Inhibition of Proline Racemase

Proline racemase, a bacterial enzyme, catalyzes the interconversion of D and L-proline. The K_m values for D and L-proline are 2.3 mM and 3.8 mM respectively. The maximal velocity is 8 x 10^{-3} mol/mg per min for L-proline. Various compounds have been tested as inhibitors of the enzymes. Their structure and extent of inhibition are indicated below.

Inhibitor	Concentration [M]	Percent
		Inhibition*
H e coo NH Pipecolate	1.1 x 10 ⁻¹	18
Pyrrole-2-carboxylate	5.7 x 10 ⁻² 3.6 x 10 ⁻⁴	98 50
COO S-thiophenecarboxylate	5.7 x 10 ⁻²	73
2-furoate	5.7 x 10 ⁻²	11
H © COO tetrahydrofuroate	1.1 x 10 ⁻¹	10
H e coo	5.7 x 10 ⁻² M Present in all of the inhibitor reactions	0

- 1. Write the reaction catalyzed by proline racemase. What is the equilibrium constant for this reaction? What would be a reasonable structure for the transition state?
- 2. Using graph paper draw a Lineweaver-Burk Plot (1/v vs. 1/[S]) for the uninhibited enzyme. Label the axes appropriately. On the same sheet draw the plot expected when 3.6×10^{-4} M pyrrole-2-carboxylate is present as a competitive inhibitor.
- 3. Calculate the turnover number for proline racemase. The enzyme is composed of two identical subunits each with a molecular weight of 38,000 daltons.
- 4. Rank the five compounds listed above in order of their inhibitory action. Explain why the best inhibitor has a K_1 approximately 160 times lower than the K_m values for proline.

Based on Cardinale & Abeles, <u>Biochemistry</u> 7:3970 (1968) Written by H. B. White