MUST KNOW pKa TABLE

(every organic chemist should know these)

compound	pKa (water)	pKa (DMSO)
tBu-H	53	
Me-H	48	56
Ph-H	43	
$PhCH_3$	41	43
H_2	~36	
iPr ₂ N-H		36 (THF)
NH_3	38	41
Ö		
to o	24.3	30.3
^t BuO ^{CH} 3 (ester)		
Q		
	~20	26.5
Me´ CH ₃ (ketone)		
iPrOH	16.5	27.9
H_2O	15.7	32
Et₃N-H ⁺	10.8	9.0
Ö		
	4.8	12.3
Me´ `OH (carboxylic acid)		
H_3O^{\dagger}	– 1.7	
HCI	-8.0	1.8

Recall:

$$pKa = -log(Ka)$$

the smaller the number, the more acidic

also pKa' is the acidity of the conjugate acid