Carbohydrates

- Molecular formula has the form $\mathrm{C}_{\mathrm{x}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{y}}$ (a "hydrate of carbon")
- Monosaccharides ("simple sugars) are the basic building blocks of carbohydrates. They have a single contiguous chain of carbon atoms and a formula of $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{\mathrm{n}}$.
- One common way of depicting sugars is with Fischer projection. If a carbonyl is present, that end is on the top end of the Fischer projection:

glucose

Carbohydrate Stereochemistry

- D- vs. L- sugars: if the hydroxyl nearest the $-\mathrm{CH}_{2} \mathrm{OH}$ group in the Fischer projection is on the right, the structure corresponds to a D-sugar. If it's on the left, the structure represents an L-sugar.
- Most sugars in nature are D-sugars.
- D- and L- here do NOT correspond to rotation of planepolarized light ($d / / \mathrm{or}+/-$).

D-glucose

L-glucose

- All other stereochemistry relative to the bottom-most -CHOH group (the one that determines D- vs. L-) is indicated by the name of the sugar.

D-allose

D-mannose

D-altrose
D-glucose

D-idose
D-galactose

D-raose

D-talose

Carbohydrate Terminology

- Aldose/Ketose: If the sugar is an aldehyde, it is an aldose. If it is a ketone, it is a ketose.
- The number of carbons in a sugar can be described by using a numerical prefix followed by -ose: e.g. triose, tetrose, pentose, hexose for $3,4,5$, and 6 carbons respectively.
- These can be combined by using "aldo-" or "keto-" as a prefix: ketohexose, aldopentose, etc.

-Also try problem 22.8 a, b, d

Sugar Hemiacetals

- Sugars are at equilibrium between open-chain and cyclic hemiacetal forms, favouring the latter.

α - and β - Anomers

- Anomers refer to two sugars that differ only by the stereochemistry at the carbon which is the carbonyl carbon in the open-chain form (the "anomeric carbon").

Chair structure: $\alpha-\mathrm{OH}$ axial, $\beta-\mathrm{OH}$ equatorial

α-D-glucopyranose

β-D-glucopyranose
"Haworth" structure:
α-down, β-up

α - and β - anomers of cyclic hemiacetals interconvert via the open-chain aldehyde.

See text, p. 1236.

Glycosides

- A monosaccharide hemiacetal can react with an alcohol to form an acetal. Such acetals are called glycosides, and the new $\mathrm{C}-\mathrm{O}$ bond is called a glycosidic bond.

-When the alcohol is another monosaccharide, formation of a glycoside between the two gives a disaccharide:

-The remaining aldehyde/hemiacetal carbon of maltose can in theory be reduced to a $-\mathrm{CH}_{2} \mathrm{OH}$ group (e.g. with NaBH_{4}). Such sugars are called reducing sugars.
-Sucrose (table sugar) is a disaccharide of glucose and fructose:

-Because both sugars have made a glycosidic linkage between their anomeric carbons, there is no hemiacetal functionality remaining. Sucrose is an example of a nonreducing sugar.

Polysaccharides

- Carbohydrates with a known, small number of subunits can be referred to as disaccharides, trisaccharides, etc.
- The term oligosaccharide refers to sugars constructed from ~3-10 monosaccharide units. Larger molecules are referred to as polysaccharides.
- Polysaccharides include cellulose, starches such as amylose and amylopectin (used by plants to store glucose) and glycogen (used by animals and humans to store glucose).

Cellulose and Amylose

- The only difference between cellulose (which humans can't digest) and amylose (a starch which we can digest) is the glycosidic linkage between glucose subunits.

($\alpha-1,4$ '-glycosidic linkage)
spaghetti

cellulose
($\beta-1,4$ ' linkage)
The box spaghetti comes in

High-Fructose Corn Syrup (HFCS)

- Recall sucrose is a disaccharide of glucose and fructose.
- Fructose is over twice as sweet as glucose.
- Corn syrup is made from enzymatic breakdown of corn starch to glucose and glucose-containing oligosaccharides.
- Although corn syrup contains no fructose, its glucose can be converted enzymatically to fructose. The most common grades of HFCS are roughly 1:1 glucose:fructose. A 45:55 ratio has the same sweetness as sucrose, and is commonly used in soft drinks.

Glucose and fructose are tautomers of each other that can interconvert with base via the enol, as well as via enzymatic isomerization:

Is HFCS Unhealthy?

- Short answer: about as unhealthy as sucrose. HFCS is essentially what our body produces when it hydrolyzes sucrose to glucose and fructose. Fructose is also naturally found in many foods, including fruits and honey. Carbohydrates in general are sources of calories, and HFCS added to processed foods will increase their caloric content.
- Longer answer: there may be reasons for HFCS to have a higher impact on obesity and diabetes, but nothing conclusive has been found. The main problem with HFCS is that it makes it easy to add calories to our diet.

Natural Sweetners

- Some natural sweetners are also high in fructose: -honey: ca. 46% fructose by dry weight (37% glucose) -agave nectar: varies by producer. One source cites 92% fructose, 8% glucose.
- Stevia was not allowed for general use in the US because of concerns with carcinogenicity, male infertility, and metabolic effects. In 2008, the FDA ruled Cargill's Truvia ${ }^{\text {TM }}$ to be Generally Recognized As Safe.
http://www.foodproductdesign.com/articles/2001/02/food-product-
design-february-2001--sweetners-for.aspx
"Truvia ${ }^{\text {TM }}$ natural sweetener is made from rebiana, the best tasting part of the stevia leaf, erythritol and natural flavors."

Rebiana = rebaudioside A :

"Erythritol sounds like a chemical but it's actually a naturally fermented sugar alcohol...made by a culture in a process like making yogurt from milk"

erythritol
"Natural flavors are used to bring out the best of our natural sweetness, like pepper or salt would be used to heighten the taste of a meal."
www.Truvia.com

Splenda ${ }^{\mathrm{TM}}$:

The Rise of Corn

- Corn is the largest grain crop in the world by mass (780 million tonnes in 2007).
- Corn has the highest yields of any grain (5 tonnes/hectare).
- Corn can be used as a source of fats and protein as well as carbohydrate
- Corn is a fungible commodity

"Corn Chips With Legs"

- Corn is one of the few crops that use C4 carbon fixation for photosynthesis. Most plants are C3, but suffer in hotter and drier climates because of an undesirable side-reaction called photorespiration.
- C 4 plants take up more ${ }^{13} \mathrm{C}$ from the atmosphere than C 3 plants do. Measuring the relative amount of ${ }^{13} \mathrm{C}$ in a food, animal or person correlates to how much of that carbon originally came from corn.
"When you look at isotope ratios, we North Americans look like corn chips with legs."
--Todd Dawson. From The Omnivore's Dilemna by M. Pollan.

Example: McDonald's

- Pollan had a McDonald's meal analyzed by mass spectrometry. The percent of carbon in each foodstuff that was derived from corn was then calculated:

Soda: 100\%
Milkshake: 78\%
Salad Dressing: 65\%
Chicken Nuggets: 56\%
Cheeseburger: 52\%
French fries: 23\%

Corn as a Raw Material

Corn can be refined or chemically modified into a variety of foodstuffs and materials:

- Carbohydrates (corn syrup, starch, HFCS, corn meal)
- Amino acids (from gluten and from fermentation)
- Fats and oils (corn oil, margarine, shortening)
- Ethanol
- Food additives (vitamins, fiber, xanthan gum, citric acid, MSG)
- Plastics

Less than 10% of the corn crop is used directly for human consumption! The bulk of it is used for animal feed, ethanol production and industrial materials.
https://docs.google.com/viewer?url=http://ncga.com/files/pdf/CornUses
Poster.pdf
http://www.ers.usda.gov/AmberWaves/February08/Features/CornPrices.htm

Fats and Oils

Recall that a fat is a triester of glycerol: a triacylglyceride

Saturated fats have no $\mathrm{C}=\mathrm{C}$ double bonds in the fatty acid sidechains

Natural unsaturated fatty acids contain a cis-double bond.

Polyunsaturated fatty acids contain multiple double bonds.

Hydrogenated Vegetable Oil

- Saturated fats tend to be solids at room temperature. Unsaturated fats have lower melting points and tend to be oils at room temperature. This is because the "kink" introduced in a fatty acid chain by the cis-double bond causes the molecules to pack less tightly together.
- Vegetable oils can be partially or completely hydrogenated using H_{2} and a metal catalyst to give a fat with a certain desired consistency (e.g. margarine, shortening).

trans- Fats

- In the process of hydrogenation, some of the natural cis-fatty acid sidechains are converted to unnatural trans-fatty acids:
 $\downarrow \begin{aligned} & \stackrel{\mathrm{H}_{2}}{\text { catalyst }} \text {, }\end{aligned}$

-Research is revealing that these trans-fats, which previously were counted as "unsaturated fat" on nutritional labels, are as bad as saturated fats, or even worse for your health. Nutritional labels now show trans-fats as a separate category.
"In clinical studies, TFA or hydrogenated fats tended to raise total blood cholesterol levels. Some scientists believe they raise cholesterol levels more than saturated fats. TFA also tend to raise LDL (bad) cholesterol and lower HDL (good) cholesterol when used instead of cis fatty acids or natural oils. These changes may increase the risk of heart disease.

Because there are no standard methods, it's difficult to estimate the TFA content of food items. It's also difficult to estimate intake, especially long-term intake.... As of January 2006, the FDA requires trans fat to be listed on the nutrition label. Although changes in labeling are important, they aren't enough. Many fast foods contain high levels of TFA. There are no labeling regulations for fast food, and it can even be advertised as cholesterol-free and cooked in vegetable oil. Eating one doughnut at breakfast (3.2 g of TFA) and a large order of french fries at lunch (6.8 g of TFA) add 10 grams of TFA to one's diet, so the lack of regulations for labeling restaurant foods can be harmful to your health"
-American Heart Association (www.americanheart.org)
"The American Heart Association's Nutrition Committee strongly advises these fat guidelines for healthy Americans over age 2:
-Limit total fat intake to less than 25-35 percent of your total calories each day;
-Limit saturated fat intake to less than 7 percent of total daily calories;
-Limit trans fat intake to less than 1 percent of total daily calories;
-The remaining fat should come from sources of monounsaturated and polyunsaturated fats such as nuts, seeds, fish and vegetable oils; and
-Limit cholesterol intake to less than 300 mg per day, for most people. If you have coronary heart disease or your LDL cholesterol level is $100 \mathrm{mg} / \mathrm{dL}$ or greater, limit your cholesterol intake to less than 200 milligrams a day.

For example, a sedentary female who is 31-50 years old needs about 2,000 calories each day. Therefore, she should consume less than 16 g saturated fat, less than 2 g trans fat and between 50 and 70 grams of total fat each day (with most fats coming from sources of polyunsaturated and monounsaturated fats, such as fish, nuts, seeds and vegetable oils)."
-American Heart Association (www.americanheart.org)

Meat Production

- An abundance of inexpensive crops such as corn and soy has allowed the production of inexpensive meat (including fish!)
- Because livestock are higher up the food chain, a large amount of our crops are directed towards meat production instead of human consumption. For example, 55% of the U.S. corn crop is used in animal feed.
- Beef production is particularly inefficient at converting feed to protein.

feed conversion (kg of feed/kg of live weight)	0.7	3.8	2.3	5.9	12.7
feed conversion (kg of feed/kg of edible weight)	0.7	4.2	4.2	10.7	31.7
protein content (\% of edible weight)	3.5	13	20	14	15
milk	eggs chicken				
protein conversion efficiency (\%)	40	30	25	13	5

Amino Acids

- Amino acids are the basic building blocks of proteins. A protein is a polymer made from amino acids connected primarily by amide linkages.

- There are 20 different amino acids. 9 of these cannot by synthesized by humans and must be obtained in the diet. These are called essential amino acids.

Aspartame

- A methyl ester of the dipeptide Asp-Phe
- People with phenylketonuria (PKU) cannot metabolize phenylalanine, and have to avoid Aspartame

Complete Proteins

- Meat provides all the essential amino acids humans need-it is a complete protein.
- Most plant sources are deficient in one or more essential amino acids (exception: soy protein). For example, corn is low in lysine and tryptophan.
- However, different plant sources can be combined to provide a complete protein (e.g. rice and beans).
http://www.nlm.nih.gov/medlineplus/ency/article/002467.htm\#Food\ Sources

Agriculture’s Energy Cost

- Up to 20 percent of fossil fuel consumption in the U.S. is directed towards food production.
- Pollan gives the following estimates for fossil fuel consumption:
0.3 gal oil per bushel corn
$35-75$ gal oil per steer
- About $1 / 3$ of this energy is used to produce fertilizer alone.

The Omnivore's Dilemna by M. Pollan.

Nitrogen Fixation

- In nature, nitrogen gas is converted to other sources of plant-accessible nitrogen (nitrates, etc.) by bacteria (e.g. the symbiotic bacteria in legumes) and (to a much smaller extent) lightning. This conversion is called nitrogen fixation.
- Human agriculture requires more fixed nitrogen than nature provides. One researcher estimates that 2/5ths of the world's population would not exist were it not for synthetic fertilizer.

The Omnivore's Dilemna by M. Pollan.

The Haber Process

- The Haber Process is an energy-intensive method to convert nitrogen and hydrogen gases to ammonia, which can then be used directly or indirectly as fertilizer.
- $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
- High temperatures and pressures are required, as well as a source of hydrogen gas. All this requires a lot of energy.

Peak Phosphorous

- Phosphorous (as phospate), along with nitrogen and potassium, is a critical fertilizer component.
- Phosphate is currently obtained from mining.
- Over-fertilization and fertilizer runoff wastes this resource, while causing eutrophication (dead zones) in lakes and oceans.
- Some \{scientists\} estimate that there will not be sufficient phosphorus supplies from mining to meet agricultural demand within 30 to 40 years.
http://www.foreignpolicy.com/articles/2010/04/20/peak_phosphorus

Consequences of Productivity

- Abundance of corn/soy etc \rightarrow abundance of meat
- Highly productive farmers, plus gov't subsidies, mean that basic staples are cheap. Profit is in "value added" processed foods. People pay extra for features such as: convenience (microwavable entrees), taste (e.g. artificial flavours), entertainment value (kid's cereal).
- The ability to recombine refined carbs, proteins and fats into foodstuffs results in cheap, calorically-dense foods.
- The "inelasticity of consumer demand" (how much a person can eat) actually has some elasticity -the elastic waistband.

Walking a Dietary Minefield

Processed foods, plus cheap meat and dairy, encourage creating high-energy food that people will enjoy eating. Here are a few examples of foods that pack more calories and fat than you might expect.

Starbuck's Venti Java Chip Frappucino:
600 cal (23 g fat, 14 g sat'd, 0.5 g trans-)
$1 / 2 \mathrm{lb}$ lean meatloaf: $\quad 410$ cal (11 g fat, 4.4 g sat'd fat)
Starbuck's skim latte: 130 cal (0 g fat)

McDonald's Triple-Thick Chocolate Shake (32 oz):
1160 cal (27 g fat, 16 g sat'd, 2 g trans-)

Ruby Tuesday's Entrees, ca. 2007:
http://www.cspinet.org/nah/03_07/xtreme.pdf

Colossal Burger: 1,940 cal, 141 grams fat --"Maybe I should have the white meat chicken and steamed broccoli penne pasta? That sounds healthy..."

...2,060 cal, 128 g fat.

D'oh!

Uno's Pizza Skins Appetizer:

What's the catch?

PIZZA SKINS

Serving Size(g)	144g		
Calories	480	Calories from Fat 280	
\% Daily Value*, Calories:		2,000	2,500
Total Fat	319	48\%	39\%
Saturated Fat	9 g	45\%	36\%
Trans Fat	0 g		
Cholesterol	35 mg	12\%	12\%
Sodium	720 mg	30\%	30\%
Total Carbohydrates	399	13\%	10\%
Dietary Fiber	2 g	8\%	7\%
Sugars	2g		
Protein	13g		
Vitamin A 8\% • Vitamin C 6\% - Calcium 20\% • Iron 10\%			
*Percent Daily Values are based on 2,000 and 2,500 calorie diets. Your daily values may be higher or lower depending on your calorie needs: Calories: 2,000 2,500			
Total Fat	Less Than	65 g	80 g
Saturated Fat	Less Than	20 g	25g
Cholesterol	Less Than	300 mg	300 mg
Sodium	Less Than	$2,400 \mathrm{mg}$	$2,400 \mathrm{mg}$
Total Carbohydrate		300 g	375 g
Dietary Fiber		25g	30 g

2,400 cal, 155 g fat, 45 g saturated fat (over 2 days' worth)BEFORE your pizza even arrives!

Obesity Trends* Among U.S. Adults

 BRFSS, 1985(*BMI $\mathbf{2} \mathbf{3 0}$, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad<100 \square \quad 10 \%-14 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1986(*BMI $\mathbf{2} \mathbf{3 0}$, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad<100 \square \quad 10 \%-14 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1987
\square No Data $\square<10 \% \quad$ 10\%-14\%

Obesity Trends* Among U.S. Adults

 BRFSS, 1988(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad<100 \square \quad 10 \%-14 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1989(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad<100 \square \quad 10 \%-14 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1990(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad<100 \square \quad 10 \%-14 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1991(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square<100 \square \quad 10 \%-14 \quad 15 \%-19 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1992(*BMI $\mathbf{\geq}$ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square<100 \square \quad 10 \%-14 \quad 15 \%-19 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1993(*BMI $\mathbf{\geq}$ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad 100 \square \quad 10 \%-14 \quad 15 \%-19 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1994(*BMI $\mathbf{\geq}$ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square \quad 100 \square \quad 10 \%-14 \quad 15 \%-19 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1995(*BMI $\mathbf{\geq 3 0}$, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

Obesity Trends* Among U.S. Adults

 BRFSS, 1996(*BMI $\geq \mathbf{3 0}$, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

Obesity Trends* Among U.S. Adults

 BRFSS, 1997(*BMI $\mathbf{\geq 3 0}$, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

	No Data $\square<10 \%$	$10 \%-14$
$\geq 20 \%$		

Obesity Trends* Among U.S. Adults

 BRFSS, 1998(*BMI $\geq \mathbf{3 0}$, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 1999(*BMI $\mathbf{2} \mathbf{3 0}$, or $\boldsymbol{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square \%$

Obesity Trends* Among U.S. Adults BRFSS, 2000
(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 2001(*BMI $\mathbf{2} \mathbf{3 0}$, or $\boldsymbol{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square 0 \quad 200 \square 4 \% \quad \geq 25 \%$

Obesity Trends* Among U.S. Adults BRFSS, 2002

(*BMI ≥ 30, or $\mathbf{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square \% \quad 200 \square 4 \% \quad \geq 25 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 2003(*BMI $\mathbf{2} \mathbf{3 0}$, or $\boldsymbol{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square \% \quad 200 \square 4 \% \quad \geq 25 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 2004(*BMI $\mathbf{2} \mathbf{3 0}$, or $\boldsymbol{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<10 \% \quad 10 \%-14 \quad 15 \%-\square \% \quad 200 \square 4 \% \quad \geq 25 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 2005(*BMI $\mathbf{2} \mathbf{3 0}$, or $\boldsymbol{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

\square No Data $\square<100 \square 10 \%-1 \square \quad 15 \%-\square \% \quad 200 \square 4 \% \quad 25 \quad 29 \%$

Obesity Trends* Among U.S. Adults

 BRFSS, 2006(*BMI $\mathbf{2} \mathbf{3 0}$, or $\boldsymbol{\sim} \mathbf{3 0}$ lbs. overweight for 5' 4" person)

Obesity Trends* Among U.S. Adults

 BRFSS, 2007(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

Obesity Trends* Among U.S. Adults

 BRFSS, 2008(*BMI $\mathbf{\geq}$ 30, or ~ 30 lbs. overweight for 5' 4" person)

\square No Data $\square<100 \square 10 \%-1 \square \quad 15 \%-\square \% \quad 200 \square 4 \% \quad 25 \quad 29 \%$

Obesity Trends* Among U.S. Adults BRFSS, 1990, 1999, 2008

(*BMI ≥ 30, or about 30 lbs. overweight for 5'4's person)

\square No Data $\square<10 \% \square 10 \%-14 \quad 15 \%-\square \% \quad 20 \%$ 4\% $\quad 25 \quad 29 \% \quad 30 \%$

Pollan's Three Guidelines

- In his book In Defense of Food, Michael Pollan proposes three guidelines for healthy eating:
"Eat food. Not too much. Mostly plants"

"Eat Food"

- Ingredients for homemade bread: flour, water, yeast, salt.
- Ingredients for Sara Lee's Soft \& Smooth Whole Grain White Bread: Enriched bleached flour [wheat flour, malted barley flour, niacin, iron, thiamin mononitrate (vitamin B_{1}), riboflavin (vitamin B_{2}), folic acid], water, whole grains [whole wheat flour, brown rice flour (rice flour, rice bran)], high fructose corn syrup, whey, wheat gluten, yeast, cellulose. Contains 2% or less of the each of the following: honey, calcium sulfate, vegetable oil (soybean and/or cottonseed oils), salt, butter (cream, salt), dough conditioners (may contain one or more of the following: mono-and diglycerides, ethoxylated mono- and diglycerides, ascorbic acid, enzymes, azodicarbonamide), guar gum, calcium propionate (preservative), distilled vinegar, yeast nutrients (monocalcium phosphate, calcium sulfate, ammonium sulfate), corn starch, natural flavor, beta-carotene (color), vitamin D_{3}, soy lecithin, soy flour.

"Not Too Much"

The amount of food that constitutes a "portion" may surprise you. For example:

- Chicken: 3 oz . (about the size of a deck of cards)
- Rice: $1 / 2$ cup cooked, or $1 / 4$ cup uncooked (the size of a lightbulb)
- Almonds: $1 / 4$ cup (the size of a golf ball; about 12 almonds)

"Mostly Plants"

- Thomas Jefferson described meat as "a condiment for the vegetables which constitute my principal diet."
- Consider buying smaller amounts of higher-quality meat (free-range, grass-fed, cage-free, sustainably fished). However, check packaging claims.
- The Monterey Bay Aquarium has a Seafood Watch program that guides you towards healthy seafood from well-managed fisheries
- Check out farmers markets and get to know local food producers.
http://www.monticello.org/reports/life/vegetarian.html

Learn to Cook

Advantages of preparing your own food from scratch:

- You know what the ingredients are, and how much.
- You control the portion size, and whether extra fats or carbohydrates are used.
- You can save money by doing the "processing" yourself
- When you select a purchase, you're voting with your dollars. Increased demand for food alternatives (e.g. organic, sustainably-farmed, locally-grown, humanelyraised, grass-fed, vegetarian) prompts the food industry to provide more of those options.

