Name: \qquad
CHEM 633: Advanced Organic Chem: Physical
Problem Set 2. Due 9/22/16. Do not look up references until after you have turned in the problem set!

1. Using FMO arguments, please explain why the Z acid conformation is more stable than then E conformation.

(Z)

(E)
$\Delta G^{\circ}=+2 \mathrm{kcal} / \mathrm{mol}$
2. Please predict the lowest energy conformation of 2-chlorotetrahydropyran. Explain your answer using pictures and less than 10 words.

3. Where is the methyl group in the lowest energy conformation of ketal 1? Please use Newman projections to clearly illustrate the position of the methyl group. Also, please explain your reasoning. You may use steric, electronic and/or stereoelectronic arguments.

1
4. ortho-Silylaryl triflates, such as 2, are useful substrates for generating benzyne intermediates. Larock et al. found that meta-substituted product 3 was the only observed product in the addition of benzyl amine to $\mathbf{2}$. In contrast, Akai et al. observed that ortho-substituted aniline 5 was the major product in the reaction of 4.

Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.

Ikawa, T.; Nishiyama, T.; Shigeta, T.; Mohri, S.; Morita, S.;
Takayanagi, S.; Terauchi, Y.; Morikawa, Y.; Takagi, A.; Ishikawa, Y.;
Fujii, S.; Kita, Y.; Akai, S. Angew. Chem. Int. Ed. 2011, 50, 5674.
(a) Please draw a reasonable arrow-pushing mechanism for the transformation of 2 to 3.
\square
(b) Please rationalize the observed regiochemistry in both of these reactions. Specifically address why meta substitution is favored in one case and ortho in the other.
5. Are the following molecules chiral? Circle the ones that are chiral.

6. (a) Please draw the 4 possible products from the reaction of 2-methylcyclohexanone and methyl magnesium bromide.

(b) What are the stereochemical relationships between these products?
7. The temperature-dependent ratio of isomers of 1,3-di-tert-butylcyclohexane has been examined at equilibrium (J. Am. Chem. Soc. 1960, 82, 2393).

(a) Are the cis and trans conformations enantiomers or diastereomers?
(b) Determine $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ for this process in $\mathrm{kcal} / \mathrm{mol}$ and eu, respectively. Please attach your Excel worksheet and graph to the end of your problem set.
(c) Compare the measured value of ΔS° with those determined for other alkyl substituents by NMR spectroscopy (Me $=-0.03 \mathrm{eu}, \mathrm{Et}=0.64, i-\mathrm{Pr}=2.31$), and provide an explanation for the sign and magnitude of the observed value in the t-Bu case.
8. Propose an arrow-pushing mechanism for the following transformation.

9. Propose an arrow-pushing mechanism for the following transformation.

10. Please circle which side of the following equilibria will be favored. Please report the relevant pK_{a} 's and give K_{eq} for both equations.
(a)
 $\mathrm{Et}_{3} \mathrm{~N}$
 $\xlongequal[\text { (in DMSO) }]{ }$

(b)

MeLi

\square

11. (a) The reaction of benzylamine and methyl methylacrylate results exclusively in the formation of product 3 . Please explain the selectively for product 3 over 4.

(b) In contrast, product 6 is the exclusive product in the intramolecular addition of an amine to a similar electrophile (Baldwin, J.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. J. Chem. Soc., Chem. Commun. 1976, 736). Please explain the selectivity for product 6 over 5.

12. (Grossman, Ch 2, \#4) Draw reasonable arrow-pushing mechanisms for the following reactions.
(a)

\square
(b)

(c)

\square

(e)

(f)

