatis='builtin type -t'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot
--show-tilde'
alias workgroup='/usr/local/bin/workgroup -g it_css'
[traine@login00 ~]$ which vpkg_require
/usr/bin/which: no vpkg_require in
(/opt/bin:/opt/shared/valet/2.0/bin/bash:/opt/shared/valet/2.0/bin:/opt/shared/un
iva/current/bin/lx-amd64:/usr/lib64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/usr/
local/sbin:/usr/sbin:/sbin:/opt/ibutils/bin:/home/1201/bin)
[traine@login00 ~]$ whatis vpkg_require
function
[traine@login00 ~]$

Exercise (workgroup)

Create an alias for each <investing_entity> to set
the workgroup

Example lines shown in red for it_css
[(it_css:traine)@login00 ~]$ vim .bashrc
 1 # .bashrc
 2
 3 # Source global definitions
 4 if [-f /etc/bashrc]; then
 5 . /etc/bashrc
 6 fi
 7
 8 # User specific aliases and functions
 9
 10 alias whatis='builtin type -t'
 11 alias it_css='workgroup -g it_css'

Exercise (workgroup)

Try out our new .bashrc
● Do not logout! Start a new login session
● Now it_css and workgroup work the same.

[traine@login00 ~]$ alias
alias it_css='\workgroup -g it_css'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias mc='. /usr/libexec/mc/mc-wrapper.sh'
alias vi='vim'
alias whatis='builtin type -t'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot
--show-tilde'
alias workgroup='/usr/local/bin/workgroup -g it_css'
[traine@login00 ~]$ it_css
[(it_css:traine)@login00 ~]$ exit
exit
[traine@login00 ~]$ workgroup
[(it_css:traine)@login00 ~]$

Exercise (file storage)

Make sure you have a your own personal directory created for
each file storage area. This may vary for each
<investing_entity> research group (eg. users or projects
subdirectory may exist).

These exercises assume your username will be in the base
work directories and you have set your workgroup before you
start.

● /work/<investing_entity>/
● /lustre/scratch/

Exercise (/work)

Check for your username in
/work/<investing_entity> or $WORKDIR

Example shows creating a personal directory for
traine in /work/it_css

[traine@login00 ~]$ workgroup -g it_css
[(it_css:traine)@login00 ~]$ cd $WORKDIR
[(it_css:traine)@login00 it_css]$ ls -lad traine
ls: cannot access traine: No such file or directory
[(it_css:traine)@login00 it_css]$ mkdir traine
[(it_css:traine)@login00 it_css]$ ls -lad traine
drwxr-sr-x 2 traine it_css 2 Sep 29 00:10 traine

Exercise (/lustre/scratch)

Check for your username in
/lustre/scratch/

Example shows a personal directory exists for
traine in /lustre/scratch

[(it_css:traine)@login00 ~]$ cd /lustre/scratch
[(it_css:traine)@login00 scratch]$ ls -lad traine
drwxr-sr-x 2 traine it_css 4096 Sep 29 00:13 traine
[(it_css:traine)@login00 scratch]$

Exercise (file storage)

Create an alias for each file storage to change to that work
directory

Example lines shown in red for traine and it_css

[(it_css:traine)@login00 ~]$ vim .bashrc
 1 # .bashrc
 2
 3 # Source global definitions
 4 if [-f /etc/bashrc]; then
 5 . /etc/bashrc
 6 fi
 7
 8 # User specific aliases and functions
 9
 10 alias whatis='builtin type -t'
 11 alias it_css='workgroup -g it_css'
 12 alias cdwork='cd /work/it_css/traine'
 13 alias cdscratch='cd /lustre/scratch/traine'

Exercise (file storage)

Try out our new .bashrc

● Do not logout! Start a new login session
alias cdscratch='cd /lustre/scratch/traine'
alias cdwork='cd /work/it_css/traine'
alias it_css='workgroup -g it_css'
alias l.='ls -d .* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
alias mc='. /usr/libexec/mc/mc-wrapper.sh'
alias vi='vim'
alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot
--show-tilde'
alias workgroup='/usr/local/bin/workgroup -g it_css'
[(it_css:traine)@login00 traine]$ cdwork
[(it_css:traine)@login00 traine]$ pwd
/work/it_css/traine
[(it_css:traine)@login00 traine]$ cdscratch
[(it_css:traine)@login00 traine]$ pwd
/lustre/scratch/traine

Set Environment, Run and
Monitor Jobs

Python Example

Python program example using a Python 3.6.5
script.

● pylib

Python Script & Data File
● unitConvert.py and dataFile.csv

Batch job scripts
● serial-python3.qs

VALET

● Use VALET to set our environment, first see
what Python versions are available using the
VALET command

vpkg_versions python

[(it_css:traine)@login00 ~]$ vpkg_versions python

Available versions in package (* = default version):

[/opt/shared/valet/2.1/etc/python.vpkg_yaml]
python Python Programming Language
 2 alias to python/2.7.15
 2.7.5 System OS Python (/usr/bin/python)
* 2.7.15 Python 2 with 200+ common add-on modules
 3 alias to python/3.6.5
 3.6.5 Python 3 with 200+ common add-on modules
 3.7.4 Python 3 with 200+ common add-on modules

Exercise

Set Environment and Copy
Examples

Use your new aliases, it_css and cdwork, to set your
workgroup, and change to your workgroup directory. Next
copy the examples and change into the examples directory.

it_css
cdwork
cp -r ~trainf/fhpcIII ./
cd fhpcIII/pylib

[traine@login00 ~]$ it_css
[(it_css:traine)@login00 traine]$ cdwork
[(it_css:traine)@login00 traine]$ pwd
/home/work/it_css/traine
[(it_css:traine)@login00 traine]$ cp -r ~trainf/fhpcIII ./
[(it_css:traine)@login00 traine]$ cd fhpcIII/pylib
[(it_css:traine)@login00 clib]$ pwd
/home/work/it_css/traine/fhpcIII/pylib
[(it_css:traine)@login00 pylib]$ ls
dataFile.csv serial-python3.qs unitConvert.py

Batch job script: Part I
[(it_css:traine)@login00 clib]$ cat serial-python3.qs
#!/bin/bash -l
#
Sections of this script that can/should be edited are delimited by a
[EDIT] tag. All Slurm job options are denoted by a line that starts
with "#SBATCH " followed by flags that would otherwise be passed on
the command line. Slurm job options can easily be disabled in a
script by inserting a space in the prefix, e.g. "# SLURM " and
reenabled by deleting that space.
#
This is a batch job template for a program using a single processor
core/thread (a serial job).
#
#SBATCH --ntasks=1
#
[EDIT] All jobs have memory limits imposed. The default is 1 GB per
CPU allocated to the job. The default can be overridden either
with a per-node value (--mem) or a per-CPU value (--mem-per-cpu)
with unitless values in MB and the suffixes K|M|G|T denoting
kibi, mebi, gibi, and tebibyte units. Delete the space between
the "#" and the word SBATCH to enable one of them:
#
SBATCH --mem=8G
SBATCH --mem-per-cpu=1024M

Batch job script: Part II
[EDIT] Each node in the cluster has local scratch disk of some sort
that is always mounted as /tmp. Per-job and per-step temporary
directories are automatically created and destroyed by the
auto_tmpdir plugin in the /tmp filesystem. To ensure a minimum
amount of free space on /tmp when your job is scheduled, the
--tmp option can be used; it has the same behavior unit-wise as
--mem and --mem-per-cpu. Delete the space between the "#" and
the
word SBATCH to enable:
#
SBATCH --tmp=24G
#
[EDIT] It can be helpful to provide a descriptive (terse) name for
the job (be sure to use quotes if there's whitespace in the
name):
#
#SBATCH --job-name=serial_python3_job
#
[EDIT] The partition determines which nodes can be used and with what
maximum runtime limits, etc. Partition limits can be displayed
with the "sinfo --summarize" command.
#
#SBATCH --partition=devel
#
To run with priority-access to resources owned by your workgroup,
use the "_workgroup_" partition:
SBATCH --partition=_workgroup_

Batch job script: Part III
[EDIT] The maximum runtime for the job; a single integer is interpreted
as a number of minutes, otherwise use the format
#
d-hh:mm:ss
#
Jobs default to the default runtime limit of the chosen partition
if this option is omitted.
#
#SBATCH --time=0-02:00:00
#
You can also provide a minimum acceptable runtime so the scheduler
may be able to run your job sooner. If you do not provide a
value, it will be set to match the maximum runtime limit (discussed
above).
#
SBATCH --time-min=0-01:00:00
#
[EDIT] By default SLURM sends the job's stdout to the file "slurm-<jobid>.out"
and the job's stderr to the file "slurm-<jobid>.err" in the working
directory. Override by deleting the space between the "#" and the
word SBATCH on the following lines; see the man page for sbatch for
special tokens that can be used in the filenames:
#
SBATCH --output=%x-%j.out
SBATCH --error=%x-%j.out

Batch job script: Part IV

[EDIT] Slurm can send emails to you when a job transitions through
various
states: NONE, BEGIN, END, FAIL, REQUEUE, ALL, TIME_LIMIT,
TIME_LIMIT_50, TIME_LIMIT_80, TIME_LIMIT_90, ARRAY_TASKS. One or
more
of these flags (separated by commas) are permissible for the
--mail-type flag. You MUST set your mail address using
--mail-user
for messages to get off the cluster.
#
SBATCH --mail-user='my_address@udel.edu'
SBATCH --mail-type=END,FAIL,TIME_LIMIT_90
#
[EDIT] By default we DO NOT want to send the job submission environment
to the compute node when the job runs.
#
#SBATCH --export=NONE
#

Batch job script: Part V

#
[EDIT] Define a Bash function and set this variable to its
name if you want to have the function called when the
job terminates (time limit reached or job preempted).
#
PLEASE NOTE: when using a signal-handling Bash
function, any long-running commands should be prefixed
with UD_EXEC, e.g.
#
UD_EXEC mpirun vasp
#
If you do not use UD_EXEC, then the signals will not
get handled by the job shell!
#
#job_exit_handler() {
Copy all our output files back to the original job directory:
cp * "$SLURM_SUBMIT_DIR"
#
Don't call again on EXIT signal, please:
trap - EXIT
exit 0
#}
#export UD_JOB_EXIT_FN=job_exit_handler

Batch job script: Part VI
[EDIT] By default, the function defined above is registered
to respond to the SIGTERM signal that Slurm sends
when jobs reach their runtime limit or are
preempted. You can override with your own list of
signals using this variable -- as in this example,
which registers for both SIGTERM and the EXIT
pseudo-signal that Bash sends when the script ends.
In effect, no matter whether the job is terminated
or completes, the UD_JOB_EXIT_FN will be called.
#
#export UD_JOB_EXIT_FN_SIGNALS="SIGTERM EXIT"

#
If you have VALET packages to load into the job environment,
uncomment and edit the following line:
#
#vpkg_require intel/2019
vpkg_require python/3.6.5

Batch job script: Part VII

#
Do general job environment setup:
#
. /opt/shared/slurm/templates/libexec/common.sh

#
[EDIT] Add your script statements hereafter, or execute a script or
program
using the srun command.
#
#srun date

echo ""
echo "---- Run Test ----"
python3 ./unitConvert.py
#Adding 20 second pause, so job can be seen in monitoring step.
sleep 20s
echo "---- End of Test ----"

sbatch : Submitting a batch job.

Job Submission

[(it_css:traine)@login00 pylib]$ sbatch serial-python3.qs
Submitted batch job 7585812
[(it_css:traine)@login00 pylib]$

Check the status of queued jobs.

squeue -j <job_id>

● Pending

● Running

Job Monitoring

[(it_css:traine)@login00 pylib]$ squeue -j 7585812
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 7585812 devel serial_j traine PD 0:00 1 (None)

[(it_css:traine)@login00 pylib]$ squeue -j 7585812
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 7585812 devel serial_j traine R 0:01 1 r00n56

More monitoring

sstat -a <job_id>
● To check the status information of a running

job/step.

scontrol show job <job_id>
● For monitoring and modifying queued jobs, as

well as holding and releasing jobs

More monitoring

sacct -j <job_id>
● To check the information about a job from

history (i.e. a job that has already completed).

scancel <job_id>
● Removes pending and running jobs from the

queue

Batch Run output

[(it_css:traine)@login00 pylib]$ tail slurm-7585812.out
	Temperature (degC): 22.6		Wind Speed (m/s): 21.2		Pressure (Pa): 102290.0	
	Temperature (degC): 22.5		Wind Speed (m/s): 21.3		Pressure (Pa): 102280.0	
	Temperature (degC): 22.5		Wind Speed (m/s): 21.5		Pressure (Pa): 102270.0	
==
Total Amount of Conversions: 26151
Total Amount of Rows: 8717 seconds
==
Total Run Time: 0.0328888893127
End of the python script!
--- End of Test ----

Look at batch run output

Local (non-standard)
Commands

Local Commands

UD’s IT status commands can be found at:
/opt/shared/slurm/add-ons/bin
/usr/local/bin

These are "non-standard" commands that are
specific to Caviness; UD community clusters.

Local Commands

hpc-user-info -a username
hpc-user-info -h

Display information about username

[(it_css:traine)@login00 ~]$ hpc-user-info -a traine
full-name = Student Training
last-name = Student Training
home-directory = /home/1201
email-address = traine@udel.edu
clusters = Farber, Caviness
[(it_css:traine)@login01 ~]$

Local Commands

sjobs -u username
sjobs -h or --help

Displays jobs status in more compact form.

[(it_css:traine)@login00 ~]$ sjobs -u traine
 JOBID USER STATE JOBNAME GROUP NCPUS NNODES NTASKS
------- ----- ------- ---------- ------ ----- ------ ------
7546246 traine RUNNING serial_job it_css 1 1 1

Local Commands

sworkgroup --workgroup <investing_entity>
sworkgroup -h or --help

Displays the partitions and resources that a
workgroup have access to on the Caviness cluster.

[(it_css:traine)@login00 ~]$ sworkgroup --workgroup it_css
Partition

devel
it_css
reserved
standard
vnc

Local Commands
qhost -u <user_name>
qhost -h or --help

A wrapper written for Caviness to consolidate the
information collected from Slurm commands and
joined together to display the host/node information.
[(it_css:traine)@login00 ~]$ qhost -u traine
HOSTNAME ARCH NCPU NSOC NCOR NTHR NLOAD MEMTOT MEMUSE SWAPTO SWAPUS

r00g00 E5-2695v4 72 2 72 72 0.00 124.0G 0.0M 0.0 0.0
r00g01 E5-2695v4 36 2 36 36 1.00 124.0G 8.0G 0.0 0.0
r00g02 E5-2695v4 36 2 36 36 0.06 250.0G 4.0G 0.0 0.0
r00g03 E5-2695v4 36 2 36 36 0.83 502.0G 30.0G 0.0 0.0
r00g04 E5-2695v4 36 2 36 36 0.06 250.0G 4.0G 0.0 0.0
...
...

Local Commands

squota -g <investing_entity>
squota -h or --help

Displays the current utilization of guaranteed
(purchased) resources for a workgroup.

[(it_css:traine)@login00 ~]$ squota
resource used limit pct
~~~~~~~~~~~~~ ~~~~ ~~~~~ ~~~~
cpu          0 72 0.0%
gres/gpu:p100 0 1 0.0%
[(it_css:traine)@login00 ~]$ squota -g it_css
resource  used limit  pct
~~~~~~~~~~~~~ ~~~~ ~~~~~ ~~~~
cpu 0 72 0.0%
gres/gpu:p100 0 1 0.0%

Local Commands

qstatgrp
qstatgrp -g <investing_entity>
qstatgrp -h or --help

Displays the current utilization of resources within
a workgroup.

[(it_css:traine)@login00 ~]$ qstatgrp -g it_css
PARTITION NODES CPUS MAX MEM MAX CPUS
--
vnc 1 4
- TOTAL 1 4

Local Commands
spreempted
spreempted --jobid <job-id>{,<job-id>..},
-j <job-id>{,<job-id>..}

Due to a certain level of inconsistency in Slurm's error
logging, preempted jobs are notified as FAILED which
leads to jobs to immediately exit rather than waiting for a
grace period.

[(it_css:traine)@login00 ~]$ spreempted -j 410289
preempted, did not reach grace period limit

Need Help?

● Submit a Research Computing Help
Request form

● Phone: (302) 831-6000

Please select High Performance Computing as
the Problem Type, and specify Caviness in the
details of your problem in the Description when
submitting your request or calling IT Support
Center.

https://services.udel.edu/TDClient/32/Portal/Requests/TicketRequests/NewForm?ID=D5ZRIgFlfLw_
https://services.udel.edu/TDClient/32/Portal/Requests/TicketRequests/NewForm?ID=D5ZRIgFlfLw_

