Psychometric Properties of Health & Self-Care

Linda S. Gottfredson
University of Delaware
Rosalind Arden
Kings College, London

International Society for Intelligence Research
Amsterdam
December 13, 2007

Calculus of Inconspicuous Effects: Essential for Theory Testing

Small but consistent influences add & compound

- Essential for Fitness and System-Integrity theories of g & health (#2 above), where g signals overall physiological fitness

Vietnam-Era Veterans Data

- Study mandated by US Congress: Did defoliants affect health of Vietnam veterans?
- Born ~1950
- Inducted ~1970 (N ~18,000)
- Telephone interview ~1985 (N ~14,000)
- Physical/mental exam ~1985 (N ~4,500)
- Mortality follow-up 2000, age ~50
- Can replicate by race (~3,500 white, ~450 black)

% of Whites and Blacks by g Level

Ns = 3,417 (whites), 467 (blacks)

Typical Reliabilities for Measures

		r (intraclass)	kappa
Lab assays	Hematology Immunlogy Serological	.9+	.9+
Hearing, sight			.89
Lung function		.69+	
Abnormal chest X-ray			.6
Clinical exams			
dermatology	Birthmarks, warts, acne Alopecea, folliculitis, drug tracks		.25
• general exam	Height Weight, pulse Blood pressure (arm) (ankle) Retinal Mouth-dental, throat Neoplasms, inflammations Abnormal heart sounds	.99 .7 .56 .17	.4 .2 .2 .05
skin hypersensitivity		.36	
• reflex	Knee, plantar		.13

To be explained:

Mortality 1985-2000, by *g* Level and Race (% and Odds Ratios)

Potential confound:

Mortality 1985-2000, by Income Level and Race (% and Odds Ratios)

Test Case: Peripheral Nerve Conduction Studies (N ~ 4,500)

- 3 sensory amplitude (μV)
 - Median (arm); ulnar (arm); sural (leg)
- 4 sensory velocity (m/sec)
 - Median-distal,(arm); median proximal (arm),
 ulnar (arm), sural (leg)
- 2 motor amplitude (μV)
 - Median (arm), peroneal (leg)
- 2 motor velocity (m/sec)
 - Median (arm), peroneal (leg)

Added z scores to create SENSORY-7 scale

Added z scores to create MOTOR-4 scale

Same Results for Whites & Blacks

Zero-Order Correlations (concurrent)					
		Whites			
Blacks ^b	Sensory-7	Motor-4	g	Income	
Sensory-7		.46	.16	.10	
Motor-4	.47		.06	.08	
g	.16	.06		.35	
Income	.11	.03	.34		

Regressions (concurrent)					
Predicting g ^a					
	Sensory-7 (β)	Motor-4 (β)	Multiple R	(N)	
Whites	.16	02	.15	(3,417)	
Blacks	.14	01	.14	(457)	
Total	.21	07	.19	(3,874)	
Prediction carried by Sensory; Motor acts like a slight suppressor					
Predicting Sensory-7					
	g (β)	Income (β)	Multiple R	(N)	
Whites	.157		.16	(3347)	
	.141	.045	.16	(3347)	
Blacks	.159		.16	(457)	
	.158	ns	.16	(457)	
_	Prediction c	arried by g ; Inc	ome adds virtu	ally nothing	

 $^{{}^{\}mathrm{a}}$ Results same for g (General Technical) score at induction.

Sensory Nerve Conduction, by g Level: Mean Standardized Velocity and Amplitude (7 tests)

<u>Sensory</u> and <u>Motor</u> Nerve Conduction, by *g* Level: Mean Standardized Velocity and Amplitude (7 & 4 tests)

Sensory Nerve Conduction, by Race and *g* Level: Mean Standardized Velocity and Amplitude (7 tests)

Ns = 3,417 (whites), 467 (blacks) 1.5 1 Nerve conduction (z) 0.5 0 -0.5 Whites-S Blacks-S -1 -1.5 -2 -2.5 -3 < -2 0-1 -2 to -1 -1 to 0 > 1 SD g categories (z scores)

<u>Sensory</u> and <u>Motor</u> Nerve Conduction, by Race and g Level: Mean Standardized Velocity and Amplitude (7 & 4 tests)

Different Means for Whites & Blacks

Zero-Order Correlations (concurrent)					
		Whites			
Blacks ^b	Sensory-7	Motor-4	g	Income	W-B (<i>z</i>)
Sensory-7		.46	.16	.10	1.32
Motor-4	.47		.06	.08	60
g	.16	.06		.35	1.02
Income	.11	.03	.34		

% of Whites and Blacks by Income Level

Ns = 3,348 (whites), 458 (blacks)

<u>Sensory</u> Nerve Conduction, by Race & Income: Mean Standardized Velocity and Amplitude (7 tests)

Ns = 3,417 (whites), 467 (blacks)

Income category

<u>Sensory</u> and <u>Motor</u> Nerve Conduction, by Race & Income: Mean Standardized Velocity and Amplitude (7 & 4 tests)

Ns = 3,417 (whites), 467 (blacks)

<u>Sensory</u> and <u>Motor</u> Nerve Conduction, by Race and *g* Level: Mean Standardized Velocity and Amplitude (7 & 4 tests)

Effect Sizes for 3 Sensory Nerve Amplitudes

Effect Sizes for 2 Motor Nerve Amplitudes

Effect Sizes for Ulnar Sensory Nerve Velocity

Tentative Conclusions: Overall "Fitness"

- Peripheral nerve conduction correlated with g (\sim .20)
 - Body is vast information processing system
- g relates mostly to sensory, not motor conduction
 - Bodily input, not output
- Races differ in sensory-motor profiles
 - Whites higher in sensory, lower in motor (at all g levels)
 - Same known for reaction time: decision vs. movement time
 - Major race difference here was in <u>ulnar</u> conduction (wrist-hand)
- Evolutionary tradeoff between sensory and motor?
 - More consistent with Genetic-Fitness than System-Integrity theory of g as signal of physiological fitness

Thank you.