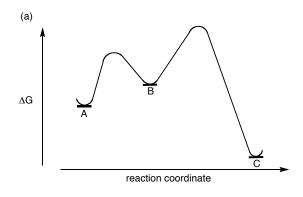
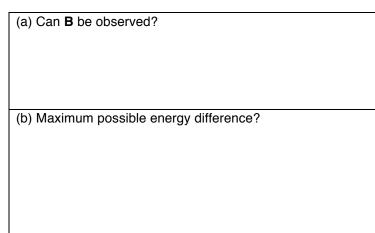
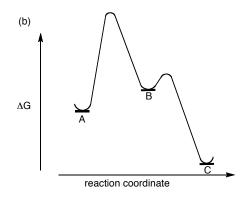
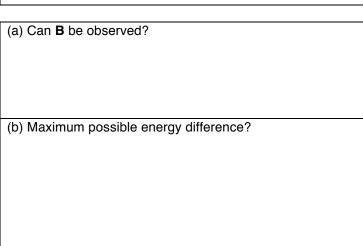
Name:	


CHEM 633: Advanced Organic Chem: Physical


Problem Set 3 Due 11/20/16


Please do not look up references until after you turn in the problem set unless otherwise noted.

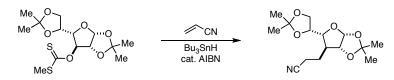

For the following problems, please use Excel (or another graphing program), when necessary. Please submit your graphs with your problem set.

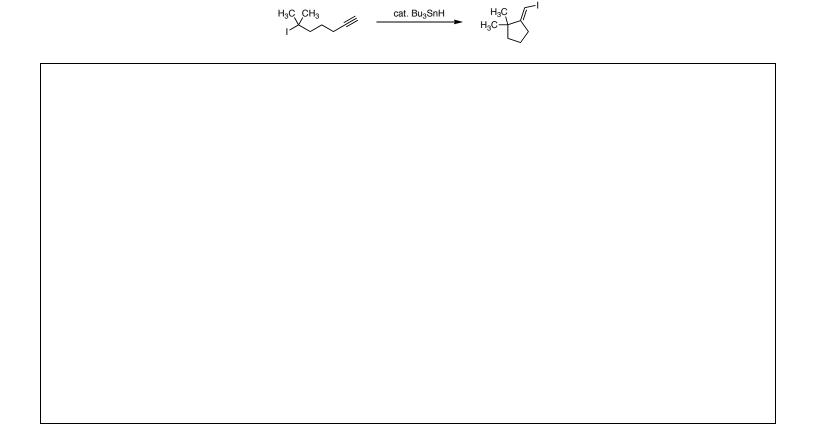
- 1. Consider the following theoretical reaction coordinate diagrams, describing the transformation of starting material **A** into product **C** via intermediate **B**. For each reaction coordinate diagram, please answer the following questions:
- (a) Is there a possibility that intermediate **B** may be observable using standard spectroscopic methods, such as NMR spectroscopy?
- (b) If there is the possibility that **B** may be observable, what is the maximum possible energy difference between **A** and **B** to allow observation of **B** by NMR spectroscopy? Please explain your reasoning.

	Temp (K)	k (s ⁻¹)	
	469.1	0.075 x 10 ⁻³	
		2.875 x 10 ⁻³	
	469.4	3.021 x 10 ⁻³	
$\bigcirc \bigcirc $	473.7	3.838×10^{-3}	
	427.7	0.120×10^{-3}	
	456.7	1.166 x 10 ⁻³	
	451.6	0.788 x 10 ⁻³	
	440.2	0.788 x 10 ⁻³ 0.341 x 10 ⁻³	
a. Provide a depiction of the transition structure for this transformation.			
h Draw a reaction coordinate disgram for this transformation, clearly labeling	a all intermedia	atoo and transition	o etatea
b. Draw a reaction coordinate diagram for this transformation, clearly labeling	j ali intermedia	ates and transition	i states.
c. Determine ΔH^{\ddagger} and ΔS^{\ddagger} from the data (in kcal/mol and eu, respectively).			
d. Explain whether your proposed transition structure is consistent with the ex	vnorimontally	magaurad value a	of A Q [‡]
u. Explain whether your proposed transition structure is consistent with the e.	Aperimentally	measureu value (л ΔЭ .

2. The temperature-dependent rates of rearrangement of allyl vinyl ether (eq 1) was studied in the gas phase.

3. Which of the following is more stable? Why?


$$H_2N$$
 OH V_S . H_2N OH CH_3 CH_3


4. (a) Please draw the lowest energy conformation of these methyl-substituted decalins.

Me H

(b) Please estimate the energy difference between the lowest energy conformations of the diastereomers in part a.

5. From The Art o	f Writing	Reasonable	Organic	Reaction	Mechanisms,	Ch.	5:	Please	draw	reasonable	arrow-
pushing mechanisms for the following transformations:											

